
Polynomial Time Corresponds to Solutions of

Polynomial Ordinary Differential Equations of

Polynomial Length

Olivier Bournez

École Polytechnique, LIX, 91128 Palaiseau Cedex, France

Daniel Graça
FCT, Universidade do Algarve, C. Gambelas

8005-139 Faro, Portugal
& Instituto de Telecomunicações, Lisbon, Portugal

Amaury Pouly∗

Department of Computer Science, University of Oxford
Wolfson Building, Parks Rd, OX1 3QD Oxford, United Kingdom

September 29, 2017

Abstract

The outcomes of this paper are twofold.

Implicit complexity. We provide an implicit characterization of poly-
nomial time computation in terms of ordinary differential equations: we
characterize the class P of languages computable in polynomial time in
terms of differential equations with polynomial right-hand side. This re-
sult gives a purely continuous elegant and simple characterization of P.
We believe it is the first time complexity classes are characterized us-
ing only ordinary differential equations. Our characterization extends to
functions computable in polynomial time over the reals in the sense of
Computable Analysis.

Our results may provide a new perspective on classical complexity, by
giving a way to define complexity classes, like P, in a very simple way,
without any reference to a notion of (discrete) machine. This may also
provide ways to state classical questions about computational complexity
via ordinary differential equations.

Continuous-Time Models of Computation. Our results can also
be interpreted in terms of analog computers or analog models of compu-
tation: As a side effect, we get that the 1941 General Purpose Analog
Computer (GPAC) of Claude Shannon is provably equivalent to Turing
machines both in terms of computability and complexity, a fact that has
never been established before. This result provides arguments in favour
of a generalised form of the Church-Turing Hypothesis, which states that
any physically realistic (macroscopic) computer is equivalent to Turing
machines both in terms of computability and complexity.

1



Contents

1 Introduction 4
1.1 Implicit Complexity . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Analog Computers . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Results and discussion 6
2.1 Our results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Applications to computational complexity . . . . . . . . . . . . . 9
2.3 Applications to continuous-time analog models . . . . . . . . . . 10
2.4 Applications to algorithms . . . . . . . . . . . . . . . . . . . . . . 11
2.5 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.6 Organization of the remainder of the paper . . . . . . . . . . . . 12

3 Generable and Computable Functions 13
3.1 Generable functions . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Computable functions . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3 Dynamics and encoding can be assumed generable . . . . . . . . 20

4 Some preliminary results 20
4.1 Generable implies computable over star domains . . . . . . . . . 20
4.2 Closure by arithmetic operations and composition . . . . . . . . 21
4.3 Continuity and growth . . . . . . . . . . . . . . . . . . . . . . . . 23
4.4 Some basic functions proved to be in ALP . . . . . . . . . . . . . 24

4.4.1 Absolute, minimum, maximum value . . . . . . . . . . . . 24
4.4.2 Rounding . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.4.3 Some functions considered elsewhere: Norm, and Bump

functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5 Encoding The Step Function of a Turing machine 29
5.1 Turing Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.2 Finite set interpolation . . . . . . . . . . . . . . . . . . . . . . . . 30
5.3 Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

6 A Characterization of FP 33
6.1 Main statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
6.2 Reverse direction of Theorem 52 . . . . . . . . . . . . . . . . . . 34

6.2.1 Complexity of solving polynomial differential equations . 34
6.2.2 Proof of Reverse direction of Theorem 52 . . . . . . . . . 35

6.3 Direct direction of Theorem 52 . . . . . . . . . . . . . . . . . . . 36
6.3.1 Iterating a function . . . . . . . . . . . . . . . . . . . . . 36
6.3.2 Proof of Direct direction of Theorem 52 . . . . . . . . . . 37

6.4 On the robustness of previous characterization . . . . . . . . . . 38

7 A Characterization of P 40

8 A Characterization of Computable Analysis 43
8.1 Computable Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 43
8.2 Mixing functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
8.3 Computing effective limits . . . . . . . . . . . . . . . . . . . . . . 46
8.4 Cauchy completion and complexity . . . . . . . . . . . . . . . . . 48

2



8.5 From Computable Analysis to ALP . . . . . . . . . . . . . . . . . 49
8.6 Equivalence with Computable Analysis . . . . . . . . . . . . . . . 52

9 Missing Proofs 53
9.1 Proof of Theorem 54: Simulating Discrete by Continuous Time . 53

9.1.1 A construction used elsewhere . . . . . . . . . . . . . . . . 53
9.1.2 Proof of Theorem 54 . . . . . . . . . . . . . . . . . . . . . 55

9.2 Cauchy completion and complexity . . . . . . . . . . . . . . . . . 58
9.3 Proof of Theorem 60: Word decoding . . . . . . . . . . . . . . . . 61
9.4 Proof of Theorem 66: Multidimensional FP equivalence . . . . . 64

10 How to only use rational coefficients 65
10.1 Composition in AWPQ . . . . . . . . . . . . . . . . . . . . . . . . 66
10.2 From AWPRG to AWPQ . . . . . . . . . . . . . . . . . . . . . . . 81

A Notations 85

3



1 Introduction

The current article is a journal extended version of our paper presented at 43rd
International Colloquium on Automata, Languages and Programming ICALP’2016
(Track B best paper award).

The outcomes of this paper are twofold, and concern a priori not closely
related topics.

1.1 Implicit Complexity

Since the introduction of the P and NP complexity classes, much work has been
done to build a well-developed complexity theory based on Turing Machines.
In particular, classical computational complexity theory is based on limiting
resources used by Turing machines, such as time and space. Another approach
is implicit computational complexity. The term “implicit” in this context can
be understood in various ways, but a common point of these characterizations
is that they provide (Turing or equivalent) machine-independent alternative
definitions of classical complexity.

Implicit complexity theory has gained enormous interest in the last decade.
This has led to many alternative characterizations of complexity classes us-
ing recursive functions, function algebras, rewriting systems, neural networks,
lambda calculus and so on.

However, most of — if not all — these models or characterizations are essen-
tially discrete: in particular they are based on underlying discrete-time models
working on objects which are essentially discrete, such as words, terms, etc.

Models of computation working on a continuous space have also been con-
sidered: they include Blum Shub Smale machines [BCSS98], Computable Anal-
ysis [Wei00], and quantum computers [Fey82] which usually feature discrete-
time and continuous-space. Machine-independent characterizations of the corre-
sponding complexity classes have also been devised: see e.g. [BCdNM05, GM95].
However, the resulting characterizations are still essentially discrete, since time
is still considered to be discrete.

In this paper, we provide a purely analog machine-independent characteri-
zation of the class P. Our characterization relies only on a simple and natural
class of ordinary differential equations: P is characterized using ordinary differ-
ential equations (ODEs) with polynomial right-hand side. This shows first that
(classical) complexity theory can be presented in terms of ordinary differential
equations problems. This opens the way to state classical questions, such as
P vs NP, as questions about ordinary differential equations, assuming one can
also express NP this way.

1.2 Analog Computers

Our results can also be interpreted in the context of analog models of compu-
tation and actually originate as a side effect of an attempt to understand the
power of continuous-time analog models relative to classical models of compu-
tation. Refer to [Ulm13] for a very instructive historical account of the history
of Analog computers. See also [Mac09, BC08] for further discussions.

4



Indeed, in 1941, Claude Shannon introduced in [Sha41] the General Pur-
pose Analog Computer (GPAC) model as a model for the Differential Analyzer
[Bus31], a mechanical programmable machine, on which he worked as an op-
erator. The GPAC model was later refined in [PE74], [GC03]. Originally it
was presented as a model based on circuits (see Figure 1), where several units
performing basic operations (e.g. sums, integration) are interconnected (see Fig-
ure 2).

k k

A constant unit

+ u+ v

An adder unit

u
v

× uv

A multiplier unit

u
v

∫
w =

∫
u dv

An integrator unit

u
v

Figure 1: Circuit presentation of the GPAC: a circuit built from basic units

−1 ×
∫ ∫

sin(t)


y′(t)= z(t)
z′(t)= −y(t)
y(0)= 0
z(0)= 1

⇒
{
y(t)= sin(t)
z(t)= cos(t)

t

Figure 2: Example of GPAC circuit: computing sine and cosine with two vari-
ables

However, Shannon himself realized that functions computed by a GPAC
are nothing more than solutions of a special class of polynomial differential
equations. In particular it can be shown that a function is computed by a
GPAC if and only if it is a (component of the) solution of a system of ordinary
differential equations (ODEs) with polynomial right-hand side [Sha41], [GC03].
In this paper, we consider the refined version presented in [GC03].

We note that the original notion of computation in the model of the GPAC
presented in [Sha41], [GC03] is known not to be equivalent to Turing machine
based models, like Computable Analysis. However, the original GPAC model
only allows for functions in one continuous variable and in real-time: at time t
the output is f(t), which is different from the notion used by Turing machines.
This prevents the original GPAC model from computing functions on several
variables and from computing functions like the Gamma function Γ. Moreover,
the model from [Sha41] only considers differential equations which are assumed
to have unique solutions, while in general it is not trivial to know when a
differential equation has a unique solution or not (this problem was solved in
[GC03]).

5



In [Gra04] a new notion of computation for the GPAC, which uses “con-
verging computations” as done by Turing machines was introduced and it was
shown in [BCGH06], [BCGH07] that using this new notion of computation, the
GPAC and Computable Analysis are two equivalent models of computation, at
the computability level.

Our paper extends this latter result and proves that the GPAC and Com-
putable Analysis are two equivalent models of computation, both in terms of
computability and complexity. As a consequence of this work, we also provide
a robust way to measure time in the GPAC, or more generally in computa-
tions performed by ordinary differential equations: essentially by considering
the length of the solution curve.

2 Results and discussion

2.1 Our results

The first main result of this paper shows that the class P can be characterized
using ODEs. In particular this result uses the following class of differential
equations:

y(0) = y0 y′(t) = p(y(t)) (1)

where p is a vector of polynomials and y : I → Rd for some interval I ⊂ R.
Such systems are sometimes called PIVP, for polynomial initial value problems
[GBC09]. Observe that, as opposed to the differential algebraic equations de-
scribing a GPAC, as used in [Sha41], there is always a unique solution to the
PIVP (the approach used in [GC03]), which is analytic, defined on a maximum
domain I containing 0, which we refer to as “the solution”.

To state complexity results via ODEs, we need to introduce some kind of
complexity measure for ODEs and, more concretely, for PIVPs. This is a non-
trivial task since, contrarily to discrete models of computation, continuous mod-
els of computation (not only the GPAC, but many others) usually exhibit the
so-called “Zeno phenomena”, where time can be arbitrarily contracted in a con-
tinuous system, thus allowing an arbitrary speed-up of the computation, if we
take the naive approach of using the time variable of the ODE as a measure of
“time complexity” (see Section 2.3 for more details).

Our crucial and key idea to solve this problem is that, when using PIVPs (in
principle this idea can also be used for others continuous models of computation)
to compute a function f , the cost should be measured as a function of the length
of the solution curve of the PIVP computing the function f . We recall that the
length of a curve y ∈ C1(I,Rn) defined over some interval I = [a, b] is given by
leny(a, b) =

∫
I
‖y′(t)‖ dt, where ‖y‖ refers to the infinity norm of y.

Since a language is made up of words, we need to discuss how to repre-
sent (encode) a word into a real number to decide a language with a PIVP.
We fix a finite alphabet Γ = {0, .., k − 2} and define the encoding1 ψ(w) =(∑|w|

i=1 wik
−i, |w|

)
for a word w = w1w2 . . . w|w|. We also take R+ = [0,+∞[.

1Other encodings may be used, however, two crucial properties are necessary: (i) ψ(w)
must provide a way to recover the length of the word, (ii) ‖ψ(w)‖ ≈ poly(|w|) in other words,
the norm of the encoding is roughly the length of the word. For technical reasons, we need to
encode the number in basis one more than the number of symbols.

6



Definition 1 (Discrete recognizability) poly-length-analog-recognizable if
there exists a vector q of bivariate polynomials and a vector p of polynomials
with d variables, both with coefficients in Q, and a polynomial q : R+ → R+,
such that for all w ∈ Γ∗, there is a (unique) y : R+ → Rd such that for all
t ∈ R+:

• y(0) = q(ψk(w)) and y′(t) = p(y(t)) I y satisfies a differential equation

• if |y1(t)| > 1 then |y1(u)| > 1 for all u > t I decision is stable

• if w ∈ L (resp. /∈ L) and leny(0, t) > q(|w|) then y1(t) > 1 (resp. 6 −1)
I decision

• leny(0, t) > t I technical condition2

Intuitively (see Fig. 3) this definition says that a language is poly-length-
analog-recognizable if there is a PIVP such that, if the initial condition is set
to be (the encoding of) some word w ∈ Γ∗, then by using a polynomial length
portion of the curve, we are able to tell if this word should be accepted or
rejected, by watching to which region of the space the trajectory goes: the value
of y1 determines if the word has been accepted or not, or if the computation is
still in progress. See Figure 3 for a graphical representation of Definition 1.

Theorem 2 (A characterization of P) A decision problem (language) L be-
longs to the class P if and only if it is poly-length-analog-recognizable.

A slightly more precise version of this statement is given at the end of the
paper, in Theorem 68. A characterization of the class FP of polynomial-time
computable functions is also given in Theorem 52.

Concerning the second main result of this paper, we assume the reader is
familiar with the notion of a polynomial-time computable function f : [a, b]→ R
(see [Ko91], [Wei00] for an introduction to Computable Analysis). We denote
by RP the set of polynomial-time computable reals. For any vector y, yi...j
refers to the vector (yi, yi+1, . . . , yj). For any sets X and Z, f :⊆ X → Z refers
to any function f : Y → Z where Y ⊆ X and dom f refers to the domain of
definition of f .

Our second main result is an analog characterization of polynomial-time
computable real functions. More precisely, we show that the class of poly-
length-computable functions (defined below), when restricted to domains of
the form [a, b], is the same as the class of polynomial-time computable real
functions of Computable Analysis over [a, b], sometimes denoted by PC[a,b], as
defined in [Ko91]. It is well-known that all computable functions (in the Com-
putable Analysis setting) are continuous. Similarly, all poly-length-computable
functions (and more generally GPAC-computable functions) are continuous (see
Theorem 22).

Definition 3 (Poly-Length-Computable Functions) We say that f :⊆ Rn →
Rm is poly-length-computable if and only if there exists a vector p of polynomials
with d > m variables and a vector q of polynomials with n variables, both with
coefficients in Q, and a bivariate polynomial q such that for any x ∈ dom f ,
there exists (a unique) y : R+ → Rd satisfying for all t ∈ R+:

2This could be replaced by only assuming that we have somewhere the additional ordinary
differential equation y′0 = 1.

7



=
∫ t

0
‖y′‖

`(t)= length of y
over [0, t]

1

−1

poly(|w|)

accept: w ∈ L

reject: w /∈ L

computing

forbidden

q(ψ(w))

y1(t)
y1(t)

y1(t)

y1(t)

Figure 3: Graphical representation of poly-length-analog-recognizability (Defi-
nition 1). The green trajectory represents an accepting computation, the red a
rejecting one, and the gray are invalid computations. An invalid computation
is a trajectory that is too slow (or converges) (thus violating the technical con-
dition), or that does not accept/reject in polynomial length. Note that we only
represent the first component of the solution, the other components can have
arbitrary behaviors.

leny

f(x)

q1(x)

y1

e−0

q(x, 0)

e−1

q(x, 1)

Figure 4: Poly-length-computability: on input x, starting from initial condition
q(x), the PIVP y′ = p(y) ensures that y1(t) gives f(x) with accuracy better
than e−µ as soon as the length of y (from 0 to t) is greater than q(‖x‖ , µ).
Note that we did not plot the other variables y2, . . . , yd and the horizontal axis
measures the length of y (instead of the time t).

8



• y(0) = q(x) and y′(t) = p(y(t)) I y satisfies a PIVP

• ∀µ ∈ R+, if leny(0, t) > q(‖x‖ , µ) then ‖y1..m(t)− f(x)‖ 6 e−µ I y1..m

converges to f(x)

• leny(0, t) > t I technical condition: the length grows at least linearly with
time34

Intuitively, a function f is poly-length-computable if there is a PIVP that
approximates f with a polynomial length to reach a given level of approximation.
See Figure 4 for a graphical representation of Definition 3 and Section 3.2 for
more background on analog computable functions.

Theorem 4 (Equivalence with Computable Analysis) For any a, b ∈ RP
and f ∈ C0([a, b],R), f is polynomial-time computable if and only if it is poly-
length-computable.

A slightly more precise version of this statement is given at the end of the
paper, in Theorem 79.

2.2 Applications to computational complexity

We believe these characterizations to open a new perspective on classical com-
plexity, as we indeed provide a natural definition (through previous definitions)
of P for decision problems and of polynomial time for functions over the reals
using analysis only i.e. ordinary differential equations and polynomials, no need
to talk about any (discrete) machinery like Turing machines. This may open
ways to characterize other complexity classes like NP or PSPACE. In the cur-
rent settings of course NP can be viewed as an existential quantification over
our definition, but we are obviously talking about “natural” characterizations,
not involving unnatural quantifiers (for e.g. a concept of analysis like ordinary
differential inclusions).

As a side effect, we also establish that solving ordinary differential equations
with polynomial right-hand side leads to P-complete problems, when the length
of the solution curve is taken into account. In an less formal way, this is stating
that ordinary differential equations can be solved by following the solution curve
(as most numerical analysis method do), but that for general (and even right-
hand side polynomial) ODEs, no better method can work. Note that our results
only deal with ODEs with a polynomial right-hand side and that we do not
know what happens for ODEs with analytic right-hand sides over unbounded
domains. There are some results (see e.g. [MM93]) which show that ODEs with
analytic right-hand sides can be computed locally in polynomial time. However
these results do not apply to our setting since we need to compute the solution
of ODEs over arbitrary large domains, and not only locally.

3This is a technical condition required for the proof. This can be weakened, for example to
‖y′(t)‖ = ‖p(y(t))‖ > 1

poly(t)
. The technical issue is that if the speed of the system becomes

extremely small, it might take an exponential time to reach a polynomial length, and we want
to avoid such “unnatural” cases. This is satisfied by all examples of computations we know
[Ulm13]. It also avoids pathological cases where the system would “stop” (i.e. converge)
before accepting/rejecting, as depicted in Figure 3.

4This could also be replaced by only assuming that we have somewhere the additional
ordinary differential equation y′0 = 1.

9



t

θ1(t)

t

φ1(t)

Figure 5: A continuous system before and after an exponential speed-up.

2.3 Applications to continuous-time analog models

PIVPs are known to correspond to functions that can be generated by the GPAC
of Claude Shannon [Sha41], which is itself a model of the analog computers
(differential analyzers) in use in the first half of the XXth century [Bus31].

As we have mentioned previously, defining a robust (time) complexity notion
for continuous time systems was a well known open problem [BC08] with no
generic solution provided to this day. In short, the difficulty is that the naive
idea of using the time variable of the ODE as a measure of “time complexity” is
problematic, since time can be arbitrarily contracted in a continuous system due
to the “Zeno phenomena”. For example, consider a continuous system defined
by an ODE

y′ = f(y)

where f : R → R and with solution θ : R → R. Now consider the following
system {

y′ = f(y)z
z′ = z

with solution φ : R2 → R2. It is not difficult to see that this systems re-scales
the time variable and that its solution φ = (φ1, φ2) is given by φ2(t) = et and
φ1(t) = θ(et) (see Figure 5). Therefore, the second ODE simulates the first
ODE, with an exponential acceleration. In a similar manner, it is also possible
to present an ODE which has a solution with a component ϕ1 : R → R such
that ϕ1(t) = φ(tan t), i.e. it is possible to contract the whole real line into a
bounded set. Thus any language computable by the first system (or, in general,
by a continuous system) can be computed by another continuous system in time
O(1). This problem appears not only for PIVPs (or, equivalently, GPACs), but
also for many continuous models (see e.g. [Ruo93], [Ruo94], [Moo96], [Bou97],
[Bou99], [AD90], [CP02], [Dav01], [Cop98], [Cop02]).

With that respect, we solve this open problem by stating that the “time
complexity” should be measured by the length of the solution curve of the
ODE. Doing so, we get a robust notion of time complexity for PIVP systems.
Indeed, the length is a geometric property of the curve and is thus “invariant”
by rescaling.

Using this notion of complexity, we are then able to show that functions com-
putable by a GPAC in polynomial time are exactly the functions computable in
polynomial time in the sense of Computable Analysis (see Section 2.1 or [Ko91]).
It was already previously shown in [BCGH06], [BCGH07] that functions com-
putable by a GPAC are exactly those computable in the sense of Computable
Analysis. However this result was only pertinent for computability. Here we
show that this equivalence holds also at a computational complexity level.

10



Stated otherwise, analog computers (as used before the advent of the digital
computer) are theoretically equivalent to (and not more powerful than) Turing
machine based models, both at a computability and complexity level. Note that
this is a new result since, although digital computers are usually more powerful
than analog computers at our current technological stage, it was not known
what happened at a fundamental level.

This result leave us to conjecture the following generalization of the Church-
Turing thesis: any physically realistic (macroscopic) computer is equivalent to
Turing machines both in terms of computability and computational complexity.

2.4 Applications to algorithms

We believe that transferring the notion of time complexity to a simple consid-
eration about length of curves allows for very elegant and nice proofs of poly-
nomiality of many methods for solving both continuous and discrete problems.
For example, the zero of a function f can easily be computed by considering the
solution of y′ = −f(y) under reasonable hypotheses on f . More interestingly,
this may also cover many interior-point methods or barrier methods where the
problem can be transformed into the optimization of some continuous function
(see e.g. [Kar84, Fay91, BHFFS03, KMNY91]).

2.5 Related work

We believe that no purely continuous-time definition of P has ever been stated
before. One direction of our characterization is based on a polynomial-time
algorithm (in the length of the curve) to solve PIVPs over unbounded time
domains, and strengthens all existing results on the complexity of solving ODEs
over unbounded time domains. In the converse direction, our proof requires a
way to simulate a Turing machine using PIVP systems of polynomial length, a
task whose difficulty is discussed below, and still something that has never been
done up to date.

Attempts to derive a complexity theory for continuous-time systems include
[GM02]. However, the theory developed there is not intended to cover generic
dynamical systems but only specific systems that are related to Lyapunov theory
for dynamical systems. The global minimizers of particular energy functions
are supposed to give solutions of the problem. The structure of such energy
functions leads to the introduction of problem classes U and NU , with the
existence of complete problems for theses classes.

Another attempt is [BHSF02], which also focused on a very specific type of
systems: dissipative flow models. The proposed theory is nice but non-generic.
This theory has been used in several papers from the same authors to study
a particular class of flow dynamics [BHFFS03] for solving linear programming
problems.

Neither of the previous two approaches is intended to cover generic ODEs,
and none of them is able to relate the obtained classes to classical classes from
computational complexity.

To the best of our knowledge, the most up to date surveys about continuous
time computation are [BC08, Mac09].

Relating computational complexity problems (such as the P vs NP question)
to problems of analysis has already been the motivation of other papers. In

11



particular, Félix Costa and Jerzy Mycka have a series of work (see e.g. [MC06])
relating the P vs NP question to questions in the context of real and complex
analysis. Their approach is very different: they do so at the price of introducing
a whole hierarchy of functions and operators over functions. In particular, they
can use multiple times an operator which solves ordinary differential equations
before defining an element of DAnalog and NAnalog (the counterparts of P and
NP introduced in their paper), while in our case we do not need the multiple
application of this kind of operator: we only need to use one application of such
an operator (i.e. we only need to solve one ordinary differential equations with
polynomial right-hand side).

It its true that one can sometimes convert the multiple use of operators
solving ordinary differential equations into a single application [GC03], but this
happens only in very specific cases, which do not seem to include the classes
DAnalog and NAnalog. In particular, the application of nested continuous
recursion (i.e. nested use of solving ordinary differential equations) may be
needed using their constructions, whereas we define P using only a simple notion
of acceptance and only one system of ordinary differential equations.

We also mention that Friedman and Ko (see [Ko91]) proved that polynomial
time computable functions are closed under maximization and integration if
and only if some open problems of computational complexity (like P = NP for
the maximization case) hold. The complexity of solving Lipschitz continuous
ordinary differential equations has been proved to be polynomial-space complete
by Kawamura [Kaw10].

This paper contains mainly original contributions. We however make refer-
ences to results established in:

1. [BGP16a], under revision for publication in Information and Computation,
devoted to properties of generable functions.

2. [BGP16c], published in Journal of Complexity, devoted to the proof of
Proposition 12.

3. [PG16], published in Theoretical Computer Science, devoted to providing
a polynomial time complexity algorithm for solving polynomially bounded
polynomial ordinary differential equations.

None of these papers establishes relations between polynomial-length-analog-
computable-functions and classical computability/complexity. This is precisely
the objective of the current article.

2.6 Organization of the remainder of the paper

In Section 3, we introduce generable functions and computable functions. Gen-
erable functions are functions computable by PIVPs (GPACs) in the classical
sense of [Sha41]. They will be a crucial tool used in the paper to simplify the
construction of polynomial differential equations. Computable functions were
introduced in [BGP16c]. This section does not contain any new original result,
but only recalls already known results about these classes of functions.

Section 4 establishes some original preliminary results needed in the rest of
the paper: First we relate generable functions to computable functions under
some basic conditions about their domain. Then we show that the class of com-
putable functions is closed under arithmetic operations and composition. We

12



then provide several growth and continuity properties. We then prove that ab-
solute value, min, max, and some rounding functions, norm, and bump function
are computable.

In Section 5, we show how to efficiently encode the step function of Turing
machines using a computable function.

In Section 6, we provide a characterization of FP. To obtain this characteri-
zation, the idea is basically to iterate the functions of the previous section using
ordinary differential equations in one direction, and to use a numerical method
for solving polynomial ordinary differential equations in the reverse direction.

In Section 7, we provide a characterization of P.
In Section 8, we provide a characterization of polynomial time computable

functions over the real in the sense of Computable Analysis.
On purpose, to help readability of the main arguments of the proof, we

postpone the most technical proofs to Section 9. This latter section is devoted to
proofs of some of the results used in order to establish previous characterizations.

Up to Section 9, we allow coefficients that maybe possibly non-rational num-
bers. In Section 10, we prove that all non -rationnal coefficients can be elimi-
nated. This proves our main results stated using only rational coefficients.

A list of notations used in this paper as well as in the above mentioned
related papers can be found in Appendix A.

3 Generable and Computable Functions

In this section we define the main classes of functions considered in this paper
and state some of their properties. Results and definitions from this section have
already been obtained in other articles: They are taken from [BGP16a],[BGP16c].
The material of this section is however needed for what follows.

3.1 Generable functions

The following concept can be attributed to [Sha41]: a function f : R→ R is said
to be a PIVP function if there exists a system of the form (1) with f(t) = y1(t)
for all t, where y1 denotes the first component of the vector y defined in Rd. In
our proofs, we needed to extend Shannon’s notion to talk about (i) multivariable
functions and (ii) the growth of these functions. To this end, we introduced an
extended class of generable functions in [BGP16b].

We will basically be interested with the case K = Q in the following defi-
nition. However, for reasons explained in a few lines, we will need to consider
larger fields K.

Definition 5 (Polynomially bounded generable function) Let K be a field.
Let I be an open and connected subset of Rd and f : I → Re. We say that
f ∈ GPVAL K if and only if there exists a polynomial sp : R → R+, n > e, a
n × d matrix p consisting of polynomials with coefficients in K, x0 ∈ Kd ∩ I,
y0 ∈ Kn and y : I → Rn satisfying for all x ∈ I:

• y(x0) = y0 and Jy(x) = p(y(x)) I y satisfies a differential equation5

• f(x) = y1..e(x) I f is a component of y

5Jy denotes the Jacobian matrix of y.

13



• ‖y(x)‖ 6 sp(‖x‖) I y is polynomially bounded

This class can be seen as an extended version of PIVPs. Indeed, when I is
an interval, the Jacobian of y simply becomes the derivative of y and we get the
solutions of y′ = p(y) where p is a vector of polynomials.

Note that, although functions in GPVAL K can be viewed as solutions of
partial differential equations (PDEs) (as we use a Jacobian), we will never have
to deal with classical problems related to PDEs: PDEs have no general theory
about the existence of solutions, etc. This comes from the way how we define
functions in GPVAL K. Namely, in this paper, we will explictly present the
functions in GPVAL K which we will be used and we will show that they satisfy
the conditions of Definition 5. Note also that it can be shown [BGP16a, Remark
15] that a solution to the PDE defined with the Jacobian is unique, because the
condition Jy(x) = p(y(x)) is not general enough to capture the class of all PDEs.
We also remark that, because a function in GPVAL K must be polynomially
bounded, it is defined everywhere on I.

A much more detailed discussion of this extension (which includes the re-
sults stated in this section) can be found in [BGP16b]. The key property of this
extension is that it yields a much more stable class of functions than the orig-
inal class considered in [Sha41]. In particular, we can add, subtract, multiply
generable functions, and we can even do so while keeping them polynomially
bounded.

Lemma 6 (Closure properties of GPVAL) Let (f :⊆ Rd → Rn), (g :⊆ Re →
Rm) ∈ GPVAL K. Then6 f + g, f − g, fg are in GPVAL K.

As we said, we are basically mostly interested by the case K = Q, but
unfortunately, it turns out that GPVAL Q is not closed by composition7, while
GPVAL K is closed by composition for particular fields K: An interesting case
is when K is supposed to be a generable field as introduced in [BGP16b]. All
the reader needs to know about generable fields is that they are fields and are
stable by generable functions (introduced in Section 3.1). More precisely,

Proposition 7 (Generable field stability) Let K be a generable field. If
α ∈ K and f is generable using coefficients in K (i.e. f ∈ GPVALK) then
f(α) ∈ K.

It is shown in [BGP16b] that there exists a smallest generable field RG lying
somewhere between Q and RP .

Lemma 8 (Closure properties of GPVAL) Let K be a generable field. Let
(f :⊆ Rd → Rn), (g :⊆ Re → Rm) ∈ GPVAL K. Then8 f ◦ g in GPVAL K.

As dealing with a class of functions closed by composition helps in many
constructions, we will first reason assuming that K is a generable field with
RG ⊆ K ⊆ RP : From now on, K always denotes such a generable field, and we

6For matching dimensions of course.
7To observe that GPVAL Q is not closed by composition, see for example that π is not

rational and hence the constant function π does not belong to GPVAL Q. However it can be
obtained from π = 4 arctan 1.

8For matching dimensions of course.

14



write GPVAL for GPVAL K. We will later prove that non-rational coefficients
can be eliminated in order to come back to the case K = Q. Up to Section 9
we allow coefficients in K. Section 10 is devoted to prove than their can then
be eliminated.

As RP is generable, if this helps, the reader can consider that K = RP
without any significant loss of generality.

Another crucial property of class GPVAL is that it is closed under solutions
of ODE. In practice, this means that we can write differential equations of the
form y′ = g(y) where g is generable, knowing that this can always be rewritten
as a PIVP.

Lemma 9 (Closure by ODE of GPVAL) Let J ⊆ R be an interval, f :⊆
Rd → Rd in GPVAL, t0 ∈ Q ∩ J and y0 ∈ Qd ∩ dom f . Assume there exists
y : J → dom f and a polynomial sp : R+ → R+ satisfying for all t ∈ J :

y(t0) = y0 y′(t) = f(y(t)) ‖y(t)‖ 6 sp(t)

Then y is unique and belongs to GPVAL.

The class GPVAL contains many classic polynomially bounded analytic9

functions. For example, all polynomials belong to GPVAL, as well as sine and
cosine. Mostly notably, the hyperbolic tangent (tanh) also belongs to GPVAL.
This function appears very often in our constructions. Lemmas 6 and 9 are very
useful to build new generable functions.

Functions from GPVAL are also known to have a polynomial modulus of
continuity.

Proposition 10 (Modulus of continuity ) Let f ∈ GPVAL with correspond-
ing polynomial sp : R+ → R+. There exists q ∈ K[R] such that for any x1, x2 ∈
dom f , if [x1, x2] ⊆ dom f then ‖f(x1)− f(x2)‖ 6 ‖x1 − x2‖ q(sp(max(‖x1‖ , ‖x2‖))).
In particular, if dom f is convex then f has a polynomial modulus of continuity.

3.2 Computable functions

In [BGP16c], we introduced several notions of computation based on polynomial
differential equations extending the one introduced by [BCGH07] by adding a
measure of complexity. The idea, illustrated in Figure 4 is to put the input value
x as part of the initial condition of the system and to look at the asymptotic
behavior of the system.

Our key insight to have a proper notion of complexity is to measure the length
of the curve, instead of the time. Alternatively, a proper notion of complexity
is achieved by considering both time and space, where space is defined as the
maximum value of all components of the system.

Earlier attempts at defining a notion of complexity for the GPAC based
on other notions failed because of time-scaling. Indeed, given a solution y of
a PIVP, the function z = y ◦ exp is also solution of a PIVP, but converges
exponentially faster. A longer discussion on this topic can be found in [BGP16c].
In this section, we recall the main complexity classes and restate the main

9Functions from GPVAL are necessarily analytic, as solutions of an analytic ODE are
analytic.

15



equivalence theorem. We denote by K[An] the set of polynomial functions with
n variables, coefficients in K and domain of definition An.

The following definition is a generalization (to general length bound q and
field K) of Definition 3: Following class ALP when K = Q, i.e. ALPQ, corre-
sponds of course to poly-length-computable functions (Definition 3).

Definition 11 (Analog Length Computability) Let f :⊆ Rn → Rm and
q : R2

+ → R+. We say that f is q-length-computable if and only if there exist
d ∈ N, and p ∈ Kd[Rd], q ∈ Kd[Rn] such that for any x ∈ dom f , there exists (a
unique) y : R+ → Rd satisfying for all t ∈ R+:

• y(0) = q(x) and y′(t) = p(y(t)) I y satisfies a PIVP

• for any µ ∈ R+, if leny(0, t) > q(‖x‖ , µ) then ‖y1..m(t)− f(x)‖ 6 e−µ
I y1..m converges to f(x)

• ‖y′(t)‖ > 1 I technical condition: the length grows at least linearly with
time10

We denote by ALC(q) the set of q-length-computable functions, and by ALP
the set of q-length-computable functions where q is a polynomial, and more
generally by ALC the length-computable functions (for some q). If we want to
explicitly mention the set K of the coefficients, we write ALCK(q), ALPK and
ALCK.

This notion of computation turns out to be equivalent to various other no-
tions: The following equivalence result is proved in [BGP16c].

Proposition 12 (Main equivalence, [BGP16c]) Let f :⊆ Rn → Rm. Then
the following are equivalent for any generable field K:

1. (illustrated by Figure 4) f ∈ ALP ;

2. (illustrated by Figure 6) There exist d ∈ N, and p, q ∈ Kd[Rn], polynomials
q : R2

+ → R+ and Υ : R2
+ → R+ such that for any x ∈ dom f , there exists

(a unique) y : R+ → Rd satisfying for all t ∈ R+:

• y(0) = q(x) and y′(t) = p(y(t)) I y satisfies a PIVP

• ∀µ ∈ R+, if t > q(‖x‖ , µ) then ‖y1..m(t)− f(x)‖ 6 e−µ I y1..m

converges to f(x)

• ‖y(t)‖ 6 Υ(‖x‖ , t) I y is bounded

3. There exist d ∈ N, and p ∈ Kd[Rd], q ∈ Kd[Rn+1], and polynomial q :
R2

+ → R+ and Υ : R3
+ → R+ such that for any x ∈ dom f and µ ∈ R+,

there exists (a unique) y : R+ → Rd satisfying for all t ∈ R+:

• y(0) = q(x, µ) and y′(t) = p(y(t)) I y satisfies a PIVP

10This is a technical condition required for the proof. This can be weakened, for example to
‖p(y(t))‖ > 1

poly(t)
. The technical issue is that if the speed of the system becomes extremely

small, it might take an exponential time to reach a polynomial length, and we want to avoid
such “unnatural” cases. This could be replaced by only assuming that we have somewhere
the additional ordinary differential equation y′0 = 1.

16



• if t > q(‖x‖ , µ) then ‖y1..m(t)− f(x)‖ 6 e−µ I y1..m approximates
f(x)

• ‖y(t)‖ 6 Υ(‖x‖ , µ, t) I y is bounded

4. (illustrated by Figure 7) There exist δ > 0, d ∈ N and p ∈ Kd[Rd × Rn],
y0 ∈ Kd and polynomials Υ,q,Λ : R2

+ → R+, such that for any x ∈
C0(R+,Rn), there exists (a unique) y : R+ → Rd satisfying for all t ∈ R+:

• y(0) = y0 and y′(t) = p(y(t), x(t)) I y satisfies a PIVP (with input)

• ‖y(t)‖ 6 Υ
(
supδ ‖x‖ (t), t

)
I y is bounded

• for any I = [a, b] ⊆ R+, if there exist x̄ ∈ dom f and µ̄ > 0 such that
for all t ∈ I, ‖x(t)− x̄‖ 6 e−Λ(‖x̄‖,µ̄) then ‖y1..m(u)− f(x̄)‖ 6 e−µ̄

whenever a+q(‖x̄‖ , µ̄) 6 u 6 b. I y converges to f(x) when input
x is stable

5. There exist δ > 0, d ∈ N and (g : Rd × Rn+1 → Rd) ∈ GPVALK and
polynomials Υ : R3

+ → R+ and q,Λ,Θ : R2
+ → R+ such that for any

x ∈ C0(R+,Rn), µ ∈ C0(R+,R+), y0 ∈ Rd, e ∈ C0(R+,Rd) there exists
(a unique) y : R+ → Rd satisfying for all t ∈ R+:

• y(0) = y0 and y′(t) = g(t, y(t), x(t), µ(t)) + e(t)

• ‖y(t)‖ 6 Υ
(

supδ ‖x‖ (t), supδµ(t), ‖y0‖ 1[1,δ](t) +
∫ t

max(0,t−δ) ‖e(u)‖ du
)

• For any I = [a, b], if there exist x̄ ∈ dom f and µ̌, µ̂ > 0 such that for
all t ∈ I:

µ(t) ∈ [µ̌, µ̂] and ‖x(t)− x̄‖ 6 e−Λ(‖x̄‖,µ̂) and

∫ b

a

‖e(u)‖ du 6 e−Θ(‖x̄‖,µ̂)

then

‖y1..m(u)− f(x̄)‖ 6 e−µ̌ whenever a+q(‖x̄‖ , µ̂) 6 u 6 b.

Note that (1) and (2) in the previous proposition are very closely related,
and only differ in how the complexity is measured. In (1), based on length, we
measure the length required to reach precision e−µ. In (2), based on time+space,
we measure the time t required to reach precision e−µ and the space (maximum
value of all components) during the time interval [0, t].

Item (3) in the previous proposition gives an apparently weaker form of
computability where the system is no longer required to converge to f(x) on
input x. Instead, we give the system an input x and a precision µ, and ask that
the system stabilizes within e−µ of f(x).

Item (4) in the previous proposition is a form of online-computability: the
input is no longer part of the initial condition but rather given by an external
input x(t). The intuition is that if x(t) approaches a value x̄ sufficiently close,
then by waiting long enough (and assuming that the external input stays near
the value x̄ during that time interval), we will get an approximation of f(x̄)
with some desired accuracy. This will be called online-computability.

Item (5) is a version robust with respect to perturbations. This notion will
only be used in some proofs, and will be called extreme computability.

17



t

f(x)

q1(x)

y1

e−0

t0=q (x, 0)

e−1

t1=q (x, 1)

q2(x)
y2

Υ(x, t0)

Υ(x, t1)

Figure 6: f ∈ ATSC(Υ,q): On input x, starting from initial condition q(x), the
PIVP y′ = p(y) ensures that y1(t) gives f(x) with accuracy better than e−µ as
soon as the time t is greater than q(‖x‖ , µ). At the same time, all variables yj
are bounded by Υ(‖x‖ , t). Note that the variables y2, . . . , yd need not converge
to anything.

t

x̄ e−Λ(x̄,1)

e−Λ(x̄′,2) x̄′

undefined accurate

stable unstable

undefined undefined accurate

stable

t

f(x̄)

y0

y1

e−1

t1 t1+q (x̄, 1)

f(x̄′)

t2 t2+q (x̄′, 2)

Figure 7: f ∈ AOC(Υ,q,Λ): starting from the (constant) initial condition y0,
the PIVP y′(t) = p(y(t), x(t)) has two possible behaviors depending on the input
signal x(t). If x(t) is unstable, the behavior of the PIVP y′(t) = p(y(t), x(t))
is undefined. If x(t) is stable around x̄ with error at most e−Λ(‖x̄‖,µ) then y(t)
is initially undefined, but after a delay of at most q(‖x̄‖ , µ), y1(t) gives f(x̄)
with accuracy better than e−µ. In all cases, all variables yj(t) are bounded by
a function (Υ) of the time t and the supremum of ‖x(u)‖ during a small time
interval u ∈ [t− δ, t].

18



Remark 13 (Effective Limit computability) A careful look at Item (3) of
the previous Proposition shows that it corresponds to a form of effective limit
computability. Formally, let f : I × R∗+ → Rn, g : I → Rn and f : R2

+ → R+

a polynomial. Assume that f ∈ ALP and that for any x ∈ I and τ ∈ R∗+, if
τ > f(‖x‖ , µ) then ‖f(x, τ)− g(x)‖ 6 e−µ. Then g ∈ ALP because the analog
system for f satisfies all the items of the definition.

Remark 14 (Comparison with classical complexity, unary and binary encodings)
Our notion of complexity is very similar to that of Computable Analysis over
compact domains (indeed the goal of this paper is to show they are equivalent).
However, there is a significant difference over unbounded domains: given x ∈ R,
we measure the complexity in terms of |x|, the absolute value of x, and the pre-
cision requested (µ in Definition 11). On the other hand, complexity in Com-
putable Analysis is typically measured in terms of k ∈ N such that x ∈ [−2k, 2k],
and the precision requested. In particular, note that k ≈ log2 |x|. A consequence
of this fact is that the two frameworks have a different notion of “unary” and
“binary”:

• In the framework of Computable Analysis, the fractional part of the in-
put/output (related to the precision) is measured “in unary”: doubling the
precision doubles the size and time allowed to compute. On the other hand,
the integer part of input is measured “in binary”: doubling the input only
increases the size by 1. Note that this matches Turing complexity where
we only deal with integers.

• In our framework, the fractional part of the input/output (related to the
precision µ) is also measured “in unary”: doubling the precision doubles
the size and time allowed to compute. But the integer part of the input
is also measured “in unary” because we measure |x|: doubling the input
doubles the norm.

This difference results in some surprising facts for the reader familiar with Com-
putable Analysis:

• The modulus of continuity is exponential in |x| for polynomial-length com-
putable functions, whereas it is pseudo-polynomial in Computable Analy-
sis: see Theorem 22.

• A function f : N → N that is polynomial-length computable typically cor-
responds to a polynomial-time computable function with unary encoding.
More generally, integer arguments in our framework should be considered
as unary argument.

For notational purpose, we will write f ∈ ATSC(Υ,q) when f satisfies
(2) with corresponding polynomials Υ and q, f ∈ AWC(Υ,q) when when f
satisfies (3) with corresponding polynomials Υ and q, f ∈ AOC(Υ,q,Λ) when
f satisfies (4) with corresponding polynomials Υ, q and Λ, and we will write
f ∈ AXC(Υ,q,Λ,Θ) when f satisfies (5) with corresponding polynomials Υ,
q, Λ, Θ.

19



3.3 Dynamics and encoding can be assumed generable

Before moving on to some basic properties of computable functions, we observe
that a certain aspect of the definitions does not really matter: In Item (2)
of Proposition 12, we required that p and q be polynomials. It turns out,
surprisingly, that the class is the same if we only assume that p, q ∈ GPVAL.
This remark also applies to the Item (3). This turns out to be very useful when
defining computable function.

Following proposition follows from Remark 26 of [BGP16c].

Remark 15 Notice that this also holds for class ALP, even if not stated ex-
plicitely in [BGP16c]. Indeed, in Theorem 20 of [BGP16c] (ALP = ATSP), the
inclusion ATSP ⊆ ALP is trivial. Now, when proving that ALP ⊆ ATSP, the
considered p and g could have been assumed generable without any difficulty.

Proposition 16 (Polynomial versus generable) Theorem 12 is still true if
we only assume that p, q ∈ GPVAL in Item (2) or (3) (instead of p, q polyno-
mials).

We will use intensively this remark from now on. Actually, in several of the
proofs, given a function from ALP, we will use the fact that it satisfies item (2)
(the stronger notion) to build another function satifying item (3) with functions
p and q in GPVAL (the weaker notion). From Proposition 12, this proves that
the constructed function is indeed in ALP.

4 Some preliminary results

In this section, we present new and original results the exception being in sub-
section 4.4.3. First we relate generability to computability. Then, we prove
some closure results for the class of computable functions. Then, we discuss
their continuity and growth. Finaly, we prove that some basic functions such as
min,max and absolute value, and rounding functions are in ALP.

4.1 Generable implies computable over star domains

We introduced the notion of GPAC generability and of GPAC computability.
The latter can be considered as a generalization of the first, and as such, it may
seem natural that any generable function must be computable: The intuition
tells us that computing the value of f , a generable function, at point x is only
a matter of finding a path in the domain of definition from the initial value x0

to x, and simulating the differential equation along this path.
This however requires some discussions and hypotheses on the domain of

definition of the function: We recall that a function is generable if it satisfies
a PIVP over an open connected subset. We proved in [BGP16b] that there is
always a path between x0 to x and it can even be assumed to be generable.

Proposition 17 (Generable path connectedness) An open, connected sub-
set U of Rn is always generable-path-connected: for any a, b ∈ (U ∩Kn), there
exists (φ : R→ U) ∈ GPVALK such that φ(0) = a and φ(1) = b.

20



However, the proof is not constructive and we have no easy way of computing
such a path given x.

For this reason, we restrict ourselves to the case where finding the path is
trivial: star domains with a generable vantage point.

Definition 18 (Star domain) A set X ⊆ Rn is called a star domain if there
exists x0 ∈ X such that for all x ∈ U the line segment from x0 to x is in X, i.e
[x0, x] ⊆ X. Such an x0 is called a vantage point.

The following result is true, where a generable vantage point means a vantage
point which belongs to a generable field. We will mostly need this theorem for
domains of the form Rn × Rm+ , which happen to be star domains.

Theorem 19 (GPVAL ⊆ ALP over star domains ) If f ∈ GPVAL has a
star domain with a generable vantage point then f ∈ ALP.

Proof. Let (f :⊆ Rn → Rm) ∈ GPVAL and z0 ∈ dom f ∩Kn a generable van-
tage point. Apply Definition 5 to get sp, d, p, x0, y0 and y. Since y is generable
and z0 ∈ Kd, apply Proposition 7 to get that y(z0) ∈ Kd. Let x ∈ dom f and
consider the following system:x(0)= x

γ(0)= x0

z(0)= y(z0)

x
′(t)= 0
γ′(t)= x(t)− γ(t)
z′(t)= p(z(t))(x(t)− γ(t))

First note that x(t) is constant and check that γ(t) = x + (x0 − x)e−t and
note that γ(R+) ⊆ [x0, x] ⊆ dom f because it is a star domain. Thus z(t) =
y(γ(t)) since γ′(t) = x(t)− γ(t) and Jy = p. It follows that ‖f(x)− z1..m(t)‖ =
‖f(x)− f(γ(t))‖ since z1..m = f . Apply Proposition 10 to f to get a polynomial
q such that

∀x1, x2 ∈ dom f, [x1, x2] ⊆ dom f ⇒ ‖f(x1)− f(x2)‖ 6 ‖x1 − x2‖ q(sp(max(‖x1‖ , ‖x2‖))).

Since ‖γ(t)‖ 6 ‖x0, x‖ we have

‖f(x)− z1..m(t)‖ 6 ‖x− x0‖ e−tq(‖x0, x‖) 6 e−t poly(‖x‖).

Finally, ‖z(t)‖ 6 sp(γ(t)) 6 poly(‖x‖) because sp is a polynomial. Then, by
Proposition 12, f ∈ ALP.

4.2 Closure by arithmetic operations and composition

The class of polynomial time computable function is stable under addition,
subtraction and multiplication, and composition.

Theorem 20 (Closure by arithmetic operations) If f, g ∈ ALP then f ±
g, fg ∈ ALP, with the obvious restrictions on the domains of definition.

Proof. We do the proof for the case of f + g in detail. The other cases
are similar. Apply Proposition 12 to get polynomials q,Υ,q∗,Υ∗ such that

21



f ∈ ATSC(Υ,q) and g ∈ ATSC(Υ∗,q∗) with corresponding d, p, q and d∗, p∗, q∗

respectively. Let x ∈ dom f ∩ dom g and consider the following system: y(0)= q(x)
z(0)= q∗(x)
w(0)= q(x) + q∗(x)

 y′(t)= p(y(t))
z′(t)= p∗(z(t))
w′(t)= p(y(t)) + p∗(z(t)))

. (2)

Notice that w was built so that w(t) = y(t) + z(t). Let

q̂(α, µ) = max(q(α, µ+ ln 2),q∗(α, µ+ ln 2))

and
Υ̂(α, t) = Υ(α, t) + Υ∗(α, t).

Since, by construction, w(t) = y(t)+z(t), if t > q̂(α, µ) then ‖y1..m(t)− f(x)‖ 6
e−µ−ln 2 and ‖z1..m(t)− g(x)‖ 6 e−µ−ln 2 thus ‖w1..m(t)− f(x)− g(x)‖ 6 e−µ.
Furthermore, ‖y(t)‖ 6 Υ(‖x‖ , t) and ‖z(t)‖ 6 Υ∗(‖x‖ , t) thus ‖w(t)‖ 6
Υ̂(‖x‖ , t).

The case of f − g is exactly the same. The case of fg is slightly more
involved. Since the standard product is defined on R, the images of f and g
are assumed to be on R. Hence, instead of adding a vectorial w in (2), which
could potentially have several components, we use a w composed by the single
component given by

w′(t) = y′1(t)z1(t) + y1(t)z′1(t) = p1(y(t))z1(t) + y1(t)p∗1(z(t))

and w(0) = q1(x)q∗1(x) so that w(t) = y1(t)z1(t). The error analysis is a bit
more complicated because the speed of convergence now depends on the length
of the input.

First note that ‖f(x)‖ 6 1+Υ(‖x‖ ,q(‖x‖ , 0)) and ‖g(x)‖ 6 1+Υ∗(‖x‖ ,q∗(‖x‖ , 0)),
and denote by `(‖x‖) and `∗(‖x‖) those two bounds respectively. If t >
q(‖x‖ , µ + ln 2`∗(‖x‖)) then ‖y1(t)− f(x)‖ 6 e−µ−ln 2‖g(x)‖ and similarly if
t > q∗(‖x‖ , µ + ln 2(1 + `∗(‖x‖))) then ‖z1(t)− g(x)‖ 6 e−µ−ln 2(1+‖f(x)‖).
Thus for t greater than the maximum of both bounds,

‖y1(t)z1(t)− f(x)g(x)‖ 6 ‖(y1(t)− f(x))g(x)‖ + ‖y1(t)(z1(t)− g(x))‖ 6 e−µ

because ‖y1(t)‖ 6 1 + ‖f(x)‖ 6 1 + `(‖x‖).
Recall that we assume we are working over a generable K.

Theorem 21 (Closure by composition) If f, g ∈ ALP and f(dom f) ⊆
dom g then g ◦ f ∈ ALP.

Proof. Let f : I ⊆ Rn → J ⊆ Rm and g : J → K ⊆ Rl. We will show that
g ◦ f is computable by using the fact that g is online-computable. We could
show directly that g ◦f is online-computable but this would only complicate the
proof for no apparent gain.

Apply Proposition 12 to get that g ∈ AOC(Υ,q,Λ) with corresponding
r,∆, z0. Apply Proposition 12 to get that f ∈ ATSC(Υ′,q′) with corresponding
d, p, q. Let x ∈ I and consider the following system:{

y(0)= q(x)
y′(t)= p(y(t))

{
z(0)= z0

z′(t)= r(z(t), y1..m(t))
.

22



Define v(t) = (x(t), y(t), z(t)). Then it immediately follows that v satisfies
a PIVP of the form v(0) = poly(x) and v′(t) = poly(v(t)). Furthermore, by
definition:

‖v(t)‖ = max(‖x‖ , ‖y(t)‖ , ‖z(t)‖)

6 max

(
‖x‖ , ‖y(t)‖ ,Υ

(
sup

u∈[t,t−∆]∩R+

‖y1..m(t)‖ , t

))

6 poly

(
‖x‖ , sup

u∈[t,t−∆]∩R+

‖y(t)‖ , t

)

6 poly

(
‖x‖ , sup

u∈[t,t−∆]∩R+

Υ′ (‖x‖ , u) , t

)
6 poly (‖x‖ , t) .

Define x̄ = f(x), Υ∗(α) = 1 + Υ′(α, 0) and q′′(α, µ) = q′(α,Λ(Υ∗(α), µ)) +
q(Υ∗(α), µ). By definition of Υ′, ‖x̄‖ 6 1 + Υ′(‖x‖ , 0) = Υ∗(‖x‖). Let µ > 0
then by definition of q′, if t > q′(‖x‖ ,Λ(Υ∗(‖x‖), µ)) then ‖y1..m(t)− x̄‖ 6
e−Λ(Υ∗(‖x‖),µ) 6 e−Λ(‖x̄‖,µ). For a = q′(‖x‖ ,Λ(Υ∗(‖x‖), µ)) we get that ‖z1..l(t)− g(f(x))‖ 6
e−µ for any t > a+q(x̄, µ). And since t > a+q(x̄, µ) whenever t > q′′(‖x‖ , µ),
we get that g ◦ f ∈ ATSC(poly,q′′). This concludes the proof because q′′ is a
polynomial.

4.3 Continuity and growth

All computable functions are continuous. More importantly, they admit a poly-
nomial modulus of continuity, in a similar spirit as in Computable Analysis.

Theorem 22 (Modulus of continuity) If f ∈ ALP then f admits a polyno-
mial modulus of continuity: there exists a polynomial f : R2

+ → R+ such that
for all x, y ∈ dom f and µ ∈ R+,

‖x− y‖ 6 e−f(‖x‖,µ) ⇒ ‖f(x)− f(y)‖ 6 e−µ.

In particular f is continuous.

Proof. Let f ∈ ALP, apply Proposition 12 to get that f ∈ AOC(Υ,q,Λ) with
corresponding δ, d, p and y0. Without loss of generality, we assume polynomial
q to be an increasing function. Let u, v ∈ dom f and µ ∈ R+. Assume that
‖u− v‖ 6 e−Λ(‖u‖+1,µ+ln 2) and consider the following system:

y(0) = y0 y′(t) = p(y(t), u).

This is simply the online system where we hardwired the input of the system
to the constant input u. The idea is that the definition of online computability
can be applied to both u with 0 error, or v with error ‖u− v‖.

By definition, ‖y1..m(t)− f(u)‖ 6 e−µ−ln 2 for all t > q(‖u‖ , µ+ ln 2). For
the same reason, ‖y1..m(t)− f(v)‖ 6 e−µ−ln 2 for all t > q(‖v‖ , µ+ln 2) because
‖u− v‖ 6 e−Λ(‖u‖+1,µ+ln2) 6 e−Λ(‖v‖,µ+ln 2) and ‖v‖ 6 ‖u‖+ 1. Combine both
results at t = q(‖u‖ + 1, µ+ ln 2) to get that ‖f(u)− f(v)‖ 6 e−µ.

It is is worth observing that all functions in ALP are polynomially bounded
(this follows trivially from condition (2) of Proposition 12).

23



Proposition 23 Let f ∈ ALP, there exists a polynomial P such that ‖f(x)‖ 6
P (‖x‖) for all x ∈ dom f .

4.4 Some basic functions proved to be in ALP

4.4.1 Absolute, minimum, maximum value

We will now show that basic functions like the absolute value, the minimum
and maximum value are computable. We will also show a powerful result when
limiting a function to a computable range. In essence all these result follow
from the fact that the absolute value belongs to ALP, which is a surprisingly
non-trivial result (see the example below).

Example 24 (Broken way of computing the absolute value) Computing
the absolute value in polynomial length, or equivalently in polynomial time with
polynomial bounds, is a surprisingly difficult operation, for unintuitive reasons.
This example illustrates the problem. A natural idea to compute the absolute
value is to notice that |x| = x sgn(x), where sgn(x) denotes the sign function
(with conventionally sgn(0) = 0). To this end, define f(x, t) = x tanh(xt) which
works because tanh(xt)→ sgn(x) when t→∞. Unfortunately,

∣∣|x| − f(x, t)
∣∣ ∼

1
2 |x|e

−2|x|t as t → ∞, which converges very slowly for small x. Indeed, if

x = e−α then
∣∣|x|−f(x, t)

∣∣ ∼ 1
2e
−α−2e−αt as t→∞, so we must take t(µ) = eαµ

to reach a precision of e−µ. This is unacceptable because it grows as 1
|x| instead

of |x|. In particular, it is unbounded when x→ 0 which is clearly wrong.

The sign function is not computable because it not continuous. However, if
f is a continuous function that is zero at 0 then sgn(x)f(x) is continuous, and
polynomial length computable under some conditions that we explore below.
This simple remark is quite powerful because some continuous functions can be
easily put in the form sgn(x)f(x). For example, the absolute value corresponds
to f(x) = x.

The proof is not difficult but the idea is not very intuitive. As the example
above outlines, the naive idea of computing x tanh(xt) and hope that it con-
verges quickly enough when t→∞ does not work because the convergence speed
is too slow for small x. However if we could somehow compute x tanh(xet), our
problem would be solved. To understand why, write x = e−α and consider the
following two phases. For t 6 α, |x tanh(xet)− |x|| 6 |x| 6 e−α 6 e−t, in other
words |x| is so small that any value in [0, |x|] is a good approximation. For

t > α, use | sgn(u)− tanh(u)| 6 e−|u| to get that ||x|−x tanh(xet)| 6 |x|e−xet 6
e−α−e

t−α
6 e−α−t+α+1 6 e1−t.

Unfortunately, we cannot compute xet in polynomial length, but we can
work around it by noticing that we do not really need to compute xet but
rather s(x, t) such that s(x, t) ≈ xet for small t, and s(x, t) ≈ t for large t. To
do so, we use the following differential equation:

s(0) = x, s′(t) = tanh(s(t)).

Note that since tanh is bounded by 1, |s(t)| 6 |x| + t thus it is bounded by a
polynomial in x and t. However, note that if s(t) ≈ 0 then tanh(s(t)) ≈ s(t)
thus the differential equation becomes s′(t) ≈ s(t), i.e. s(t) ≈ xet which remains

24



a valid approximation as long as s(t) � 1. Thus at t ≈ ln 1
|x| , we have s(t) ≈

sgn(x) and then s(t) ∝ t sgn(x) for t� ln 1
|x| .

The following lemma uses those ideas and generalizes them to compute
(x, z) 7→ sgn(x)z. In order to generalize the result to two variables, we need
to add some constraint on the domain of definition: z needs to be small enough
relative to x to give the system enough time for tanh(xet) to be a good approx-
imation for sgn(x). Using a similar reasoning as above, we want | sgn(x)z −
z tanh(xet)| 6 ep(‖x,z‖)−t for t > − ln |z| for some polynomial p. We leave the
details of the computation to the reader.

Proposition 25 (Smooth sign is computable) For any polynomial p : R+ →
R+, Hp ∈ ALP where

Hp(x, z) = sgn(x)z for all (x, z) ∈ Up :=
{

(0, 0)
}
∪
{

(x, z) ∈ R∗ × R :
∣∣ z
x

∣∣ 6 ep(‖x,z‖)} .
Proof. Let (x, z) ∈ U and consider the following system:{

s(0)= x
y(0)= z tanh(x)

{
s′(t)= tanh(s(t))
y′(t)=

(
1− tanh(s(t))2

)
y(t)

First check that y(t) = z tanh(s(t)). The case of x = 0 is trivial because s(t) = 0
and y(t) = 0 = H(x, z). If x < 0 then check that the same system for −x has
the opposite value for s and y so all the convergence result will the exactly the
same and will be correct because H(x, z) = −H(−x, z). Thus we can assume
that x > 0. We will need the following elementary property of the hyperbolic
tangent for all t ∈ R:

1− sgn(t) tanh(t) 6 e−|t|.

Apply the above formula to get that 1− e−u 6 tanh(u) 6 1 for all u ∈ R+.
Thus tanh(s(t)) > 1− e−s(t) and by a classical result of differential inequalities,
s(t) > w(t) where w(0) = s(0) = x and w′(t) = 1 − e−w(t). Check that
w(t) = ln (1 + (ex − 1)et) and conclude that

|z−y(t)| 6 |z|(1−tanh(s(t))| 6 |z|e−s(t) 6 |z|
1 + (ex − 1)et

6
|z|e−t

ex − 1
6
|z|
x
e−t 6 ep(‖x,z‖)−t.

Thus |z − y(t)| 6 e−µ for all t > µ+ p(‖x, z‖) which is polynomial in ‖x, z, µ‖.
Furthermore, |s(t)| 6 |x| + t because |s′(t)| 6 1. Similarly, |y(t)| 6 |z| so the
system is polynomially bounded. Finally, the system is of the form (s, y)(0) =
f(x) and (s, y)′(t) = g((s, y)(t)) where f, g ∈ GPVAL so Hp ∈ ALP with
generable functions. Apply Proposition 16 to conclude.

Theorem 26 (Absolute value is computable) (x 7→ |x|) ∈ ALP.

Proof. Let p(x) = 0 which is a polynomial, and a(x) = Hp(x, x) where Hp ∈
ALP comes from Proposition 25. It is not hard to see that a is defined over
R because (0, 0) ∈ Up and for any x 6= 0,

∣∣x
x

∣∣ 6 1 = ep(|x|) thus (x, x) ∈
Up. Consequently a ∈ ALP and for any x ∈ R, a(x) = sgn(x)x = |x| which
concludes.

Corollary 27 (Max, Min are computable) max,min ∈ ALP.

Proof. Use that max(a, b) = a+b
2 +

∣∣a+b
2

∣∣ and min(a, b) = −max(−a,−b). Con-
clude with Theorem 26 and closure by arithmetic operations and composition
of ALP.

25



x

rnd(x, 0, 2)

rnd∗(x, 2)

Figure 8: Graph of rnd and rnd∗.

4.4.2 Rounding

In [BGP16a] we showed that it is possible to build a generable rounding function
rnd of very good quality. See Figure 8 for an illustration.

Lemma 28 (Round) There exists rnd ∈ GPVAL such that for any n ∈ Z,
λ > 2, µ > 0 and x ∈ R we have:

• | rnd(x, µ, λ)− n| 6 1
2 if x ∈

[
n− 1

2 , n+ 1
2

]
,

• | rnd(x, µ, λ)− n| 6 e−µ if x ∈
[
n− 1

2 + 1
λ , n+ 1

2 −
1
λ

]
.

In this section, we will see that we can do even better with computable
functions. More precisely, we will build a computable function rnd∗ that rounds
perfectly everywhere, except on a small, periodic, interval of length e−µ where
µ is a parameter. This is the best can do because of the continuity and modulus
of continuity requirements of computable functions, as shown in Theorem 22.
We will need a few technical lemmas before getting to the rounding function
itself. We start by a small remark that will be useful later on. See Figure 8 for
an illustration of rnd∗.

Remark 29 (Constant function) Let f ∈ ALP, I a convex subset of dom f
and assume that f is constant over I, with value α. From Proposition 12, we
have f ∈ AOC(Υ,q,Λ) for some polynomials Υ,q,Λ with corresponding d, δ, p
and y0. Let x ∈ C0(R+,dom f) and consider the system:

y(0) = y0 y′(t) = p(y(t), x(t))

If there exists J = [a, b] and M such that for all x(t) ∈ I and ‖x(t)‖ 6 M for
all t ∈ J , then ‖y1..m(t)− α‖ 6 e−µ for all t ∈ [a + q(M,µ), b]. This is unlike
the case where the input must be nearly constant and it is true because whatever
the system can sample from the input x(t), the resulting output will be the same.
Formally, it can shown by building a small system around the online-system that
samples the input, even if it unstable.

Proposition 30 (Clamped exponential) For any a, b, c, d ∈ K and x ∈ R
such that a 6 b, define h as follows. Then h ∈ ALP:

h(a, b, c, d, x) = max(a,min(b, cex + d)).

26



Proof. First note that we can assume that d = 0 because h(a, b, c, d, x) =
h(a−d, b−d, c, 0, x)+d. Similarly, we can assume that a = −b and b > |c| because
h(a, b, c, d, x) = max(a,min(b, h(−|c| − max(|a|, |b|), |c| + max(|a|, |b|), c, d, x)))
and min,max, | · | ∈ ALP. So we are left with H(`, c, x) = max(−`,min(`, cex))
where ` > |c| and x ∈ R. Furthermore, we can assume that c > 0 because
H(`, c, x) = sgn(c)H(`, |c|, x) and it belongs to ALP for all ` > |c| and x ∈ R
thanks to Proposition 25. Indeed, if c = 0 then H(`, |c|, x) = 0 and if c 6= 0,

` > |c| and x ∈ R, then
∣∣∣ c
H(`,|c|,x)

∣∣∣ > e−|x|.
We will show that H ∈ ALP.Let ` > c > 0, µ ∈ R+, x ∈ R and consider the

following system:{
y(0)= c
z(0)= 0

{
y′(t)= z′(t)y(t)
z′(t)= (1 + `− y(t))(x− z(t))

Note that formally, we should add extra variables to hold x, µ and ` (the inputs).
Also note that to make this a PIVP, we should replace z′(t) by its expression in
the right-hand side, but we kept z′(t) to make things more readable. By con-
struction y(t) = cez(t), and since ` > c > 0, by a classical differential argument,
z(t) ∈ [0, x] and y(t) ∈ [0,min(cex, ` + 1)]. This shows in particular that the
system is polynomially bounded in ‖`, x, c‖. There are two cases to consider.

• If ` > cex then `−y(t) = `−cez(t) > c(ex−ez(t)) > c(x−z(t)) > 0 thus by
a classical differential inequalities reasoning, z(t) > w(t) where w satisfies
w(0) = 0 and w′(t) = (x − w(t)). This system can be solved exactly and
w(t) = x(1− e−t). Thus

y(t) > cew(t) > cexe−xe
−t
> cex(1− xe−t) > cex − cxex−t.

So if t > µ+ x+ c then y(t) > cex − e−µ. Since y(t) 6 cex it shows that
|y(t)− cex| 6 e−µ.

• If ` 6 cex then by the above reasoning, `+1 > y(t) > ` when t > µ+x+c.

We will modify this sytem to feed y to an online-system computing min(−`,max(`, ·)).
The idea is that when y(t) > `, this online-system is constant so the input does
not need to be stable.

Let G(x) = min(`, x) then G ∈ AOC(Υ,q,Λ) with polynomials Λ,q,Υ are
polynomials and corresponding d, δ, p and y0. Let x, c, `, µ and consider the
following system (where y and z are from the previous system):

w(0) = y0 w′(t) = p(w(t), y(t))

Again, there are two cases.

• If ` > cex then |y(t)−cex| 6 e−Λ(`,µ) 6 e−Λ(cex,µ) when t > Λ(`, µ)+x+c,
thus |w1(t) − G(cex)| 6 e−µ when t > Λ(`, µ) + x + c + q(`, µ) and this
concludes because G(cex) = cex.

• If ` 6 cex then by the above reasoning, ` + 1 > y(t) > ` when t >
Λ(`, µ)+x+c and thus |w1(t)−`| 6 e−µ when t > Λ(`, µ)+x+c+q(`, µ)
by Remark 29 because G(x) = ` for all x > `.

To conclude the proof that H ∈ ALP,note that w is also polynomially bounded
.

27



Definition 31 (Round) Let rnd∗ ∈ C0(R,R) be the unique function such that:

• rnd∗(x, µ) = n for all x ∈
[
n− 1

2 + e−µ, n+ 1
2 − e

−µ] for all n ∈ Z

• rnd∗(x, µ) is affine over
[
n+ 1

2 − e
−µ, n+ 1

2 + e−µ
]

for all n ∈ Z

Theorem 32 (Round) rnd∗ ∈ ALP.

Proof. The idea of the proof is to build a function computing the “fractional
part” function, by this we mean a 1-periodic function that maps x to x over
[−1 + e−µ, 1− e−µ] and is affine at the border to be continuous. The rounding
function immediately follows by subtracting the fractional of x to x. Although
the idea behind this construction is simple, the details are not so immediate.
The intuition is that 1

2π arccos(cos(2πx)) works well over [0, 1/2−e−µ] but needs
to be fixed at the border (near 1/2), and also its parity needs to be fixed based
on the sign of sin(2πx).

Formally, define for c ∈ [−1, 1], x ∈ R and µ ∈ R+:

g(c, µ) = max(0,min((1− eµ

2 )(arccos(c)− π), arccos(c))),

f(x, µ) =
1

2π
sgn(sin(2πx))g(cos(2πx), µ).

Remark that g ∈ ALP because of Theorem 30 and that arccos ∈ ALP because
arccos ∈ GPVAL. Then f ∈ ALP by Proposition 25. Indeed, if sin(2πx) = 0
then g(cos(2πx), µ) = 0 and if sin(2πx) 6= 0, a tedious computation shows that∣∣∣ g(cos(2πx),µ)

sin(2πx)

∣∣∣ = min
(

(1− eµ

2 ) arccos(cos(2πx))−π
sin(2πx) , arccos(cos(2πx))

sin(2πx)

)
6 2πeµ because

g(cos(2πx), µ) is piecewise affine with slope eµ at most (see below for more
details).

Note that f is 1-periodic because of the sine and cosine so we only need to
analyze if over [− 1

2 ,
1
2 ], and since f is an odd function, we only need to analyze it

over [0, 1
2 ]. Let x ∈ [0, 1

2 ] and µ ∈ R+ then 2πx ∈ [0, π] thus arccos(cos(2πx)) =

2πx and f(x, µ) = min((1− eµ

2 )(x− 1
2 ), x2π ). There are two cases.

• If x ∈ [0, 1
2 −e

−µ] then x− 1
2 6 −e

−µ thus (1− eµ

2 )(x− 1
2 ) > 1

2 −e
−µ > x

2π
so f(x, µ) = x.

• If x ∈ [ 1
2−e

−µ, 1
2 ] then 0 > x− 1

2 > −e
−µ thus (1− eµ

2 )(x− 1
2 ) 6 1

2−e
−µ 6

x
2π so f(x, µ) = (1− eµ

2 )(x− 1
2 ) which is affine.

Finally define rnd∗(x, µ) = x− f(x, µ) to get the desired function.

4.4.3 Some functions considered elsewhere: Norm, and Bump func-
tions

The following functions have already been considered in some other articles, and
proved to be in GPVAL (and hence in ALP).

A useful function when dealing with error bound is the norm function. Al-
though it would be possible to build a very good infinity norm, in practice we
will only need a constant overapproximation of it. The following results can be
found in [BGP16a, Lemma 44 and 46].

28



x

Figure 9: Graph of lxh[1,3] and hxl[1,2]

Lemma 33 (Norm function) For every δ ∈]0, 1], there exists norm∞,δ ∈
GPVAL such that for any x ∈ Rn we have

‖x‖ 6 norm∞,δ(x) 6 ‖x‖ + δ.

A crucial function when simulating computation is a “step” or “bump” func-
tion. Unfortunately, for continuity reasons, it is again impossible to build a
perfect one but we can achieve a good accuracy except on a small transition
interval. Figure 9 illustrates both functions.

Lemma 34 (“low-X-high” and “high-X-low”) For every I = [a, b], a, b ∈
K, there exists lxhI ,hxlI ∈ GPVAL such that for every µ ∈ R+ and t, x ∈ R we
have:

• lxhI is of the form lxhI(t, µ, x) = φ1(t, µ, x)x where φ1 ∈ GPVAL,

• hxlI is of the form lxhI(t, µ, x) = φ2(t, µ, x)x where φ2 ∈ GPVAL,

• if t 6 a, | lxhI(t, µ, x)| 6 e−µ and |x− hxlI(t, µ, x)| 6 e−µ,

• if t > b, |x− lxhI(t, µ, x)| 6 e−µ and |hxlI(t, µ, x)| 6 e−µ,

• in all cases, | lxhI(t, µ, x)| 6 |x| and |hxlI(t, µ, x)| 6 |x|.

5 Encoding The Step Function of a Turing ma-
chine

In this section, we will show how to encode and simulate one step of a Turing
machine with a computable function in a robust way. The empty word will be
denoted by λ. We define the integer part function int(x) by max(0, bxc) and the
fractional part function frac(x) by x− intx. We also denote by #S the cardinal
of a finite set S.

5.1 Turing Machine

There are many possible definitions of Turing machines. The exact kind we pick
is usually not important but since we are going to simulate one with differential
equations, it is important to specify all the details of the model. We will simulate
deterministic, one-tape Turing machines, with complete transition functions.

Definition 35 (Turing Machine) A Turing Machine is a tupleM = (Q,Σ, b, δ, q0, q∞)
where Q = J0,m − 1K are the states of the machines, Σ = J0, k − 2K is the al-
phabet and b = 0 is the blank symbol, q0 ∈ Q is the initial state, q∞ ∈ Q is the

29



halting state and δ : Q×Σ→ Q×Σ× {L, S,R} is the transition function with
L = −1, S = 0 and R = 1. We write δ1, δ2, δ3 as the components of δ. That is
δ(q, σ) = (δ1(q, σ), δ2(q, σ), δ3(q, σ)) where δ1 is the new state, δ2 the new symbol
and δ3 the head move direction. We require that δ(q∞, σ) = (q∞, σ, S).

Remark 36 (Choice of k) The choice of Σ = J0, k−2K will be crucial for the
simulation, to ensure that the transition function is continuous. See Lemma 45.

For completeness, and also to make the statements of the next theorems
easier, we introduce the notion of configuration of a machine, and define one
step of a machine on configurations. This allows us to define the result of a
computation. Since we will characterize FP, our machines not only accept or
reject a word, but compute an output word.

Definition 37 (Configuration) A configuration ofM is a tuple c = (x, σ, y, q)
where x ∈ Σ∗ is the part of the tape at left of the head, y ∈ Σ∗ is the part at the
right, σ ∈ Σ is the symbol under the head and q ∈ Q the current state. More
precisely x1 is the symbol immediately at the left of the head and y1 the symbol
immediately at the right. See Figure 10 for a graphical representation. The set
of configurations ofM is denoted by CM. The initial configuration is defined by
c0(w) = (λ, b, w, q0) and the final configuration by c∞(w) = (λ, b, w, q∞) where
λ is the empty word.

Definition 38 (Step) The step function of a Turing machine M is the func-
tion, acting on configurations, denoted by M and defined by:

M(x, σ, y, q) =



(λ, b, σ′y, q′) if d = L and x = λ

(x2..|x|, x1, σ
′y, q′) if d = L and x 6= λ

(x, σ′, y, q′) if d = S

(σ′x, b, λ, q′) if d = R and y = λ

(σ′x, y1, y2..|y|, q
′) if d = R and y 6= λ

where

q
′ = δ1(q, σ)
σ′ = δ2(q, σ)
d = δ3(q, σ)

.

Definition 39 (Result of a computation) The result of a computation of
M on a word w ∈ Σ∗ is defined by:

M(w) =

{
x if ∃n ∈ N,M[n](c0(w)) = c∞(x)

⊥ otherwise

Remark 40 The result of a computation is well-defined because we imposed
that when a machine reaches a halting state, it does not move, change state or
change the symbol under the head.

5.2 Finite set interpolation

In order to implement the transition function of the Turing Machine, we will
use an interpolation scheme.

Lemma 41 (Finite set interpolation) For any finite G ⊆ Kd and f : G →
K, there exists 1f ∈ ALP with 1f �G = f , where 1f �G denotes the restriction of
1f to G.

30



σ y1 y2 y3 · · · ykx1x2x3· · ·xl

q

Figure 10: Example of generic configuration c = (x, σ, y, q)

Proof. For d = 1, consider for example Lagrange polynomial

1f (x) =
∑
x̄∈G

f(x̄)
∏
y∈G
y 6=x̄

d∏
i=1

xi − yi
x̄i − yi

.

The fact that 1f matches f on G is a classical calculation. Also 1f is a polyno-
mial with coefficients in K so clearly it belongs to ALP. The generalization to
d > 1 is clear, but tedious to be fully detailed so we leave it to the reader.

It is customary to prove robustness of the interpolation, which means that on
the neighborhood of G, 1f is nearly constant. However this result is a byproduct
of the effective continuity of 1f , thanks to Theorem 22.

We will often need to interpolate characteristic functions, that is polynomials
that value 1 when f(x) = a and 0 otherwise. For convenience we define a special
notation for it.

Definition 42 (Characteristic interpolation) Let f : G→ R where G is a
finite subset of Rd, α ∈ R, and define functions Df=α,Df 6=α : Rd → R in the
following manner

Df=α(x) = 1fα(x) and Df 6=α(x) = 11−fα(x)

where

fα(x) =

{
1 if f(x) = α

0 otherwise
.

Lemma 43 (Characteristic interpolation) For any finite set G ⊆ Kd, f :
G→ K and α ∈ K, Df=α,Df 6=α ∈ ALP.

Proof. Observe that fα : G→ {0, 1} and {0, 1} ⊆ K. Apply Lemma 41.

5.3 Encoding

In order to simulate a machine, we will need to encode configurations with real
numbers. There are several ways of doing so but not all of them are suitable
for use when proving complexity results. This particular issue is discussed in
Remark 51. For our purpose, it is sufficient to say that we will encode a config-
uration as a tuple, we store the state and current letter as integers and the left
and right parts of the tape as real numbers between 0 and 1. Intuitively, the
tape is represented as two numbers whose digits in a particular basis are the
letters of the tape. Recall that the alphabet is Σ = J0, k − 2K.

31



Definition 44 (Real encoding) Let c = (x, σ, y, q) be a configuration of M,
the real encoding of c is 〈c〉 = (0.x, σ, 0.y, q) ∈ Q × Σ × Q × Q where 0.x =
x1k
−1 + x2k

−2 + · · ·+ x|w|k
−|w| ∈ Q.

Lemma 45 (Encoding range) For any word x ∈ J0, k − 2K∗, 0.x ∈
[
0, k−1

k

]
.

Proof. 0 6 0.x =
∑|x|
i=1 xik

−i 6
∑∞
i=1(k − 2)k−i 6 k−2

k−1 6
k−1
k .

The same way we defined the step function for Turing machines on config-
urations, we have to define a step function that works directly the encoding of
configuration. This function is ideal in the sense that it is only defined over real
numbers that are encoding of configurations.

Definition 46 (Ideal real step) The ideal real step function of a Turing ma-
chine M is the function defined over 〈CM〉 by:

〈M〉∞ (x̃, σ, ỹ, q) =


(

frac(kx̃), int(kx̃), σ
′+ỹ
k , q′

)
if d = L

(x̃, σ′, ỹ, q′) if d = S(
σ′+x̃
k , int(kỹ), frac(kỹ), q′

)
if d = R

where

q
′= δ1(q, σ)
σ′= δ2(q, σ)
d= δ3(q, σ)

.

Lemma 47 (〈M〉∞ is correct) For any machineM and configuration c, 〈M〉∞ (〈c〉) =
〈M(c)〉.

Proof. Let c = (x, σ, y, q) and x̃ = 0.x. The proof boils down to a case analysis
(the analysis is the same for x and y):

• If x = λ then x̃ = 0 so int(kx̃) = b and frac(kx̃) = 0 = 0.λ because b = 0.

• If x 6= λ, int(kx̃) = x1 and frac(kx̃) = 0.x2..|x| because kx̃ = x1 + 0.x2..|x|
and Lemma 45.

The previous function was ideal but this is not enough to simulate a machine:
We need a step function robust to small perturbations and computable. For this
reason, we define a new step function with both features and that relates closely
to the ideal function.

Definition 48 (Real step) For any x̄, σ̄, ȳ, q̄ ∈ R and µ ∈ R+, define the real
step function of a Turing machine M by:

〈M〉 (x̄, σ̄, ȳ, q̄, µ) = 〈M〉∗ (x̄, rnd∗(σ̄, µ), ȳ, rnd∗(q̄, µ), µ)

where

〈M〉∗ (x̄, σ̄, ȳ, q̄, µ) = 〈M〉?
(
x̄, ȳ,1δ1(q̄, σ̄),1δ2(q̄, σ̄),1δ2(q̄, σ̄), µ

)
where

〈M〉?
(
x̄, ȳ, q̄, σ̄, d̄, µ

)
=


choose

[
frac∗(kx̄), x̄, σ̄+x̄

k

]
choose [int∗(kx̄), σ̄, int∗(kȳ)]

choose
[
σ̄+ȳ
k , ȳ, frac∗(kȳ)

]
q̄


where

32



choose[l, s, r] = Did=L(d̄)l +Did=S(d̄)s+Did=R(d̄)r,

int∗(x) = rnd∗
(
x− 1

2 + 1
2k , µ+ ln k

)
frac∗(x) = x− int∗(x),

rnd∗ is defined in Definition 31.

Theorem 49 (Real step is robust) For any machine M, c ∈ CM, µ ∈ R+

and c̄ ∈ R4, if ‖〈c〉 − c̄‖ 6 1
2k2 − e

−µ then ‖〈M〉 (c̄, µ)− 〈M(c)〉‖ 6 k ‖〈c〉 − c̄‖.
Furthermore 〈M〉 ∈ ALP.

Proof. We begin by a small result about int∗ and frac∗: if ‖x̄− 0.x‖ 6 1
2k2−e

−µ

then int∗(kx̄) = int(k0.x) and ‖frac∗(kx̄)− frac(k0.x)‖ 6 k ‖x̄− 0.x‖. In-
deed, by Lemma 45, k0.x = n + α where n ∈ N and α ∈

[
0, k−1

k

]
. Thus

int∗(kx̄) = rnd∗
(
kx̄− 1

2 + 1
2k , µ

)
= n because α + k ‖x̄− 0.x‖ − 1

2 + 1
2k ∈[

− 1
2 + ke−µ, 1

2 − ke
−µ]. Also, frac∗(kx̄) = kx̄ − int∗(kx̄) = k ‖x̄− 0.x‖ + kx −

int(kx) = frac(kx) + k ‖x̄− 0.x‖.
Write 〈c〉 = (x, σ, y, q) and c̄ = (x̄, σ̄, ȳ, q̄). Apply Definition 31 to get

that rnd∗(σ̄, µ) = σ and rnd∗(q̄, µ) = q because ‖(σ̄, q̄)− (σ, q)‖ 6 1
2 − e−µ.

Consequently, 1δi(q̄, σ̄) = δi(q, σ) and 〈M〉 (c̄, µ) = 〈M〉? (x̄, ȳ, q′, σ′, d′) where
q′ = δ1(q, σ), σ′ = δ2(q, σ) and d′ = δ3(q, σ). In particular d′ ∈ {L, S,R} so
there are three cases to analyze.

• If d′ = L then choose[l, s, r] = l, int∗(kx̄) = int(kx), ‖frac∗(kx̄)− frac(kx)‖ 6
k ‖x̄− x‖ and

∥∥∥σ′+ȳk − σ′+y
k

∥∥∥ 6 ‖x̄− x‖. Thus ‖〈M〉 (c̄, µ)− 〈M〉∞ (〈c〉)‖ 6
k ‖c̄− 〈c〉‖. Conclude using Lemma 47.

• If d′ = S then choose[l, s, r] = s so we immediately have that ‖〈M〉 (c̄, µ)− 〈M〉∞ (〈c〉)‖ 6
‖c̄− 〈c〉‖. Conclude using Lemma 47.

• If d′ = R then choose[l, s, r] = r and everything else is similar to the case
of d′ = L.

Finally apply Lemma 41, Theorem 32, Theorem 20 and Theorem 21 to get that
〈M〉 ∈ ALP.

6 A Characterization of FP

We will now provide a characterization of FP by introducing a notion of func-
tion emulation. This characterization builds on our notion of computability
introduced previously.

In this section, we fix an alphabet Γ and all languages are considered over Γ.
It is common to take Γ = {0, 1} but the proofs work for any finite alphabet. We
will assume that Γ comes with an injective mapping γ : Γ → N \ {0}, in other
words every letter has an uniquely assigned positive number. By extension, γ
applies letterwise over words.

33



6.1 Main statement

Definition 50 (Discrete emulation) f : Γ∗ → Γ∗ is called K-emulable if
there exists g ∈ ALPK and k > 1 + max(γ(Γ)) such that for any word w ∈ Γ∗:

g(ψk(w)) = ψk(f(w)) where ψk(w) =

 |w|∑
i=1

γ(wi)k
−i, |w|

 .

We say that g K-emulates f with k. When the field K is unambiguous, we will
simply say that f is emulable.

Remark 51 (Encoding length) The exact details of the encoding ψ chosen
in the definition above are not extremely important, however the length of the
encoding is crucial. More precisely, the proof heavily relies on the fact that
‖ψ(w)‖ ≈ |w|. Note that this works both ways:

• ‖ψ(w)‖ must be polynomially bounded in |w| so that a simulation of the
system runs in polynomial time in |w|.

• ‖ψ(w)‖ must be polynomially lower bounded in |w| so that we can recover
the output length from the length of its encoding.

The sef FP of polynomial-time computable functions can then be character-
ized as follows.

Theorem 52 (FP equivalence) For any generable field K such that RG ⊆
K ⊆ RP and f : Γ∗ → Γ∗, f ∈ FP if and only if f is K-emulable (with
k = 2 + max(γ(Γ))).

The rest of this section is devoted to the proof of Theorem 52

6.2 Reverse direction of Theorem 52

The reverse direction of the equivalence between Turing machines and analog
systems will involve polynomial initial value problems such as (1).

6.2.1 Complexity of solving polynomial differential equations

The complexity of solving this kind of differential equation has been heavily
studied over compact domains but there are few results over unbounded do-
mains. In [PG16] we studied the complexity of this problem over unbounded
domains and obtained a bound that involved the length of the solution curve.
In [Pou16], we extended this result to work with any real inputs (and not just
rationals) in the framework of Computable Analysis.

We need a few notations to state the result. For any multivariate polynomial
p(x) =

∑
|α|6k aαx

α, we call k the degree if k is the minimal integer k for which

the condition p(x) =
∑
|α|6k aαx

α holds and we denote the sum of the norm

of the coefficients by Σp =
∑
|α|6k |aα| (also known as the length of p). For

a vector of polynomials, we define the degree and Σp as the maximum over
all components. For any continuous function y and polynomial p define the
pseudo-length

PsLeny,p(a, b) =

∫ b

a

Σpmax(1, ‖y(u)‖)deg(p)du.

34



Theorem 53 ([PG16], [Pou16]) Let I = [a, b] be an interval, p ∈ Rn[Rn]
and k its degree and y0 ∈ Rn. Assume that y : I → Rn satisfies for all t ∈ I
that

y(a) = y0 y′(t) = p(y(t)), (3)

then y(b) can be computed with precision 2−µ in time bounded by

poly(k,PsLeny,p(a, b), log ‖y0‖ , log Σp, µ)n. (4)

More precisely, there exists a Turing machine M such that for any oracle O
representing11 (a, y0, p, b) and any µ ∈ N,

∥∥MO(µ)− y(b)
∥∥ 6 2−µ where y

satisfies (3), and the number of steps of the machine is bounded by (4) for all
such oracles.

Finally, we would like to remind the reader that the existence of a solution
y of a PIVP up to a given time is undecidable, see [GBC07] for more details.
This explains why, in the previous theorem, we have to assume the existence of
the solution if we want to have any hope of computing it.

6.2.2 Proof of Reverse direction of Theorem 52

Assume that f is RP -emulable and apply Definition 50 to get g ∈ ATSC(Υ,q)
where Υ,q are polynomials, with respective d, p, q. Let w ∈ Γ∗: we will describe
an FP algorithm to compute f(w). Consider the following system:

y(0) = q(ψk(w)) y′(t) = p(y(t)).

Note that, by construction, y is defined over R+. Also note, that the coefficients
of p, q belong to RP which means that they are polynomial time computable.
And since ψk(w) is a pair of rational numbers with polynomial length (with
respect to |w|), then q(ψk(w)) ∈ RdP .

The algorithm works in two steps: first we compute a rough approximation
of the output to guess the length of the output. Then we rerun the system with
enough precision to get the full output.

Let tw = q(|w|, 2) for any w ∈ Σ∗. Note that tw ∈ RP and that it is polyno-
mially bounded in |w| because q is a polynomial. Apply Theorem 53 to compute
ỹ such that ‖ỹ − y(tw)‖ 6 e−2: this takes a time polynomial in |w| because tw
is polynomially bounded and because12 PsLeny,p(0, tw) 6 poly(tw, sup[0,tw] ‖y‖)
and by construction, ‖y(t)‖ 6 Υ(‖ψk(w)‖ , tw) for t ∈ [0, tw] where Υ is a
polynomial. Furthermore, by definition of tw, ‖y(tw)− g(ψk(w))‖ 6 e−2 thus
‖ỹ − ψk(f(w))‖ 6 2e−2 6 1

3 . But since ψk(f(w)) = (0.γ(f(w)), |f(w)|), from ỹ2

we can find |f(w)| by rounding to the closest integer (which is unique because
it is within distance at most 1

3 ). In other words, we can compute |f(w)| in poly-
nomial time in |w|. Note that this implies that |f(w)| is at most polynomial in
|w|.

Let t′w = q(|w|, 2 + |f(w)| ln k) which is polynomial in |w| because q is a
polynomial and |f(w)| is at most polynomial in |w|. We can use the same rea-
soning and apply Theorem 53 to get ỹ such that ‖ỹ − y(t′w)‖ 6 e−2−|f(w)| ln k.
Again this takes a time polynomial in |w|. Furthermore, ‖ỹ1 − 0.γ(f(w))‖ 6

11See [Ko91] for more details. In short, the machine can ask arbitrary approximations of
a, y0, p and b to the oracle. The polynomial is represented by the finite list of coefficients.

12See Section 6.2.1 for the expression PsLen.

35



2e−2−|f(w)| ln k 6 1
3k
−|f(w)|. We claim that this allows to recover f(w) unam-

biguously in polynomial time in |f(w)|. Indeed, it implies that
∥∥k|f(w)|ỹ1 − k|f(w)|0.γ(f(w))

∥∥ 6
1
3 . Unfolding the definition shows that k|f(w)|0.γ(f(w)) =

∑|f(w)|
i=1 γ(f(w)i)k

|f(w)|−i ∈
N thus by rounding k|f(w)|ỹ1 to the nearest integer, we recover γ(f(w)), and
then f(w). This is all done in polynomial time in |f(w)|, which proves that f
is polynomial time computable.

6.3 Direct direction of Theorem 52

6.3.1 Iterating a function

The direct direction of of the equivalence between Turing machines and analog
systems will involve iterations of the robust real step associated to a Turing
machine of the previous section.

We now state that iterating a function is computable under reasonable as-
sumptions. Iteration is a powerful operation, which is why reasonable complex-
ity classes are never closed under unrestricted iteration. If we want to keep to
polynomial-time computability for Computable Analysis, there are at least two
immediate necessary conditions: the iterates cannot grow faster than a poly-
nomial and the iterates must keep a polynomial modulus of continuity. The
optimality of the conditions of next theorem is discussed in Remark 55 and
Remark 56. However there is the subtler issue of the domain of definition that
comes into play and is discussed in Remark 57.

In short, the conditions to iterate a function can be summarized as follows:

• f has domain of definition I;

• there are subsets In of I such that all the points of In can be iterated up
to n times;

• the iterates of f on x over In grow at most polynomially in ‖x‖ and n;

• each point x in In has an open neighborhood in I of radius at least
e− poly(‖x‖) and f has modulus of continuity of the form poly(‖x‖) + µ
over this set.

Formally:

Theorem 54 (Simulating Discrete by Continuous Time) Let I ⊆ Rm,
(f : I → Rm) ∈ ALP, η ∈ [0, 1/2[ and assume that there exists a family of
subsets In ⊆ I, for all n ∈ N and polynomials f : R+ → R+ and Π : R2

+ → R+

such that for all n ∈ N:

• In+1 ⊆ In and f(In+1) ⊆ In

• ∀x ∈ In,
∥∥f [n](x)

∥∥ 6 Π(‖x‖ , n)

• ∀x ∈ In, y ∈ Rm, µ ∈ R+, if ‖x− y‖ 6 e−f(‖x‖)−µ then y ∈ I and
‖f(x)− f(y)‖ 6 e−µ

Define f∗η (x, u) = f [n](x) for x ∈ In, u ∈ [n − η, n + η] and n ∈ N. Then
f∗η ∈ ALP.

36



This result is far from trivial, and the whole Section 9.1 is devoted to its
proof.

Remark 55 (Optimality of growth constraint) It is easy to see that with-
out any restriction, the iterates can produce an exponential function. Pick
f(x) = 2x then f ∈ ALP and f [n](x) = 2nx which is clearly not polynomial
in x and n. More generally, it is necessary that f∗ be polynomially bounded so
clearly f [n](x) must be polynomially bounded in ‖x‖ and n.

Remark 56 (Optimality of modulus constraint) Without any constraint
(specifically the constraint of the 3rd item in Theorem 54), it is easy to build
an iterated function with exponential modulus of continuity. Define f(x) =√
x then f can be shown to be in ALP and f [n](x) = x

1
2n . For any µ ∈ R,

f [n](e−2nµ) − f [n](0) = (e−2nµ)
1
2n = e−µ. Thus f∗ has exponential modulus of

continuity in n.

Remark 57 (Domain of definition) Intuitively we would have written the
theorem differently, only requesting that f(I) ⊆ I, however this has some prob-
lems. First if I is discrete, the iterated modulus of continuity becomes use-
less and the theorem is false. Indeed, define f(x, k) = (

√
x, k + 1) and I =

{( 2n
√
e, n), n ∈ N}: f�I has polynomial modulus of continuity f because I is dis-

crete, yet f∗�I /∈ ALP as we saw in Remark 56. But in reality, the problem is
more subtle than that because if I is open but the neighborhood of each point is
too small, a polynomial system cannot take advantage of it. To illustrate this is-
sue, define In = ]0, 2n

√
e[×

]
n− 1

4 , n+ 1
4

[
and I = ∪n∈NIn. Clearly f(In) = In+1

so I is f -stable but f∗�I /∈ ALP for the same reason as before.

Remark 58 (Classical error bound) The third condition in Theorem 54 is
usually far more subtle than necessary. In practice, is it useful to note this
condition is satisfied if f verifies for some constants ε,K > 0 that

for all x ∈ In and y ∈ Rm, if ‖x− y‖ 6 ε then y ∈ I and ‖f(x)− f(y)‖ 6 K ‖x− y‖ .

Remark 59 (Dependency of f in n) In the statement of the theorem, f is
only allowed to depend on ‖x‖ whereas it might be useful to also make it depend
on n. In fact the theorem is still true if the last condition is modified to be
‖x− y‖ 6 e−f(‖x‖,n)−µ. One way of showing this is to explicitly add n to
the domain of definition by taking h(x, k) = (f(x), k − 1) and to take I ′n =
In × [n,+∞[ for example.

6.3.2 Proof of Direct direction of Theorem 52

Let f ∈ FP, then there exists a Turing machine M = (Q,Σ, b, δ, q0, F ) where
Σ = J0, k − 2K and γ(Γ) ⊂ Σ \ {b}, and a polynomial pM such that for any
word w ∈ Γ∗,M halts in at most pM(|w|) steps, that isM[pM(|w|)](c0(γ(w))) =
c∞(γ(f(w))). Note that we assume that pM(N) ⊆ N. Also note that ψk(w) =
(0.γ(w), |w|) for any word w ∈ Γ∗.

Define µ = ln(4k2) and h(c) = 〈M〉 (c, µ) for all c ∈ R4. Define I∞ = 〈CM〉
and In = I∞ + [−εn, εn]

4
where εn = 1

4k2+n for all n ∈ N. Note that εn+1 6
εn
k

and that ε0 6 1
2k2 − e

−µ. By Theorem 49 we have h ∈ ALP and h(In+1) ⊆ In.

In particular
∥∥h[n](c̄)− h[n](c)

∥∥ 6 kn ‖c− c̄‖ for all c ∈ I∞ and c̄ ∈ In, for

37



all n ∈ N. Let δ ∈
[
0, 1

2

[
and define J = ∪n∈NIn × [n − δ, n + δ]. Apply

Theorem 54 to get (h∗δ : J → I0) ∈ ALP such that for all c ∈ I∞ and n ∈ N and
h∗δ(c, n) = h[n](c).

Let πi denote the ith projection, that is πi(x) = xi, then πi ∈ ALP. Define

g(y, `) = π3(h∗δ(0, b, π1(y), q0, pM(`)))

for y ∈ ψk(Γ∗) and ` ∈ N. Note that g ∈ ALP and is well-defined. Indeed, if ` ∈
N then pM(`) ∈ N and if y = ψk(w) then π1(y) = 0.γ(w) then (0, b, π1(y), q0) =
〈(λ, b, w, q0)〉 = 〈c0(w)〉 ∈ I∞. Furthermore, by construction, for any word
w ∈ Γ∗ we have:

g(ψk(w), |w|) = π3 (h∗δ(〈c0(w)〉 , pM(|w|)))

= π3

(
h[pM(|w|)](c0(w))

)
= π3

(〈
C[pM(|w|)]
M (c0(w))

〉)
= π3 (〈c∞(γ(f(w)))〉)
= 0.γ(f(w)) = π1(ψk(f(w))).

Recall that to show emulation, we need to compute ψk(f(w)) and so far we only
have the first component: the output tape encoding, but we miss the second
component: its length. Since the length of the tape cannot be greater than the
initial length plus the number of steps, we have that |f(w)| 6 |w| + pM(|w|).
Apply Corollary 63 (this corollary will appear only on the next section. But its
proof does not depend on this result and therefore this does not pose a problem)
to get that tape length tlengthM(g(ψk(w), |w|), |w| + pM(|w|)) = |f(w)| since
f(w) does not contain any blank character (this is true because γ(Γ) ⊂ Σ\{b}).
This proves that f is emulable because g ∈ ALP and tlengthM ∈ ALP.

6.4 On the robustness of previous characterization

An interesting question arises when looking at this theorem: does the choice of
k in Definition 50 matters, especially for the equivalence with FP ? Fortunately
not, as long as k is large enough, as shown in the next lemma.

Actually in several cases, we will need to either decode words from noisy
encodings, or re-encode a word in a different basis. This is not a trivial operation
because small changes in the input can result in big changes in the output.
Furthermore, continuity forbids us from being able to decode all inputs. The
following theorem is a very general tool. Its proof is detailed page 61. The
following Corollary 61 is a simpler version when one only needs to re-encode a
word.

Theorem 60 (Word decoding) Let k1, k2 ∈ N∗ and κ : J0, k1−1K→ J0, k2−
1K. There exists a function (decodeκ :⊆ R× N× R→ R) ∈ ALP such that for
any word w ∈ J0, k1 − 1K∗ and µ, ε > 0:

if ε 6 k−|w|1 (1−e−µ) then decodeκ

 |w|∑
i=1

wik
−i
1 + ε, |w|, µ

 =

 |w|∑
i=1

κ(wi)k
−i
2 ,#{i|wi 6= 0}



38



Corollary 61 (Re-encoding) Let k1, k2 ∈ N∗ and κ : J1, k1−2K→ J0, k2−1K.
There exists a function (reencκ :⊆ R× N→ R× N) ∈ ALP such that for any
word w ∈ J1, k1 − 2K∗ and n > |w| we have:

reencκ

 |w|∑
i=1

wik
−i
1 , n

 =

 |w|∑
i=1

κ(wi)k
−i
2 , |w|


Proof. The proof is immediate: extend κ with κ(0) = 0 and define

reencκ(x, n) = decodeκ(x, n, 0).

Since n > |w|, we can apply Theorem 60 with ε = 0 to get the result. Note that
strictly speaking, we are not applying the theorem to w but rather to w padded
with as many 0 symbols as necessary, ie w0n−|w|. Since w does not contain the
symbol 0, its length is the same as the number of non-blank symbols it contains.

Remark 62 (Nonreversible re-encoding) Note that the previous theorem
and corollary allows from nonreversible re-encoding when κ(α) = 0 or κ(α) =
k2 − 1 for some α 6= 0. For example, it allows one to re-encode a word over
{0, 1, 2} with k1 = 4 to a word over {0, 1} with k2 = 2 with κ(1) = 0 and
κ(2) = 1 but the resulting number cannot be decoded in general (for continuity
reasons). In some cases, only the more general Theorem 60 provides a way to
recover the encoding.

A typically application of this function is to recover the length of the tape
after a computation. Indeed way to do this is to keep track of the tape length
during the computation, but this usually requires a modified machine and some
delimiters on the tape. Instead, we will use the previous theorem to recover the
length from the encoding, assuming it does not contain any blank character.
The only limitation is that to recover the lenth of w from its encoding 0.w, we
need to have an upper bound on the length of w.

Corollary 63 (Length recovery) For any machine M, there exists a func-
tion (tlengthM : 〈CM〉 × N→ N) ∈ ALP such that for any word w ∈ (Σ \ {b})∗
and any n > |w|, tlengthM(0.w, n) = |w|.

Proof. It is an immediate consequence of Corollary 61 with k1 = k2 = k and
κ = id where we throw away the re-encoding.

The previous tools are also precisely what is needed to prove that our notion
of emulation is independant of k.

Lemma 64 (Emulation re-encoding) Assume that g ∈ ALP emulates f
with k ∈ N. Then for any k′ > k, there exists h ∈ ALP that emulates f
with k′.

Proof. The proof follows from Corollary 61 by a standard game playing with
encoding/reencoding.

More precisely, let k′ > k and define κ : J1, k′K → J1, kK and κ−1 : J1, kK →
J1, k′K as follows:

κ(w) =

{
w if w ∈ γ(Γ)

1 otherwise
κ−1(w) = w.

39



In the following, 0.w (resp. 0′.w) denotes the rational encoding in basis k (resp.
k′). Apply Corollary 61 twice to get that reencκ, reencκ−1 ∈ ALP. Define:

h = reencκ−1 ◦g ◦ reencκ .

Note that γ(Γ) ⊆ J1, k − 1K∗ ⊆ J1, k′ − 1K∗ since γ never maps letters to 0 and
k > 1 + max(γ(Γ)) by definition. Consequently for w ∈ Γ∗:

h(ψk′(w)) = h(0′.γ(w), |w|) By definition of ψk′

= reencκ−1(g(reencκ(0′.γ(w), |w|)))
= reencκ−1(g(0.κ(γ(w)), |w|)) Because γ(w) ∈ J1, k′K∗

= reencκ−1(g(0.γ(w), |w|)) Because γ(w) ∈ γ(Γ)∗

= reencκ−1(g(ψk(w))) By definition of ψk

= reencκ−1(ψk(f(w))) Because g emulates f

= reencκ−1(0.γ(f(w)), |f(w)|) By definition of ψk

= (0′.κ−1(γ(f(w))), |f(w)|) Because γ(f(w)) ∈ γ(Γ)∗

= (0′.γ(f(w)), |f(w)|) By definition of κ−1

= ψk′(f(w)). By definition of ψk′

The previous notion of emulation was for single input functions, which is
sufficient in theory because we can always encode tuples of words using a single
word or give Turing machines several input/output tapes. But for the next
results of this section, it will be useful to have functions with multiple in-
puts/outputs without going through an encoding. We extend the notion of
discrete encoding in the natural way to handle this case.

Definition 65 (emulation) f : (Γ∗)
n → (Γ∗)

m
is called emulable if there

exists g ∈ ALP and k ∈ N such that for any word ~w ∈ (Γ∗)
n

:

g(ψk(~w)) = ψk(f(~w)) where ψk(x1, . . . , x`) = (ψ(x1), . . . , ψ(x`))

and ψk is defined as in Definition 50.

It is trivial that Definition 65 matches Definition 50 in the case of unidimen-
sional functions, thus the two definitions are consistent with each other.

Theorem 52 then generalizes to the multidimensional case naturally as fol-
lows. Proof is in page 64.

Theorem 66 (Multidimensional FP equivalence) For any f : (Γ∗)
n →

(Γ∗)
m

, f ∈ FP if and only if f is emulable.

7 A Characterization of P

We will now use this characterization of FP to give a characterization of P: Our
purpose is now to prove that a decision problem (language) L belongs to the
class P if and only if it is poly-length-analog-recognizable.

The following definition is a generalization (to general field K) of Definition
1:

40



Definition 67 (Discrete recognizability) A language L ⊆ Γ∗ is called K-
poly-length-analog-recognizable if there exists a vector q of bivariate polynomials
and a vector p of polynomials with d variables, both with coefficients in K, and
a polynomial q : R+ → R+, such that for all w ∈ Γ∗, there is a (unique)
y : R+ → Rd such that for all t ∈ R+:

• y(0) = q(ψk(w)) and y′(t) = p(y(t)) I y satisfies a differential equation

• if |y1(t)| > 1 then |y1(u)| > 1 for all u > t I decision is stable

• if w ∈ L (resp. /∈ L) and leny(0, t) > q(|w|) then y1(t) > 1 (resp. 6 −1)
I decision

• leny(0, t) > t I technical condition13

Using Theorem 52 on the characterization of FP, we can show that this
class corresponds exactly to P. The proof is not complicated but because of the
difference in the output format, we need to be careful. Indeed, in our character-
ization of FP, we simply show that after a polynomial length, the output value
is exactly the encoding of the output string. In this characterization of P, we
have a much more relaxed notion of signalling whether the computation is still
in progress or done.

Theorem 68 (P equivalence) Let K be a generable field such that RG ⊆ K ⊆
RP . For any language L ⊆ Γ∗, L ∈ P if and only if L is K-poly-length-analog-
recognizable.

Proof. The direct direction will build on the equivalence with FP, except that
a technical point is to make sure that the decision of the system is irreversible.

Let L ∈ P. Then there exist f ∈ FP and two distinct symbols 0̄, 1̄ ∈ Γ such
that for any w ∈ Γ∗, f(w) = 1̄ if w ∈ M and f(w) = 0̄ otherwise. Let dec be
defined by dec(k−1γ(0̄)) = −2 and dec(k−1γ(1̄)) = 2. Recall that 1dec ∈ ALP
by Lemma 41. Apply Theorem 52 to get g and k that emulate f . Note in
particular that for any w ∈ Γ∗, f(w) ∈ {0̄, 1̄} so ψ(f(w)) = (γ(0̄)k−1, 1) or
(γ(1̄)k−1, 1). Define g∗(x) = 1dec(g1(x)) and check that g∗ ∈ ALP. Further-
more, g∗(ψk(w)) = 2 if w ∈ L and g∗(ψk(w)) = −2 otherwise, by definition of
the emulation and the interpolation.

We have g∗ ∈ ATSC(Υ,q) for some polynomials q and Υ be polynomials
with corresponding d, p, q. Assume, without loss of generality, that q and Υ are
increasing functions. Let w ∈ Γ∗ and consider the following system:

y(0)= q(ψk(w))
v(0)= ψk(w)
z(0)= 0
τ(0)= 0


y′(t)= p(y(t))
v′(t)= 0
z′(t)= lxh[0,1](τ(t)− τ∗, 1, y1(t)− z(t))
τ ′(t)= 1

τ∗ = q(v2(t), ln 2)

In this system, v is a constant variable used to store the input and in particular
the input length (v2(t) = |w|), τ(t) = t is used to keep the time and z is the

13This could be replaced by only assuming that we have somewhere the additional ordinary
differential equation y′0 = 1.

41



decision variable. Let t ∈ [0, τ∗], then by Lemma 34, ‖z′(t)‖ 6 e−1−t thus
‖z(t)‖ 6 e−1 < 1. In other words, at time τ∗ the system has still not decided if
w ∈ L or not. Let t > τ∗, then by definition of q and since v2(t) = ψk,2(w) =
|w| = ‖ψk(w)‖, ‖y1(t)− g∗(ψk(w))‖ 6 e− ln 2. Recall that g∗(ψk(w)) ∈ {−2, 2}
and let ε ∈ {−1, 1} such that g∗(ψk(w)) = ε2. Then ‖y1(t)− ε2‖ 6 1

2 which
means that y1(t) = ελ(t) where λ(t) > 3

2 . Apply Lemma 34 to conclude that z
satisfies for t > τ∗:

z(τ∗) ∈ [−e−1, e−1] z′(t) = φ(t)(ελ(t)− z(t))

where φ(t) > 0 and φ(t) > 1 − e−1 for t > τ∗ + 1. Let zε(t) = εz(t) and check
that zε satisfies:

zε(τ
∗) ∈ [−e−1, e−1] z′ε(t) > φ(t)( 3

2 − zε(t))

It follows that zε is an increasing function and from a classical argument about
differential inequalities that:

zε(t) >
3

2
−
(

3

2
− zε(τ∗)

)
e−

∫ t
τ∗ φ(u)du

In particular for t∗ = τ∗ + 1 + 2 ln 4 we have:

zε(t) >
3

2
− ( 3

2 − zε(τ
∗))e−2 ln 4(1−e−1) >

3

2
− 2e− ln 4 > 1.

This proves that |z(t)| = zε(t) is an increasing function, so in particular once
it has reached 1, it stays greater than 1. Furthermore, if w ∈ L then z(t∗) > 1
and if w /∈ L then z(t∗) 6 1. Note that ‖(y, v, z, w)′(t)‖ > 1 for all t > 1 so
the technical condition is satisfied. Also note that z is bounded by a constant,
by a very similar reasoning. This shows that if Y = (y, v, z, τ), then ‖Y (t)‖ 6
poly(‖ψk(w)‖ , t) because ‖y(t)‖ 6 Υ(‖ψk(w)‖ , t). Consequently, there is a
polynomial Υ∗ such that ‖Y ′(t)‖ 6 Υ∗ (this is immediate from the expression
of the system), and without loss of generality, we can assume that Υ∗ is an
increasing function. And since ‖Y ′(t)‖ > 1, we have that t 6 lenY (0, t) 6
t supu∈[0,t] ‖Y ′(u)‖ 6 tΥ∗(‖ψk(w)‖ , t). Define q∗(α) = t∗Υ∗(α, t∗) which is a
polynomial because t∗ is polynomially bounded in ‖ψk(w)‖ = |w|. Let t such
that lenY (0, t) > q∗(|w|), then by the above reasoning, tΥ∗(|w|, t) > q∗(|w|)
and thus t > t∗ so |z(t)| > 1, i.e. the system has decided.

The reverse direction of the proof is the following: assume that L is K-
poly-length-analog-recognizable. Apply Definition 67 to get d, q, p and q. Let
w ∈ Γ∗ and consider the following system:

y(0) = q(ψk(w)) y′(t) = p(y(t))

We will show that we can decide in time polynomial in |w| whether w ∈ L
or not. Note that q is a polynomial with coefficients in RP (since we consider
K ⊂ RP ) and ψk(w) is a rational number so q(ψk(w)) ∈ RdP . Similarly, p has
coefficients in RP . Finally, note that14:

PsLeny,p(0, t) =

∫ t

0

Σpmax(1, ‖y(u)‖)kdu

14See Section 6.2.1 for the expression PsLen.

42



6 tΣpmax

(
1, sup
u∈[0,t]

‖y(u)‖k
)

6 tΣpmax

(
1, sup
u∈[0,t]

(‖y(0)‖ + leny(0, t))
k

)
6 tpoly(leny(0, t))

6 poly(leny(0, t))

where the last inequality holds because leny(0, t) > t thanks to the technical
condition. We can now apply Theorem 53 to conclude that we are able to
compute y(t)± e−µ in time polynomial in t, µ and leny(0, t).

At this point, there is a slight subtlety: intuitively we would like to evaluate
y at time q(|w|) but it could be that the length of the curve is exponential at
this time.

Fortunately, the algorithm that solves the PIVP works by making small time
steps, and at each step the length cannot increase by more than a constant15.
This means that we can stop the algorithm as soon as the length is greater than
q(|w|). Let t∗ be the time at which the algorithm stops. Then the running time
of the algorithm will be polynomial in t∗, µ and leny(0, t∗) 6 q(|w|) + O (1).
Finally, thanks to the technical condition, t∗ 6 leny(0, t∗) so this algorithm has
running time polynomial in |w| and µ. Take µ = ln 2 then we get ỹ such that
‖y(t∗)− ỹ‖ 6 1

2 . By definition of q, y1(t) > 1 or y1(t) 6 −1 so we can decide
from ỹ1 if w ∈ L or not.

8 A Characterization of Computable Analysis

8.1 Computable Analysis

There exist many equivalent definitions of polynomial-time computability in
the framework of Computable Analysis. In this paper, we will use a particular
characterization by [Ko91] in terms of computable rational approximation and
modulus of continuity. In the next theorem (which can be found e.g. in [Wei00]),
D denotes the set of dyadic rationals:

D = {m2−n,m ∈ Z, n ∈ N}.

Theorem 69 (Alternative definition of computable functions) A real func-
tion f : [a, b] → R is computable (resp. polynomial time computable) if and
only if there exists a computable (resp. polynomial time computable16) function
ψ : (D∩[a, b])×N→ D and a computable (resp. polynomial) function m : N→ N
such that:

• m is a modulus of continuity for f

• for any n ∈ N and d ∈ [a, b] ∩ D, |ψ(d, n)− f(d)| 6 2−n

15For the unconvinced reader, it is still possible to write this argument formally by running
the algorithm for increasing values of t, starting from a very small value and making sure that
at each step the increase in the length of the curve is at most constant. This is very similar
to how Theorem 53 is proved.

16The second argument of g must be in unary.

43



This characterization is very useful for us because it does not involved the
notion of oracle, which would be difficult to formalize with differential equation.
However, in one direction of the proofs, it will be useful to have the following
variation of the previous theorem:

Theorem 70 (Alternative characterization of computable functions) A
real function f : [a, b] → R is polynomial time computable if and only if there
exists a polynomial q : N → N, a polynomial time computable17 function ψ :
Xq → D such that

for all x ∈ [a, b] and (r, n) ∈ Xq(x), |ψ(r, n)− f(x)| 6 2−n

where

Xq =
⋃

x∈[a,b]

Xq(x),

Xq(x) = {(r, n) ∈ D× N : |r − x| 6 2−q(n)}.
Proof. This is a folklore result that directly follows from the oracle definition.

8.2 Mixing functions

Suppose that we have two continuous functions f0 and f1 that partially cover
R but such that dom f0 ∪dom f1 = R. We would like to build a new continuous
function defined over R out of them. One way of doing this is to build a function
f that equals f0 over dom f0 \ dom f1, f1 over dom f1 \ dom f0 and a linear
combination of both in between. For example consider f0(x) = x2 defined
over ] − ∞, 1] and f1(x) = x over [0,∞[. This approach may work from a
mathematical point of view, but it raises severe computational issues: how do
we describe the two domains ? How do we compute a linear interpolation
between arbitrary sets ? What is the complexity of this operation ? This would
require to discuss the complexity of real sets, which is a whole subject by itself.

A more elementary solution to this problem is what we call mixing. We
assume that we are given an indicator function i that covers the domain of both
functions. Such an example would be i(x) = x in the previous example. The
intuition is that i describes both the domains and the interpolation. Precisely,
the resulting function should be f0(x) if i(x) 6 0, f1(x) if i(x) > 1 and a
mix of f0(x) and f1(x) inbetween. The consequence of this choice is that the
domain of f0 and f1 must overlap on the region {x : 0 < i(x) < 1}. In the
previous example, we need to define f0 over ] −∞, 1[= {x : i(x) < 1} and f1

over ]0,∞] = {x : i(x) > 0}. Several types of mixing are possible, the simplest
being linear interpolation: (1− i(x))f0(x)+ i(x)f1(x). Formally, we would build
the following continuous function:

Definition 71 (Mixing function) Let f0 :⊆ Rn → Rd, f1 :⊆ Rn → Rd and
i :⊆ Rn → R. Assume that {x : i(x) < 1} ⊆ dom f0 and {x : i(x) > 0} ⊆
dom f1, and define the function mix(i, f0, f1) :⊆ Rn → Rd by:

mix(i, f0, f1)(x) =


f0(x) if i(x) 6 0

(1− i(x))f0(x) + i(x)f1(x) if 0 < i(x) < 1

f1(x) if i(x) > 1

.

17The second argument of g must be in unary.

44



where for x ∈ dom i.

From closure properties, we get immediately:

Theorem 72 (Closure by mixing) Let f0 :⊆ Rn → Rd, f1 :⊆ Rn → Rd and
i :⊆ Rn → R. Assume that f0, f1, i ∈ ALP , that {x : i(x) < 1} ⊆ dom f0 and
that {x : i(x) > 0} ⊆ dom f1. Then mix(i, f0, f1) ∈ ALP .

Proof. By taking min(max(0, i(x)), 1), which belongs to ALP, we can assume
that i(x) ∈ [0, 1]. Furthermore, it is not hard to see that

mix(i, f0, f1)(x) = mix(i, 0, f1)(x) + mix(1− i, 0, f0)(x).

Thus we only need prove the result for the case where f0 ≡ 0, that is

g(x) =

{
0 if α(x) = 0

α(x)f(x) if α(x) > 0
.

Recall that by assumption, f(x) is defined for α(x) > 0 but may not be defined
for α(x) = 0. The idea is use Item (4) of Proposition 12 (online-computability):
let δ, d, p, y0 and d′, q, z0 that correspond to f and α respectively. Consider the
following system for all x ∈ domα:

y(0) = y0, y′(t) = p(y(t), x),

z(0) = z0, z′(t) = q(y(t), x),

w(t) = y(t)z(t).

There are two cases:

• If α(x) > 0 then x ∈ dom f thus y(t)→ f(x) and z(t)→ α(x) as t→∞. It
follows that w(t)→ α(x)f(x) = g(x) as t→∞. We leave the convergence
speed analysis to the reader since it’s standard.

• If α(x) = 0 then we have no guarantee on the convergence of y. However
we know that

‖y(t)‖ 6 Υ(‖x‖ , t)

where and Υ is a polynomial, and

|z(t)− α(x)| 6 e−µ for all t > q(‖x‖ , µ).

Thus for all µ ∈ R+,

‖w(q(‖x‖ , µ))‖ = ‖z(t)y(t)‖
= Υ(‖x‖ ,q(‖x‖ , µ))e−µ.

But since Υ and q are polynomials, the right-hand side converges exponen-
tially fast (in µ) to 0 whereas the time q(‖x‖ , µ) only grows polynomially.

This shows that g ∈ ALP.

45



8.3 Computing effective limits

Intuitively, our notion of computation already contains the notion of effective
limit. More precisely, if f is computable and is such that f(x, t) → g(x) when
t → ∞ effectively uniformly on x, then g is computable. The result below
extends this result to the case where the limit is restricted to t ∈ N. The
intuition behind this result is that if we have f(x, n) → g(x) as n ∈ N → ∞,
we can consider h(x, t) = g(x, dte) and then h(x, t)→ g(x) as t ∈ R→∞. The
problem is that t 7→ dte is not computable over R. We can solve this problem by
mixing g(x, btc) and g(x, dte): the first is computable over

⋃
n∈N

[
n− 1

3 , n+ 1
3

]
,

and the second over
⋃
n∈N

[
n+ 1

6 , n+ 5
6

]
. Indeed by introducing gaps in the

domain of definition, we avoid the continuity problem, and by mixing the two
we can cover all of R. Indeed, the domains of definition of the two function
overlap over

⋃
n∈N

[
n+ 1

6 , n+ 1
3

]
, which provides a smooth transition between

the functions.

Theorem 73 (Closure by effective limit) Let I ⊆ Rn, f :⊆ I × N → Rm,
g : I → Rm and f : R2

+ → R+ be a nondecreasing polynomial. Assume that
f ∈ ALP and that

{(x, n) ∈ I × N : n > f(‖x‖ , 0)} ⊆ dom f.

Further assume that for all (x, n) ∈ dom f and µ > 0,

if n > f(‖x‖ , µ) then ‖f(x, n)− g(x)‖ 6 e−µ.

Then g ∈ ALP.

Proof. First note that 1
2 − e

−2 > 1
3 and define for x ∈ I and n > f(‖x‖ , 0):

f0(x, τ) = f(x, rnd(τ, 2)) τ ∈
[
n− 1

3 , n+ 1
3

]
,

f1(x, τ) = f(x, rnd(τ + 1
2 , 2)) τ ∈

[
n+ 1

6 , n+ 5
6

]
.

By Definition 31 and hypothesis on f , both are well-defined because for all
n > f(‖x‖ , 0) and τ ∈

[
n− 1

3 , n+ 1
3

]
,

(x, rnd∗ (τ, 2)) = (x, n) ∈ dom f

and similarly for f1. Also note that their domain of definition overlap on [n +
1
6 , n + 1

3 ] and [n + 2
3 , n + 5

6 ]. Apply Theorem 32 and Theorem 21 to get that
f0, f1 ∈ ALP. We also need to build the indicator function: this is where
the choice of above values will prove convenient. Define for any x ∈ I and
τ > f(‖x‖ , 0):

i(x, τ) = 1
2 − cos(2πτ).

It is now easy to check that:

{(x, τ) : i(x) < 1} = I ×
⋃

n>f(‖x‖,0)

]
n− 1

3 , n+ 1
3

[
⊆ dom f0.

{(x, τ) : i(x) > 0} = I ×
⋃

n>f(‖x‖,0)

]
n+ 1

6 , n+ 5
3

[
⊆ dom f1.

46



Define for any x ∈ I and µ ∈ R+:

f∗(x, µ) = mix(i, f0, f1)(x,f(norm∞,1(x), µ)).

Recall that norm∞,1, defined in Lemma 33, belongs to ALPand satisfies norm∞,1(x) >
‖x‖. We can thus apply Theorem 72 to get that f∗ ∈ ALP. Note that f∗ is de-
fined over I × R+ since for all x ∈ I and µ > 0, f(norm∞,1(x), µ) > f(‖x‖ , 0)
since f is nondecreasing. We now claim that for any x ∈ I and µ ∈ R+, if
τ > 1 + f(‖x‖ , µ) then ‖f∗(x, τ)− g(x)‖ 6 2e−µ. There are three cases to
consider, illustrated in Figure 11:

• If τ ∈ [n− 1
6 , n+ 1

6 ] for some n ∈ N then i(x) 6 0 so mix(i, f0, f1)(x, τ) =
f0(x, τ) = f(x, n) and since n > τ− 1

6 then n > f(‖x‖ , µ) thus ‖f∗(x, τ)− g(x)‖ 6
e−µ.

• If τ ∈ [n+ 1
3 , n+ 2

3 ] for some n ∈ N then i(x) > 1 so mix(i, f0, f1)(x, τ) =
f1(x, τ) = f(x, n + 1) and since n > τ − 2

3 then n + 1 > f(‖x‖ , µ) thus
‖f∗(x, τ)− g(x)‖ 6 e−µ.

• If τ ∈ [n+ 1
6 , n+ 1

3 ]∪[n+ 2
3 , n+ 5

6 ] for some n ∈ N then ‖f∗(x, τ)− g(x)‖ 6
e−µ from Theorem 72 since i(x, τ) ∈ [0, 1] so f∗(x, τ) = (1−i(x, τ))f0(x, τ)+
i(x, τ)f1(x, τ) = (1−i(x, τ))f(x, bτe)+i(x, τ)f(x,

⌊
τ + 1

2

⌉
). Since bτe ,

⌊
τ + 1

2

⌉
>

f(‖x‖ , µ), we get that ‖f(x, bτe)− g(x)‖ 6 e−µ and
∥∥f(x,

⌊
τ + 1

2

⌉
)− g(x)

∥∥ 6
e−µ thus ‖f∗(x, τ)− g(x)‖ 6 2e−µ because |i(x, τ)| 6 1.

τ0

1

n− 1
6 n n+ 1

6 n+ 1
3 n+ 2

3 n+ 5
6 n+ 1 n+ 7

6

i(τ)

f0(x, τ)

=

f(x, n)

(1− i(τ))f0(x, τ)
+i(τ)f1(x, τ)

= mix

f0(x, τ)

=

f(x, n+ 1)

(1− i(τ))f0(x, τ)
+i(τ)f1(x, τ)
= f(x, n+ 1)

f0(x, τ)

=

f(x, n+ 1)

Figure 11: The various cases of the proof of Theorem 73: we use mixing to
continuously choose between f(x, n) and f(x, n+ 1) as τ ranges over [n, n+ 1].
Note that f0(x, τ) = f(x, bτ + 1

2c) and f1(x, τ) = f(x, bτ + 1c) over some well-
chosen intervals.

It follows that g is the effective limit of f∗ and thus g ∈ ALP (see Remark 13).

Remark 74 (Optimality) The condition that f is a polynomial is essentially
optimal. Intuitively, if f ∈ ALP and satisfies ‖f(x, τ)− g(x)‖ 6 e−µ whenever
τ > f(‖x‖ , µ) then f is a modulus of continuity for g. By Theorem 22, if
g ∈ ALP then it admits a polynomial modulus of continuity so f must be a
polynomial. For a formal proof of this intuition, see examples 75 and 76.

47



Example 75 (f must be polynomial in x) Let f(x, τ) = min(ex, τ) and g(x) =
ex. Trivially f(x, ·) converges to g because f(x, τ) = g(x) for τ > ex. But
g /∈ ALP because it is not polynomially bounded. In this case f(x, µ) = ex

which is exponential and f ∈ ALP by Proposition 30.

Example 76 (f must be polynomial in µ) Let g(x) = −1
ln x for x ∈ [0, e]

which is defined in 0 by continuity. Observe that g /∈ ALP, since its modulus
of continuity is exponential around 0 because g(e−eµ) = e−µ for all µ > 0.
However note that g∗ ∈ ALP where g∗(x) = g(e−x) = 1

x for x ∈ [1,+∞[.
Let f(x, τ) = g∗(min(− lnx, τ)) and check, using that g is increasing and non-
negative, that: |f(x, τ)−g(x)| = |g(max(x, e−τ ))− g(x)| 6 g(max(x, e−τ )) 6 1

τ .
Thus f(‖x‖ , µ) = eµ which is exponential and f ∈ ALP because (x, τ) 7→
min(− lnx, τ) ∈ ALP by a proof similar to Proposition 30.

8.4 Cauchy completion and complexity

We want to approach a function f defined over some domain D by some function
g, where g is defined over{( p

2n
, n
)
, p ∈ Zd, n ∈ N :

p

2n
∈ D

}
,

the set of dyadic numbers in D (we need to include the precision n as ar-
gument for complexity reasons). Here, f is implicitely defined as f(x) =
lim p

2n→x g( p
2n , n). This is somewhat similar to Section 8.3 but with an ex-

tra difficulty since D can be arbitrary. The problem is that the shape of the
domain D matters: if we want to compute f(x), we will need to “approach” x
from within the domain, since the above domain only allows dyadic numbers
in D. For example if f is defined over [a, b] then to compute f(a) we need to
approach a by above, but for f(b), we need to approach b by below. For more
general domains, finding the right direction of approach might be (computation-
ally) hard, if even possible, and depends on the shape of the domain. To avoid
this problem, we requires that g be defined on a slightly larger domain so that
this problem disappears. This notion is motivated by Theorem 70. Even with
this assumption, the proof is nontrivial because of the difficulty to generate a
converging dyadic sequence, see Section 9.2 for more details.

Theorem 77 Let d, e, ` ∈ N, D ⊆ Rd+e, k > 2 and f : D → R`. Assume that
there exists a polynomial f : R2

+ → R+ and (g :⊆ Dd × N × Re → R`) ∈ ALP
such that for all (x, y) ∈ D and n,m ∈ N, p ∈ Zd,

if
∥∥ p

2m − x
∥∥ 6 2−m and m > f(‖(x, y)‖ , n) then18

∥∥g( p
2m ,m, y)− f(x, y)

∥∥ 6 2−n.

Then f ∈ ALP.

Section 9.2 is devoted to the proof of this theorem. We now show that this is
sufficient to characterize Computable Analysis using continuous time systems.

18The domain of definition of g is exactly those points ( p
2m

,m, y) that satisfy the previous
“if”.

48



8.5 From Computable Analysis to ALP

Theorem 78 (From Computable Analysis to ALP) For any a, b ∈ R, any
generable field K such that RG ⊆ K ⊆ RP , if f ∈ C0([a, b],R) is polynomial-time
computable then f ∈ ALP.

Note that a and b need not be computable so we must take care not to use
them in any computation!
Proof. Let f ∈ C0([a, b],R) and assume that f is polynomial-time computable.
We will first reduce the general situation to a simpler case. Let m,M ∈ Q such
that m < f(x) < M for all x ∈ [a, b]. Let l, r ∈ Q such that l 6 a < b 6 r.
Define

g(α) =
1

4
+
f(l + (r − l)(2α− 1

2 ))−m
2(M −m)

for all α ∈ [a′, b′] =
[

1
4 + a−l

2(r−l) ,
1
4 + b−l

2(r−l)

]
⊆ [ 1

4 ,
3
4 ]. It follows that g ∈

C0([a′, b′], [ 1
4 ,

3
4 ]) with [a′, b′] ⊆ [ 1

4 ,
3
4 ]. Furthermore, by construction, for ev-

ery x ∈ [a, b] we have that

f(x) = 2(M −m)

(
g

(
1

4
+

x− l
2(r − l)

)
− 1

4

)
+m.

Thus if g ∈ ALP then f ∈ ALP because of closure properties of ALP. Hence,
in the remaining of the proof, we can thus assume that f ∈ C0([a, b], 1

4 ,
3
4 ) with

[a, b] ⊆ [ 1
4 ,

3
4 ]. This restriction is useful to simplify the encoding used later in

the proof.
Let f ∈ C0([a, b],

[
1
4 ,

3
4

]
) with [a, b] ⊆

[
1
4 ,

3
4

]
be a polynomial time com-

putable function. Apply Theorem 70 to get g and f (we renamed ψ to g and
q to f to avoid a name clash). Note that g : Xf → D has its second argument
written in unary. In order to apply the FP characterization, we need to discuss
the encoding of rational numbers and unary integers. Let us choose a binary
alphabet Γ = {0, 1} and its encoding function γ(0) = 1 and γ(1) = 2, and define
for any w,w′ ∈ Γ∗:

ψN(w) = |w|, ψD(w) =

|w|∑
i=1

wi2
−i.

Note that ψD is a surjection from Γ∗ to D∩ [0, 1[, the dyadic part of [0, 1[. Define
for any relevant19 w,w′ ∈ Γ∗:

gΓ(w,w′) = ψ−1
D (g(ψD(w), ψN(w′))

where ψ−1
D (x) is the smallest w such ψD(w) = x (it is unique). For gΓ(w,w′) to

be defined, we need that

• (ψD(w), ψN(w′)) ∈ dom g = Xf: in the case of interest, this is true if

ψD(w) ∈
[
a′ − 2−f(|a′|,|w′|), b′ + 2−f(|b′|,|w′|)

]
,

19We will discuss the domain of definition below.

49



• g(ψD(w), ψN(w′)) ∈ domψ−1
D = D ∩ [0, 1[: since |g(ψD(w), ψN(w′)) −

f(ψD(w))| 6 2−ψN(w′) and f(ψD(w) ∈ [ 1
4 ,

3
4 ], then it is true when ψ(w′) =

|w′| > 3 because

g(ψD(w), ψN(w′)) ∈ f(ψD(w) + [−2−3, 2−3] ⊆ [ 1
4 ,

3
4 ] + [− 1

8 ,
1
8 ] ⊂ [0, 1].

Since ψD is a polytime computable encoding, then gΓ ∈ FP because it has
running time polynomial in the length of ψD(w) and the (unary) value of ψN(w′),
which are the length of w and w′ respectively, by definition of ψD and ψN. Apply
Theorem 66 to get that gΓ is emulable. Thus there exist h ∈ ALP and k ∈ N
such that for all w,w′ ∈ dom gΓ:

h(ψk(w,w′)) = ψk(gΓ(w,w′)).

where ψk is defined as in Definition 65. At this point, everything is encoded:
the input and the output of h. Our next step is to get rid of the encoding
by building a function that works the dyadic part of [a, b] and returns a real
number.

Define κ : J0, k − 2K→ {0, 1} by κ(γ(0)) = 0 and κ(γ(1)) = 1 and κ(α) = 0
otherwise. Define ι : {0, 1} → J0, k− 2K by ι(0) = γ(0) and ι(1) = γ(1). For any
relevant q ∈ D and n,m ∈ N define:

g∗(q, n, p) = reencκ,1(h(reencι(q, n), 0, p)).

We will see that this definition makes sense for some values. Let n ∈ N, p > 3

andm ∈ Z, write q = m2−n and assume thatm2−n ∈
[
a′ − 2−f(|a′|,p), b′ + 2−f(|b′|,p)

]
⊆

[0, 1[. Then there exists wq ∈ {0, 1}n such that m2−n =
∑n
i=1 w

q
i 2
−i. Conse-

quently,

reencι(q, n) = reencι

(
n∑
i=1

wqi 2
−i, n

)
By Corollary 61 (5)

=

(
n∑
i=1

ι(wqi )k
−i, n

)
By definition of reencι (6)

=

(
n∑
i=1

γ(wqi )k
−i, n

)
Because ι = γ (7)

= ψk(wq). (8)

Furthermore, note that by definition of wq:

ψD(wq) =

|wq|∑
i=1

wqi 2
−i = q. (9)

Similarly, note that

(0, p) =

(
p∑
i=1

0k−i, p

)
= ψk(0p) (10)

and
ψN(0p) = |0p| = p. (11)

50



Additionally, for any w ∈ Γ∗ we have that

reencκ,1(ψk(w)) = reencκ,1

 |w|∑
i=1

γ(wi)k
−i, |w|

 By definition of ψk

=

|w|∑
i=1

κ(γ(wi))2
−i By Corollary 61

=

|w|∑
i=1

wi2
−i Because κ ◦ γ = id

= ψD(w). (12)

Putting everything together, we get that

g∗(q, n, p) = reencκ,1(h(reencι(q, n), 0, p))

= reencκ,1(h(ψk(wq, 0p))) By (8) and (10)

= reencκ,1(ψk(gΓ(wq, 0p))) By definition of h

= reencκ,1(ψk(ψ−1
D (g(ψD(wq), ψN(0p))))) By definition of gΓ

= reencκ,1(ψk(ψ−1
D (g(q, p)))) By (9) and (11)

= ψD(ψ−1
D (g(q, p))) By (12)

= g(q, p). (13)

Finally, g∗ ∈ ALP because reencκ, reencι ∈ ALP by Corollary 61. Finally for
any relevant n > 3 and q ∈ D, let

g̃(q, n) = g∗(q, n, n).

Clearly g̃ ∈ ALP. We will show that g̃ satisfies the assumption of Theorem 77.
Let x ∈ [a, b], m,n ∈ N and p ∈ Z such that∣∣x− p

2m

∣∣ 6 2−m and m > f(|x|, n+ 2) + n+ 2.

Then20

|g̃( p
2m ,m)− f(x)| = |g∗( p

2m ,m,m)− f(x)|
= |g( p

2m ,m)− f(x)| by (13)

6 |g( p
2m ,m)− f( p

2m )|+ |f( p
2m )− f(x)|

But for any rational q, |g(q, n)− f(q)| 6 2−n for all n ∈ N,

6 2−m + |f( p
2m )− f(x)|

6 2−m + |f( p
2m )− g( p

2m , n+ 2)|+ |g( p
2m , n+ 2)− f(x)|

But for any rational q, |g(q, n)− f(q)| 6 2−n for all n ∈ N,

6 2−m + 2−n−2 + |g( p
2m , n+ 2)− f(x)|

20The proof is a bit involved because we naturally have g( p
2m

,m) with m > f(|x|, n) but
we want g( p

2m
, n) to apply Theorem 77.

51



But |x− p
2m | 6 2−m 6 2−f(|x|,n+2) so we can apply Theorem 70,

6 2−m + 2−n−2 + 2−n−2

6 3 · 2−n−2 since m > n+ 2

6 2−n.

Thus we can apply Theorem 77 to g̃ and get that f ∈ ALP.

8.6 Equivalence with Computable Analysis

Note that the characterization works over [a, b] where a and b can be arbitrary
real numbers.

Theorem 79 (Equivalence with Computable Analysis) For any f ∈ C0([a, b],R),
f is polynomial-time computable if and only if f ∈ ALP.

Proof. The proof of the missing direction of the theorem is the following:
Let f ∈ ALP. Then f ∈ ATSC(Υ,q) where Υ,q are polynomials which we
can assume to be increasing functions, and corresponding d, p and q. Apply
Theorem 22 to f to get f and define

m(n) = 1
ln 2f(max(|a|, |b|), n ln 2).

It follows from the definition that m is a modulus of continuity of f since for
any n ∈ N and x, y ∈ [a, b] such that |x− y| 6 2−m(n) we have:

|x− y| 6 2−
1

ln 2f(max(|a|,|b|),n ln 2) = e−f(max(|a|,|b|),n ln 2) 6 e−f(|x|,n ln 2).

Thus |f(x)− f(y)| 6 e−n ln 2 = 2−n. We will now see how to approximate f in
polynomial time. Let r ∈ Q and n ∈ N. We would like to compute f(r)± 2−n.
By definition of f , there exists a unique y : R+ → Rd such that for all t ∈ R+:

y(0) = q(r) y′(t) = p(y(t).

Furthermore, |y1(q(|r|, µ))− f(r)| 6 e−µ for any µ ∈ R+ and ‖y(t)‖ 6 Υ(|r|, t)
for all t ∈ R+. Note that since the coefficients of p and q belongs to RP , it
follows that we can apply Theorem 53 to compute y. More concretely, one can
compute a rational r′ such that |y(t)− r′| 6 2−n in time bounded by

poly(deg(p),PsLen(0, t), log ‖y(0)‖ , log Σp,− log 2−n)d.

Recall that in this case, all the parameters d,Σp,deg(p) only depend on f and are
thus fixed and that |r| is bounded by a constant. Thus these are all considered
constants. So in particular, we can compute r′ such that |y(q(|r|, (n+ 1) ln 2)−
r′| 6 2−n−1 in time:

poly(PsLen(0,q(|r|, (n+ 1) ln 2)), log ‖q(r)‖ , (n+ 1) ln 2).

Note that |r| 6 max(|a|, |b|) and since a and b are constants and q is a polyno-
mial, ‖q(r)‖ is bounded by a constant. Furthermore,

PsLen(0,q(|r|, (n+ 1) ln 2)) =

∫ q(|r|,(n+1) ln 2)

0

max(1, ‖y(t)‖)deg(p)dt

52



6
∫ q(|r|,(n+1) ln 2)

0

poly(Υ(‖r‖ , t))dt

6 q(|r|, (n+ 1) ln 2) poly(Υ(|r|,q(|r|, (n+ 1) ln 2)))dt

6 poly(|r|, n) 6 poly(n).

Thus r′ can be computed in time:

poly(n).

Which is indeed polynomial time since n is written in unary. Finally:

|f(r)− r′| 6 |f(r)− y(q(|r|, (n+ 1) ln 2))|+ |y(q(|r|, (n+ 1) ln 2))− r′|
6 e−(n+ 1) ln 2 + 2−n−1

6 2−n.

This shows that f is polytime computable.

Remark 80 (Domain of definition) The equivalence holds over any interval
[a, b] but it can be extended in several ways. First it is possible to state an
equivalence over R . Indeed, classical real computability defines the complexity
of f(x) over R as polynomial in n and k where n is the precision and k the
length of input, defined by x ∈ [−2k, 2k]. Secondly, the equivalence also holds
for multidimensional domains of the form I1 × I2 × · · · × In where Ik = [ak, bk]
or Ik = R. However, extending this equivalence to partial functions requires
some caution. Indeed, our definition does not specify the behavior of functions
outside of the domain, whereas classical discrete computability and some authors
in Computable Analysis mandate that the machine never terminates on such
inputs. More work is needed in this direction to understand how to state the
equivalence in this case, in particular how to translate the “never terminates”
part. Of course, the equivalence holds for partial functions where the behavior
outside of the domain is not defined.

9 Missing Proofs

9.1 Proof of Theorem 54: Simulating Discrete by Contin-
uous Time

9.1.1 A construction used elsewhere

Another very common pattern that we will use is known as “sample and hold”.
Typically, we have a variable signal and we would like to apply some process
to it. Unfortunately, the device that processes the signal assumes (almost)
constant input and does not work in real time (analog-to-digital converters
would be a typical example). In this case, we cannot feed the signal directly to
the processor so we need some black box that samples the signal to capture its
value, and holds this value long enough for the processor to compute its output.
This process is usually used in a τ -periodic fashion: the box samples for time δ
and holds for time τ − δ. This is precisely what the sample function achieves.
In fact, we show that it achieves much more: it is robust to noise and has good
convergence properties when the input signal converges. The following result is
from [BGP16c, Lemma 35]

53



Lemma 81 (Sample and hold) Let τ ∈ R+ and I = [a, b] ( [0, τ ]. Then
there exists sampleI,τ ∈ GPVAL with the following properties. Let y : R+ → R,
y0 ∈ R, x, e ∈ C0(R+,R) and µ : R+ → R+ be an increasing function. Suppose
that for all t ∈ R+ we have

y(0) = y0, y′(t) = sampleI,τ (t, µ(t), y(t), x(t)) + e(t).

Then:

|y(t)| 6 2 +

t∫
max(0,t−τ−|I|)

|e(u)|du+ max
(
|y(0)|1[0,b](t), supτ+|I||x|(t)

)
Furthermore:

• If t /∈ I (mod τ) then |y′(t)| 6 e−µ(t) + |e(t)|.

• for n ∈ N, if there exist x̄ ∈ R and ν, ν′ ∈ R+ such that |x̄ − x(t)| 6 e−ν

and µ(t) > ν′ for all t ∈ nτ + I then

|y(nτ + b)− x̄| 6
∫
nτ+I

|e(u)|du+ e−ν + e−ν
′
.

• For n ∈ N, if there exist x̌, x̂ ∈ R and ν ∈ R+ such that x(t) ∈ [x̌, x̂] and
µ(t) > ν for all t ∈ nτ + I then

y(nτ + b) ∈ [x̌− ε, x̂+ ε]

where ε = 2e−ν +
∫
nτ+I

|e(u)|du.

• For any J = [c, d] ⊆ R+, if there exist ν, ν′ ∈ R+ and x̄ ∈ R such that
µ(t) > ν′ for all t ∈ J and |x(t) − x̄| 6 e−ν for all t ∈ J ∩ (nτ + I) for
some n ∈ N, then

|y(t)− x̄| 6 e−ν + e−ν
′
+

∫ t

t−τ−|I|
|e(u)|du

for all t ∈ [c+ τ + |I|, d].

• If there exists q : R+ → R+ such that for any J = [c, d] and x̄ ∈ R such
that for all ν ∈ R+, n ∈ N and t ∈ (nτ+I)∩ [c+q(ν), d], |x̄−x(t)| 6 e−ν ;
then

|y(t)− x̄| 6 e−ν +

∫ t

t−τ−|I|
|e(u)|du

for all t ∈ [c+q∗(ν), d] where

q∗(ν) = max(q(ν + ln(2 + τ)), µ−1(ν + ln(2 + τ))) + τ + |I|.

Another tool is that of “digit extraction”. In Theorem 60 we saw that we
can decode a value, as long as we are close enough to a word. In essence, this
theorem works around the continuity problem by creating gaps in the domain
of the definition. This approach does not help on the rare occasions when we
really want to extract some information about the encoding. How is it possible

54



to achieve this without breaking the continuity requirement ? The compromise
is to ask for less information. More precisely, write x =

∑∞
i=0 di2

−i, we call dn
is the nth digit. The function that maps x to dn is not continuous. Instead, we
can compute cos(2π2nx) = cos(

∑
i>n di2

−i). Intuitively, this is the next best
thing we can hope for if we want a continuous map: it does not give us dn but
still gives us enough information.

Lemma 82 (Extraction) For any k > 2, there exists extractk ∈ ALP such
that for any x ∈ R and n ∈ N:

extractk(x, n) = cos(2πknx).

Proof. Let Tk be the kth Tchebychev polynomial. It is a well-known fact that
for every θ ∈ R,

cos(kθ) = Tk(cos θ).

For any x ∈ [−1, 1], let
f(x) = Tk(x).

Then f([−1, 1]) = [−1, 1] and f ∈ ALP because Tk is a polynomial with integer
coefficients. We can thus iterate f and get that for any x ∈ R and n ∈ N,

cos(2πknx) = f [n](cos(2πx)).

In order to apply Theorem 54, we need to check some hypothesis. Since f is
bounded by 1, clearly for all x ∈ [−1, 1],∥∥∥f [n](x)

∥∥∥ 6 1.

Furthermore, f is C1 on [−1, 1] which is a compact set, thus f is a Lipschitz
function. We hence conclude that Theorem 54 can be applied using Remark 58
and f∗0 ∈ ALP. For any x ∈ R and n ∈ N, let

extractk(x, n) = f∗0 (cos(2πx), n).

Since f∗0 , cos ∈ ALP then extractk ∈ ALP. And by construction,

extractk(x, n) = f [n](cos(2πx)) = cos(2πxkn).

9.1.2 Proof of Theorem 54

Proof. We use three variables y, z and w and build a cycle to be repeated n
times. At all time, y is an online system computing f(w). During the first stage
of the cycle, w stays still and y converges to f(w). During the second stage of
the cycle, z copies y while w stays still. During the last stage, w copies z thus
effectively computing one iterate.

A crucial point is in the error estimation, which we informally develop here.
Denote the kth iterate of x by x[k] and by x(k) the point computed after k cycles
in the system. Because we are doing an approximation of f at each step step, the
relationship between the two is that x0 = x[0] and

∥∥x(k+1) − f(xk)
∥∥ 6 e−νk+1

where νk+1 is the precision of the approximation, that we control. Define µk

55



the precision we need to achieve at step k:
∥∥x(k) − x[k]

∥∥ 6 e−µk and µn = µ.
The triangle inequality ensures that the following choice of parameters is safe:

νk > µk + ln 2 µk−1 > f
(∥∥∥x[k−1]

∥∥∥)+ µk + ln 2

This is ensured by taking µk >
∑n−1
i=k f(Π(‖x‖ , i)) + µ + (n − k) ln 2 which is

indeed polynomial in k, µ and ‖x‖. Finally a point worth mentioning is that
the entire reasoning makes sense because the assumption ensures that x(k) ∈ I
at each step.

Formally, apply Theorem 12 to get that f ∈ AXC(Υ,q,Λ,Θ) where Υ,Λ,Θ,q
are polynomials. Without loss of generability we assume that Υ,Λ,Θ,f and Π
are increasing functions. Apply Lemma 38 (AXP time rescaling) of [BGP16c]
to get that q can be assumed constant. Thus there exists ω ∈ [1,+∞[ such that
for all α ∈ R, µ ∈ R+

q(α, µ) = ω > 1.

Hence f ∈ AXC(Υ,q,Λ,Θ) with corresponding δ, d and g. Define:

τ = ω + 2.

We will show that f∗0 ∈ ALP.Let n ∈ N, x ∈ In, µ ∈ R+ and consider the
following system: `(0)= norm∞,1(x)

µ(0)= µ
n(0)= n

 `′(t)= 0
µ′(t)= 0
n′(t)= 0

 y(0)= 0
z(0)= x
w(0)= x

y′(t)= g(t, y(t), w(t), ν(t))
z′(t)= sample[ω,ω+1],τ (t, ν(t), z(t), y1..n(t))

w′(t)= hxl[0,1](t− nτ, ν(t) + t, sample[ω+1,ω+2],τ (t, ν∗(t) + ln(1 + ω), w(t), z(t)))

`∗ = 1 + Π(`, n) ν = nf(`∗) + n ln 6 + µ+ ln 3 ν∗ = ν + Λ(`∗, ν)

First notice that `, µ and n are constant functions and we identify µ(t) with
µ and n(t) with n. Apply Lemma 33 to get that ‖x‖ 6 ` 6 ‖x‖ + 1, so in
particular `∗, ν and ν∗ are polynomially bounded in ‖x‖ and n. We will need a
few notations: for i ∈ J0, nK, define x[i] = f [i](x) and x(i) = w(iτ). Note that
x[0] = x(0) = x. We will show by induction for i ∈ J0, nK that∥∥∥x(i) − x[i]

∥∥∥ 6 e−(n−i)f(`∗)−(n−i) ln 6−µ−ln 3.

Note that this is trivially true for i = 0. Let i ∈ J0, n − 1K and assume that
the result is true for i. We will show that it holds for i + 1 by analyzing the
behavior of the various variables in the system during period [iτ, (i+ 1)τ ].

• For y and w, if t ∈ [iτ, iτ + ω + 1] then apply Lemma 34 to get that
hxl ∈ [0, 1] and Lemma 81 to get that ‖w′(t)‖ 6 e−ν

∗−ln(1+ω). Conclude

that ‖w(i)− w(t)‖ 6 e−ν
∗
, in other words

∥∥w(t)− x(i)
∥∥ 6 e−Λ(‖x(i)‖,ν)

since
∥∥x(i)

∥∥ 6 ∥∥x[i]
∥∥ + 1 6 1 + Π(‖x‖ , i) 6 `∗ and ν∗ > Λ(`∗, ν). Thus,

by definition of extreme computability,
∥∥f(x(i))− y1..n(u)

∥∥ 6 e−ν if u ∈
[iτ + ω, iτ + ω + 1] because q

(∥∥x(i)
∥∥ , ν) = ω.

56



• For z, if t ∈ [iτ + ω, iτ + ω + 1] then apply Lemma 81 to get that∥∥∥f(x(i))− z(iτ + ω + 1)
∥∥∥ 6 2e−ν .

Notice that we ignore the behavior of z during [iτ, iτ + ω] in this part of
the proof.

• For z and w, if t ∈ [iτ + ω+ 1, iτ + ω+ 2] then apply Lemma 81 to get
that ‖z′(t)‖ 6 e−ν and thus

∥∥f(x(i))− z(t)
∥∥ 6 3e−ν . Apply Lemma 34

to get that∥∥∥y′(t)− sample[ω+1,ω+2],τ (t, ν∗ + ln(1 + ω), w(t), z(t))
∥∥∥ 6 e−ν−t.

Apply Lemma 81 again to get that
∥∥f(x(i))− w(iτ + ω + 2)

∥∥ 6 4e−ν +

e−ν
∗
6 5e−ν .

Our analysis concluded that
∥∥f(x(i))− w((i+ 1)τ)

∥∥ 6 5e−ν . Also, by hy-

pothesis,
∥∥x(i) − x[i]

∥∥ 6 e−(n−i)f(`∗)−(n−i) ln 6−µ−ln 3 6 e−f(‖x[i]‖)−µ∗ where

µ∗ = (n− i− 1)f(`∗) + (n− i) ln 6 +µ+ ln 3 because
∥∥x[i]

∥∥ 6 `∗. Consequently,∥∥f(x(i))− x[i+1]
∥∥ 6 e−µ∗ and thus:∥∥∥x(i+1) − x[i+1]
∥∥∥ 6 5e−ν + e−µ

∗
6 6e−µ

∗
6 e−(n−1−i)f(`∗)−(n−1−i) ln 6−µ−ln 3.

From this induction we get that
∥∥x(n) − x[n]

∥∥ 6 e−µ−ln 3. We still have to
analyze the behavior after time nτ .

• If t ∈ [nτ, nτ + 1] then apply Lemma 81 and Lemma 34 to get that
‖w′(t)‖ 6 e−ν∗−ln(1+ω) thus

∥∥w(t)− x(n)
∥∥ 6 e−ν∗−ln(1+ω).

• If t > nτ + 1 then apply Lemma 34 to get that ‖w′(t)‖ 6 e−ν−t thus
‖w(t)− w(nτ + 1)‖ 6 e−ν .

Putting everything together we get for t > nτ + 1 that:∥∥∥w(t)− x[n]
∥∥∥ 6 e−µ−ln 3 + e−ν

∗−ln(1+ω) + e−ν

6 3e−µ−ln 3 6 e−µ.

We also have to show that the system does not grow too fast. The analysis
during the time interval [0, nτ + 1] has already been done (although we did
not write all the details, it is an implicit consequence). For t > nτ + 1, have
‖w(t)‖ 6

∥∥x[n]
∥∥+1 6 Π(‖x‖ , n)+1 which is polynomially bounded. The bound

on y comes from extreme computability:

‖y(t)‖ 6 Υ (supδ ‖w‖ (t), ν, 0) 6 Υ(Π(‖x‖ , n), ν, 0) 6 poly(‖x‖ , n, µ)

And finally, apply Lemma 81 to get that:

‖z(t)‖ 6 2 + supτ+1 ‖y1..n‖ (t) 6 poly(‖x‖ , n, µ)

This conclude the proof that f∗0 ∈ ALP.
We can now tackle the case of η > 0. Let η ∈]0, 1

2 [ and µη ∈ Q such that
1
2−e

−µη < η. Let f∗η (x, u) = f∗0 (x, rnd∗(u, µη)). Apply Theorem 21 to conclude
that f∗η ∈ ALP. By definition of rnd∗, if u ∈ ]n− η, n+ η[ for some n ∈ Z then

rnd∗(x, µ) = n and thus f∗η (x, u) = f∗0 (x, n) = x[n].

57



9.2 Cauchy completion and complexity

The purpose of this section is to prove Theorem 77.
Given x ∈ D and n ∈ N, we want to use g to compute an approximation

of f(x) within 2−n. To do so, we use the “modulus of continuity” f to find a
dyadic rational (q, n) such that ‖x− q‖ 6 2−f(‖x‖,n). We then compute g(q, n)
and get that ‖g(q, n)− f(x)‖ 6 2−n.

There are two problems with this approach. First, finding such a dyadic ra-
tional is not possible because it is not a continuous operation. Indeed, consider
the mapping (x, n) 7→ (q, n) that satisfies the above condition: if it is com-
putable, it must be continuous. But it cannot be continuous because its image
is completed disconnected. This is where mixing comes into play: given x and
n, we will compute two dyadic rationals (q, n) and (q′, n′) such that at least one
of them satisfies the above criteria. We will then apply g on both of them and
mix the result. The idea is that if both are valid, the outputs will be very close
(because of the modulus of continuity) and thus the mixing will give the correct
result. See Section 8.2 for more details on mixing. The case of multidimensional
domains is similar except that we need to mix on all dimensions simultaneously,
thus we need roughly 2d mixes to ensure that at least one is correct, where d is
the dimension.
Proof (of Theorem 77). We will show the result by induction on d. If
d = 0 then ‖g(n, y)− f(y)‖ 6 2−n for all n ∈ N, y ∈ D. We can thus apply
Theorem 73 to get that f ∈ ALP.

Assume that d > 0. Let κ : {0, 1} → {0, 1}, x 7→ x and πi denote the ith

projection. For any relevant21 u ∈ R and n ∈ N and δ ∈ {0, 1}, let

vδ(u, n) = v(u− δ
22−n, n)

v(u, n) = r(u, n) + v∗(u− r(u, n), n)

v∗(u, n) = π1(decodeκ(u, n))

r(u, n) = rnd∗(u− 1
2 − e

−ν , ν) where ν = ln 6 + n ln 2.

We now discuss the domain of definition and properties of these functions. First
r ∈ ALP since rnd∗ ∈ ALP by Theorem 32. Furthermore, by definition of rnd∗

we have that

if u ∈ m+
[
0, 1− 1

32−n
]

for some m ∈ Z then r(u, n) = m.

Indeed since 2e−ν = 1
32−n,

m 6 u 6 m+ 1− 2e−ν

m− 1
2 + e−ν 6 u− 1

2 + e−ν 6 m+ 1
2 − e

−ν

thus r(u, n) = rnd∗(u− 1
2 + e−ν , ν) = m. We now claim that we have that

if u =
p

2n
+ ε for some p ∈ Z and ε ∈

[
0, 2−n 2

3

]
then v(u, n) =

p

2n
.

Indeed, write p = m2n+p′ where m ∈ Z and p′ ∈ J0, 2n−1K. Then u = m+ p′

2n +ε
and

p′

2n
+ ε 6

2n − 1

2n
+ ε 6 1− 2−n +

2

3
2−n 6 1− 1

3
2−n.

21Domain of definition is discussed below.

58



Thus r(u, n) = m and u− r(u, n) = p′

2n + ε. Since p′ ∈ J0, 2n − 1Kd, there exist
w1, . . . , wd ∈ {0, 1} such that

p′

2n
=

n∑
j=1

wj2
−j .

It follows from Theorem 60 and the fact that 1− e−2 > 2
3 that22

decodeκ

(
p′

2n + ε, n, 2
)

= decodeκ

 n∑
j=1

wj2
−j + ε, n, 2

 =

 n∑
j=1

wj2
−j , ∗

 =
(
p′

2n , ∗
)
.

Consequently,

v(u, n) = r(u, n) + v∗ (u− r(u, n), n)

= m+ v∗
(
p′

2n + ε, n
)

= m+ π1

(
decodeκ( p

′

2n + ε, n)
)

= m+ π1

(
p′

2n , ∗
)

= m+ p′

2n

= p
2n .

To summarize, we have shown that

if u =
p

2n
+ ε for some p ∈ Z and ε ∈

[
0, 2

32−n
]

then v(u, n) =
p

2n
.

and thus that for all δ ∈ {0, 1},

if u =
p

2n
+
δ

2
2−n + ε for some p ∈ Z and ε ∈

[
0, 2

32−n
]

then vδ(u, n) =
p

2n
.

(14)
Before we proceed to mixing, we need an auxiliary function. For all u ∈ R and
n ∈ N, define

sel(u, n) = 1
2 + extract2

(
u+ 1

62−n, n
)

where extract2 is given by Lemma 82. We claim that for all n ∈ N,

{u ∈ R : sel(u, n) < 1} ⊆
(
2−nZ +

[
0, 2

32−n
])
× {n} (15)

and
{u ∈ R : sel(u, n) > 0} ⊆

(
2−nZ +

[
− 1

22−n, 1
62−n

])
× {n}. (16)

Indeed, by definition of extract2, if u = p
2n + ε with ε ∈ [0, 2−n[, then

sel(u, n) = 1
2 + extract2

(
p

2n + ε+ 1
62−n, n

)
= 1

2 + cos(2π2n( p
2n + ε+ 1

62−n))

= 1
2 + cos(2πp+ 2π2nε+ π

3 )

= 1
2 + cos(2π2nε+ π

3 )

22The ∗ denotes “anything” because we do not care about the actual value.

59



where 2π2nε ∈ [0, 2π[ and thus 2π2nε+ π
3 ∈ [π3 ,

7π
3 ]. Consequently,

sel(u, n) < 1⇔ ε ∈
]
0, 2

32−n
[
.

And similarly,

sel(u, n) > 0⇔ ε ∈
[
0, 1

62−n
[
∪
]

1
22−n, 2−n

]
.

Now define for all relevant23 q ∈ Qd−1, n ∈ N, z ∈ R, y ∈ Re, δ ∈ {0, 1},

g̃δ(q,m, z, y) = g(q, vδ(z,m),m, y),

s̃el(q,m, z, y) = sel(z,m),

g̃(q,m, z, y) = mix(s̃el, g̃0, g̃1)(q,m, z, y).

For any α ∈ R+ and n ∈ N, define

f∗(α, n) = f(α, n) + 1.

Let (x, z, y) ∈ D and n,m ∈ N, p ∈ Zd−1, such that∥∥ p
2m − x

∥∥ 6 2−m and m > f∗(‖(x, z, y)‖ , n). (17)

Let q = p
2m . There are three cases:

• If s̃el(q,m, z,y) = 0: then sel(z,m) = 0. But then sel(z,m) < 1 so by
(15), z ∈ 2−mZ +

[
0, 2

32−m
]
. Write z = p′2−m + ε where p′ ∈ Z and

ε ∈ [0, 2
32−m]. Then v0(z, , ) = p′

2m using (14). It follows that,

‖(x, z)− (q, v0(z,m))‖ = max(‖x− q‖ , |z − p′

2m |)
= max(‖x− q‖ , |ε|) since z = p′2−m + ε

6 max(2−f
∗(‖(x,z,y)‖,n), |ε|) by assumption on q

6 max(2−f
∗(‖(x,z,y)‖,n), 2

32−m)

6 2−f
∗(‖(x,z,y)‖,n) since m > f∗(‖(x, z, y)‖ , n)

6 2−f(‖(x,z,y)‖,n)−1 by definition of f.

It follows by assumption on g that ‖g(q, v0(z,m),m, y)− f(x, z, y)‖ 6
2−n−1. But since s̃el(q,m, z, y) = 0, then

g̃(q,m, z, y) = g̃0(q,m, z, y) = g(q, v0(z,m),m, y),

thus ‖g̃(q,m, z, y)− f(x, z, y)‖ 6 2−n−1 6 2−n.

• If s̃el(q,m, z,y) = 1: then sel(z,m) = 1. But then sel(z,m) > 0 so by
(16), z ∈ 2−mZ+

[
− 1

22−m, 1
62−m

]
. Write z = p′2−m+ ε where p′ ∈ Z and

ε ∈
[
− 1

22−m, 1
62−m

]
. Then v1(z,m) = p′

2m using (14). It follows that,

‖(x, z)− (q, v1(z,m))‖ = max(‖x− q‖ , |z − p′

2m |)
23We will discuss the domain of definition below.

60



6 2−f(‖(x,z,y)‖,n)−1

using the same chain of inequalities as in the previous case. It follows by
assumption on g that ‖g(q, v1(z,m),m, y)− f(x, z, y)‖ 6 2−n. But since

s̃el(q,m, z, y) = 1, then g̃(q,m, z, y) = g̃1(q,m, z, y) = g(q, v1(z,m),m, y),
thus ‖g̃(q,m, z, y)− f(x, z, y)‖ 6 2−n−1 6 2−n.

• If 0 < s̃el(q,m, z,y) < 1: then

g̃(q,m, z, y) = (1− α)g̃0(q,m, z, y) + αg̃1(q,m, z, y)

where α = sel(z,m) ∈]0, 1[. Using the same reasoning as in the previous
two cases we get that

‖g̃0(q,m, z, y)− f(x, z, y)‖ 6 2−n−1 and ‖g̃1(q,m, z, y)− f(x, z, y)‖ 6 2−n−1.

It easily follows that

‖g̃(q,m, z, y)− f(x, z, y)‖ 6 2α · 2−n−1 6 2−n.

To summarize, we have shown that under assumption (17) we have that∥∥g( p
2m ,m, z, y)− f(x, z, y)

∥∥ 6 2−n.

And since since g̃ ∈ ALP, we can apply the result inductively to g̃ (which has
only d− 1 dyadic arguments) to conclude.

9.3 Proof of Theorem 60: Word decoding

Proof. We will iterate a function that works on tuple of the form (x, x′, n,m, µ)
where x is the remaining part to process, x′ is the processed part, n the length of
the processed part, m the number of nonzero symbols and µ will stay constant.
The function will remove the “head” of x, re-encode it with κ and “queue” on
x′, increasing n and m if the head is not 0.

In the remaining of this proof, we write 0.xki to denote 0.x in basis ki instead
of k. Define for any x, y ∈ R and n ∈ N:

g(x, y, n,m, µ) =
(

frac∗(k1x), y+k−n−1
2 1κ(int∗(k1x)), n+1,m+Did6=0(int∗(k1x)), µ

)
where

int∗(x) = rnd∗
(
x− 1

2 + 3e−µ

4 , µ
)

frac∗(x) = x− int∗(x)

and rnd∗ is defined in Definition 31. Apply Lemma 41 to get that 1κ ∈ ALP
and Lemma 43 to get that Did 6=0 ∈ ALP. It follows that g ∈ ALP. We need a
small result about int∗ and frac∗. For any w ∈ J0, k1K∗ and x ∈ R, define the
following proposition:

A(x,w, µ) : −k−|w|1

e−µ

2
6 x− 0.wk1 6 k−|w|1 (1− e−µ).

We will show that:

A(x,w, µ)⇒
{

int∗(k1x) = int(k10.wk1)∣∣frac∗(k1x)− frac(k10.wk1)
∣∣ 6 k1

∣∣x− 0.wk1
∣∣ . (18)

61



Indeed, in this case, since |w| > 1, we have that

−k1−|w|
1

e−µ

2 6 k1x− k10.wk1 6 k1−|w|
1 (1− e−µ)

−k1−|w|
1

e−µ

2 6 k1x− w1 6 k
1−|w|
1 (1− e−µ) + 0.w2..|w|

k1

− e
−µ

2 6 k1x− w1 6 k
1−|w|
1 − e−µ +

∑|w|−1
i=1 (k1 − 1)k−i1

− e
−µ

2 6 k1x− w1 6 k
1−|w|
1 − e−µ + 1− k1−|w|

1

− 1
2 −

e−µ

2 6 k1x− 1
2 − w1 6 1

2 − e
−µ

− 1
2 + e−µ

4 6 k1x− 1
2 + 3e−µ

4 − w1 6 1
2 −

e−µ

4

And conclude by applying Theorem 32 because int(k10.wk1) = w1. The result
on frac follows trivially. It is then not hard to derive from (18) applied twice
that:

A(x,w, µ) ∧ A(x′, w, µ′)
⇓

‖g(x, y, n,m, µ)− g(x′, y′, n′,m′, ν)‖ 6 2k1 ‖(x, y, n,m, µ)− (x′, y′, n′,m′, µ′)‖ .
(19)

It also follows that proposition A is preserved by applying g:

A(x,w, µ) ⇒ A(frac(k1x), w2..|w|, µ). (20)

Furthermore, A is stronger for longer words:

A(x,w, µ) ⇒ A(x,w1..|w|−1, µ). (21)

Indeed, if we have A(x,w, µ) then:

−k−|w|1
e−µ

2 6 x− 0.wk1 6 k−|w|1 (1− e−µ)

−k−|w|1
e−µ

2 6 x− 0.w1..|w|−1
k1 6 k−|w|1 (1− e−µ) + w|w|k

−|w|
1

−k1−|w|
1

e−µ

2 6 x− 0.w1..|w|−1
k1 6 k−|w|1 (1− e−µ) + (k1 − 1)k

−|w|
1

−k1−|w|
1

e−µ

2 6 x− 0.w1..|w|−1
k1 6 k−|w|1 (k1 − e−µ)

−k1−|w|
1

e−µ

2 6 x− 0.w1..|w|−1
k1 6 k1−|w|

1 (1− e−µ)

It also follows from the definition of g that:

A(x,w, µ) ⇒ ‖g(x, y, n,m, µ)‖ 6 max(k1, 1 + ‖x, y, n,m, µ‖). (22)

Indeed, if A(x,w, µ) then int∗(k1x) ∈ J0, k1 − 1K thus Lκ(int∗(k1x)) ∈ J0, k2K
and Did6=0(int∗(k1x)) ∈ {0, 1}, the inequality follows easily. A crucial property
of A is that it is open with respect to x:

A(x,w, µ) ∧ |x− y| 6 e−|w| ln k1−µ−ν ⇒ A(y, w, µ− ln 3
2 ). (23)

Indeed, if A(x,w, µ) and |x− y| 6 e−|w| ln k1−µ−ln 4 we have:

−k−|w|1
e−µ

2 6 x− 0.wk1 6 k−|w|1 (1− e−µ)

−k−|w|1
e−µ

2 + y − x 6 y − 0.wk1 6 k−|w|1 (1− e−µ) + y − x
−k−|w|1

e−µ

2 − |y − x| 6 y − 0.wk1 6 k−|w|1 (1− e−µ) + |y − x|
−k−|w|1

e−µ

2 − e
−|w| ln k1−µ−ln 4 6 y − 0.wk1 6 k−|w|1 (1− e−µ) + e−|w| ln k1−µ−ln 4

−k−|w|1 (e−µ−ln 4 + e−µ

2 ) 6 y − 0.wk1 6 k−|w|1 (1− e−µ + e−µ−ln 4)

−k−|w|1
3e−µ

4 6 y − 0.wk1 6 k−|w|1 (1− 3e−µ

4 )

−k−|w|1
3e−µ

4 6 y − 0.wk1 6 k−|w|1 (1− 6e−µ

4 )

−k−|w|1
e
ln

3
2−µ

2 6 y − 0.wk1 6 k−|w|1 (1− eln
3
2−µ)

62



In order to formally apply Theorem 54, define for any n ∈ N:

In =
{

(x, y, `,m, µ) ∈ R2 × R3
+ : ∃w ∈ J0, k1 − 1Kn, A(x,w, µ)

}
.

It follows from (21) that In+1 ⊆ In. It follows from (20) that g(In+1) ⊆ In. It
follows from (22) that

∥∥g[n](x)
∥∥ 6 max(k1, ‖x‖ + n) for x ∈ In. Now assume

that X = (x, y, n,m, µ) ∈ In, ν ∈ R+ and24 ‖X −X ′‖ 6 e−‖X‖−n ln k1−ν where
X ′ = (x′, y′, n′,m, µ′) then by definition A(x,w, µ) for some w ∈ J0, k1 − 1Kn.
It follows from (23) that A(y, w, µ − ln 3

2 ) since ‖X‖ + n ln k1 > |w| ln k1 + µ.
Thus by (19) we have ‖g(X)− g(X ′)‖ 6 2k1 ‖X −X ′‖ which is enough by
Remark 58. We are thus in good shape to apply Theorem 54 and get g∗0 ∈ ALP.
Define:

decodeκ(x, n, µ) = π2,4(g∗0(x, 0, 0, 0, µ, n))

where π2,4(a, b, c, d, e, f, g) = (b, d). Clearly decodeκ ∈ ALP, it remains to see
that it satisfies the theorem. We will prove this by induction on the length of
|w|. More precisely we will prove that for |w| > 0:

ε ∈ [0, k
−|w|
1 (1−e−µ)] ⇒ g[|w|](0.wk1+ε, 0, 0, 0, µ) = (k

|w|
1 ε, 0.κ(w)k2 , |w|,#{i|wi 6= 0}, µ).

The case of |w| = 0 is trivial since it will act as the identity function:

g[|w|](0.wk1 + ε, 0, 0, 0, µ) = g[0](ε, 0, 0, 0, µ)

= (ε, 0, 0, 0, µ)

= (k
|w|
1 ε, 0.κ(w)k2 , |w|,#{i|wi 6= 0}, µ).

We can now show the induction step. Assume that |w| > 1 and define w′ =

w1..|w|−1. Let ε ∈ [0, k
−|w|
1 (1 − e−µ)] and define ε′ = k

−|w|
1 w|w| + ε. It is clear

that 0.wk1 + ε = 0.w′k1 + ε′. Then by definition A(0.w′k1 + ε′, |w|, µ) so

g[|w|](0.wk1 + ε, 0, 0, 0, µ) = g(g[|w|−1](0.w′k1 + ε′, 0, 0, 0, µ))

= g(k
|w|−1
1 ε′, 0.κ(w′)k2 , |w′|,#{i|w′i 6= 0}, µ)

By induction

= g(k−1
1 w|w| + k

|w|−1
1 ε, 0.κ(w′)k2 , |w′|,#{i|w′i 6= 0}, µ)

= (frac∗(w|w| + k
|w|
1 ε), Where k

−|w|
1 ε ∈ [0, 1− e−µ]

0.κ(w′)k2 + k
−|w′|−1
2 1κ(int∗(w|w| + k

|w|
1 ε)),

|w′|+ 1,#{i|w′i 6= 0}+Did 6=0(int∗(w|w| + k
|w|
1 ε)), µ)

= (k
|w|
1 ε, 0.κ(w′)k2 + k

−|w|
2 1κ(w|w|),

|w|,#{i|w′i 6= 0}+Did 6=0(w|w|), µ)

= (k
|w|
1 ε, 0.κ(w′)k2 , |w|,#{i|wi 6= 0}, µ).

We can now conclude to the result. Let ε ∈ [0, k
−|w|
1 (1−e−µ)] then A(0.0wk1 +

ε, |w|, µ) so in particular (0.wk1 + ε, 0, 0, 0, µ) ∈ I|w| so:

decodeκ(0.wk1 + ε, |w|, µ) = π2,4(g∗0(0.wk1 + ε, 0, 0, 0, µ))

24We use Remark 59 to allow a dependence of f in n.

63



= π2,4(g[|w|](0.wk1 + ε, 0, 0, 0, µ))

= π2,4(ε, 0.κ(w)k2 , |w|,#{i|wi 6= 0}, µ)

= (0.κ(w)k2 ,#{i|wi 6= 0}).

9.4 Proof of Theorem 66: Multidimensional FP equiva-
lence

Proof. First note that we can always assume that m = 1 by applying the result
componentwise. Similarly, we can always assume that n = 2 by applying the
result repeatedly. Since FP is robust to the exact encoding used for pairs, we
choose a particular encoding to prove the result. Let # be a fresh symbol not
found in Γ and define Γ# = Γ∪{#}. We naturally extend γ to γ# which maps
Γ# to N∗ injectively. Let h : Γ#∗ → Γ∗ and define for any w,w′ ∈ Γ∗:

h#(w,w′) = h(w#w′).

It follows25 that

f ∈ FP if and only if ∃h ∈ FP such that h# = f

Assume that f ∈ FP. Then there exists h ∈ FP such that h# = f . Note
that h naturally induces a function (still called) h : Γ#∗ → Γ#∗ so we can apply
Theorem 52 to get that h is emulable over alphabet Γ#. Apply Definition 50
to get g ∈ ALP and k ∈ N that emulate h. In the remaining of the proof, ψk
denotes encoding of Definition 50 for this particular k, in other words:

ψk(w) =

 |w|∑
i=1

γ#(wi)k
−i, |w|


Define for any x, x′ ∈ R and n, n′ ∈ N:

ϕ(x, n, x′, n) =
(
x+

(
γ#(#) + x′

)
k−n−1, n+m+ 1

)
.

We claim that ϕ ∈ ALP and that for any w,w′ ∈ Γ∗, ϕ(ψk(w), ψk(w′)) =
ψk(w#w′). The fact that ϕ ∈ ALP is immediate using Theorem 20 and the fact
that n 7→ k−n−1 is analog-polytime-computable26. The second fact is follows
from a calculation:

ϕ(ψk(w), ψk(w′)) = ϕ

 |w|∑
i=1

γ#(wi)k
−i, |w|,

|w′|∑
i=1

γ#(w′i)k
−i, |w′|


=

 |w|∑
i=1

γ#(wi)k
−i +

γ#(#) +

|w′|∑
i=1

γ#(w′i)k
−i

 k−|w|−1, |w|+ |w′|+ 1


25This is folklore, but mostly because this particular encoding of pairs is polytime com-

putable.
26Note that it works only because n > 0.

64



=

|w#w′|∑
i=1

γ#((w#w′)i)k
−i, |w#w′|


= ψk(w#w′).

Define G = g ◦ ϕ. We claim that G emulates f with k. First G ∈ ALP thanks
to Theorem 21. Second, for any w,w′ ∈ Γ∗, we have:

G(ψk(w,w′)) = g(ϕ(ψk(w), ψk(w′))) By definition of G and ψk

= g(ψk(w#w′)) By the above equality

= ψk(h(w#w′)) Because g emulates h

= ψk(h#(w,w′)) By definition of h#

= ψk(f(w,w′)). By the choice of h

Conversely, assume that f is emulable. Define F : Γ#∗ → Γ#∗ × Γ#∗ as
follows for any w ∈ Γ#∗:

F (w) =

{
(w′, w′′) if w = w′#w′′ where w′, w′′ ∈ Γ∗

(λ, λ) otherwise
.

Clearly F1, F2 ∈ FP so apply Theorem 52 to get that they are emulable. Thanks
to Lemma 64, there exists h, g1, g2 that emulate f, F1, f2 respectively with the
same k. Define:

H = h ◦ (g1, g2).

Clearly H ∈ ALP because g1, g2, h ∈ ALP. Furthermore, H emulates f ◦ F
because for any w ∈ Γ#∗:

H(ψk(w)) = h(g1(ψk(w)), g2(ψk(w)))

= h(ψk(g1(w)), ψk(g2(w))) Because gi emulates Fi

= h(ψk(F (w))) By definition of ψk

= ψk(f(F (w))). Because h emulates f

Since f ◦ F : Γ#∗ → Γ#∗ is emulable, we can apply Theorem 52 to get that
f ◦ F ∈ FP. It is now trivial so see that f ∈ FP because for any w,w′ ∈ Γ∗:

f(w,w′) = (f ◦ F )(w#w′)

and ((w,w′) 7→ w#w′) ∈ FP.

10 How to only use rational coefficients

This section is devoted to prove that non-rational coefficients can be eliminated.
In other words, we prove that Definitions 1 and 67 are defining the same class,
and that Definitions 3 and 11 are defining the same class.

Our main Theorems 2 and 4 then clearly follow.
To do so, we introduce the following class. We write ATSPQ (resp. ATSPRG)

for the class of functions f satisfying item (2) of Proposition 12 considering

65



that K = Q (resp. K = RG) for some polynomials Υ and q. Recall that RG
denotes the smallest generable field RG lying somewhere between Q and RP .
We write AWPQ (resp. AWPRG) for the class of functions f satisfying item (3)
of Proposition 12 considering that K = Q (resp. K = RG) for some polynomials
Υ and q.

We actually show in this section that AWPRG = ATSPQ. As clearly ALPK =
ATSPK over any field K [BGP16c], it follows that ALP = AWPRG = ATSPQ =
ALPQ and hence all results follow.

A particular difficulty in the proof is that none of the previous theorems
applies to AWPQ and ATSPQ because Q is not a generable field. We thus
have to reprove some theorems for the case of rational numbers. In particular,
when using rational numbers, we cannot use, in general, the fact that y′ = g(y)
rewrites to a PIVP if g is generable, because it may introduce some non-rational
coefficients.

10.1 Composition in AWPQ

The first step is to show that AWPQ is stable under composition. This is not
immediate since Q is not a generable field and we do not have access to any
generable function. The only solution is to manually write a polynomial system
with rational coefficients and show that it works. This fact will be crucial for
the remainder of the proof.

In order to compose functions, it will be useful always assume q ≡ 1 when
considering functions in AWCQ(Υ,q).

Lemma 83 If f ∈ AWPQ then there exists Υ a polynomial such that f ∈
AWCQ(Υ,q) where q(α, µ) = 1 for all α and µ.

Proof. Let (f :⊆ Rn → Rm) ∈ AWPQ. By definition, there exists q and Υ
polynomials such that f ∈ AWC(Υ,q) with corresponding d, p, q. Without loss
of generality, we can assume that Υ and q are increasing and have rational
coefficients. Let x ∈ dom f and µ > 0. Then there exists y such that for all
t ∈ R+,

y(0) = q(x, µ), y′(t) = p(y(t)).

Consider (z, ψ) the solution to{
z(0) = q(x, µ)
ψ(0) = q(1 + x2

1 + · · ·+ x2
n, µ)

{
z′ = p(z)
ψ′ = 0

Note that the system is polynomial with rational coefficients since q is a poly-
nomial with rational coefficients. It is easy to see that z and ψ must exist over
R+ and satisfy:

ψ(t) = q(α, µ), z(t) = y(ψ(t)t)

where α = 1 + x2
1 + · · ·+ x2

n. But then for t > 1,

q(α, µ)t > q(‖x‖ , µ)

since q is increasing and α = 1 + x2
1 + · · ·+ x2

n > ‖x‖. It follows by definition
that,

‖z1..m(t)− f(x)‖ = ‖y1..m(q(α, µ)t)− f(x)‖ 6 e−µ

66



for any t > 1, by definition of y. Finally, since α 6 poly(‖x‖),

‖(z, ψ)(t)‖ = max(‖y(ψ(t)t)‖ , ψ(t))

6 max(Υ(‖x‖ , µ,q(α, µ)t),q(α, µ)

6 poly(‖x‖ , µ, t).

This proves that f ∈ AWC(poly, (α, µ) 7→ 1) with rational coefficients only.

Lemma 84 If (f :⊆ Rn → Rm) ∈ AWPQ and r ∈ Q`[Rm] then r ◦ f ∈ AWPQ.

Proof. Let q,Υ be polynomials such that f ∈ AWCQ(Υ,q) with corresponding
d, p, q. Using Lemma 83, we can assume that q ≡ 1. Without loss of generality
we also assume that Υ has rational coefficients and is non-decreasing in all
variables. Let x ∈ dom g and µ > 0. Let q̂ be a polynomial with rational
coefficients, to be defined later. Consider the system

y(0) = q(x, q̂(x, µ)), y′ = p(y). (24)

Note that by definition ‖f(x)− y1..m(t)‖ 6 e−q̂(x,µ) for all t > 1. Using a similar
proof to Proposition 23, one can see that for any t > 1.

max(‖f(x)‖ , ‖y1..m(t)‖) 6 2 + Υ(‖x‖ , 0, 1). (25)

Let z(t) = r(y1..m(t)(t)) and observe that

z(0) = r(q(x, q̂(x, µ)), z′(t) = Jr(y1..m(t))p1..m(y(t)). (26)

Note that since r, p and q̂ are polynomials with rational coefficients, the sys-
tem (24),(26) is of the form w(0) = poly(x, µ), w′ = poly(w) with rational
coefficients, where w = (y, z). Let k = deg(r), then

‖r(f(x))− z(t)‖ = ‖r(f(x))− r(y1..m(t))‖
6 kΣrmax(‖f(x)‖ , ‖y1..m(t)‖)k−1 ‖f(x)− y1..m(t)‖

6 kΣr (2 + Υ(‖x‖ , 0, 1))
k−1 ‖f(x)− y1..m(t)‖ using (25)

6 kΣr (2 + Υ(‖x‖ , 0, 1))
k−1

e−q̂(x,µ) by definition of y.

We now define q̂(x, µ) = µ + kΣr
(
2 + Υ(1 + x2

1 + · · ·+ x2
n, 0, 1)

)k−1
. Since Υ

has rational coefficients, q̂ is indeed a polynomial with rational coefficients.
Furthermore, ‖x‖ 6 1 + ‖x‖22 and Υ is non-decreasing, thus

q̂(x, µ) = µ+ kΣr > µ+ kΣr (2 + Υ(‖x‖ , 0, 1))
k−1

and we get that

‖r(f(x))− z(t)‖ 6 kΣr (2 + Υ(‖x‖ , 0, 1))
k−1

e−µ+kΣr(2+Υ(‖x‖,0,1))
k−1

6 e−µ

using that ue−u 6 1 for any u. Finally, by construction we have

‖y(t)‖ 6 Υ(‖x‖ , q̂(x, µ), t) 6 poly(‖x‖ , µ, t)

67



and

‖z(t)‖ = ‖r(y1..m(t))‖ 6 poly(‖y1..m(t)‖) 6 poly(‖y(t)‖) 6 poly(‖x‖ , µ, t).

Thus r ◦ f ∈ AWPQ.
We also need a technical lemma to provide us with a simplified version of

a periodic switching function: a function that is periodically very small then
very high (like a clock). Figure 12 gives the graphical intuition behind these
functions.

Lemma 85 Let ν ∈ C1(R,R+) with ν(0) = 0 and define for all t ∈ Z,

θν(t) = 1
2 + 1

2 tanh(2ν(t)(sin(2t)− 1
2 )).

Then

θν(0) = 0, θ′ν(t) = pθ(θν(t), ν(t), ν′(t), t, sin(2t), cos(2t))

where pθ is a polynomial with rational coefficients. Furthermore, for all n ∈ Z,

• if (n+ 1
2 )π 6 t 6 (n+ 1)π then |θν(t)| 6 e−ν(t),

• if nπ + π
12 6 t 6 (n+ 1

2 )π then θν(t) > 1
2 .

Proof. Check that

θ′ν(t) =
(
ν′(t)(sin(2t)− 1

2 ) + 2ν(t) cos(2t)
)
(1− (2θν(t)− 1)2).

Recall that for all x ∈ R, | sgn(x)− tanh(x)| 6 e−x.

• If t ∈ [(n+ 1
2 )π, (n+ 1)π], then sin(2t) 6 0 and since tanh is increasing,

θν(t) 6 1
2 + 1

2 tanh(−ν(t)) 6 e−ν(t).

• If t ∈ [nπ + π
12 , (n+ 1

2 )π − π
12 ] then sin(2t) > 1

2 and θν(t) > 1
2 .

Lemma 86 Let ν ∈ C1(R,R+) with ν(0) = 0 and define for all t ∈ Z,

ψ0,ν(t)= θν(2t)θν(t), ψ1,ν(t)= θν(−2t)θν(t),

ψ2,ν(t)= θν(2t)θν(−t), ψ3,ν(t)= θν(−2t)θν(−t).

Then
ψi,ν(0) = 0, θ′i,ν(t) = pi,ψ(θν(t), θ′ν(t), θν(2t), θ′ν(2t))

where pi,ψ is a polynomial with rational coefficients. Furthermore, for all i ∈
{0, 1, 2, 3} and n ∈ Z,

• if (t mod π) /∈ [ iπ4 ,
(i+1)π

4 ] then |ψi,ν(t)| 6 e−ν(t),

• mψ 6
∫ nπ+

(i+1)π
4

nπ+
iπ
4

ψi,ν(t)dt 6Mψ for some constants mψ,Mψ that do not

depend on ν,

68



t0

1

π
4

π
2

3π
4

π 5π
4

3π
2

7π
4

2π

ψ0,ν(t)

ψ1,ν(t)

ψ2,ν(t)

ψ3,ν(t)

Figure 12: Graph of ψi,ν(t) for ν(t) = 3.

• for any ν, ν̄, i 6= j and (t mod π) ∈ [ iπ4 ,
(i+1)π

4 ], if ν(t) 6 ν̄(t) then
ψi,ν(t) > ψj,ν̄(t).

Proof. Note that ψi,ν(t) ∈ [0, 1] for all t ∈ R. The first point is direct conse-
quence of Lemma 85 and the fact that θν(−t) = θν(t + π

2 ). The second point
requires more work. We only show it for ψ0,ν since the other cases are similar.
Let n ∈ Z, if t ∈ [nπ + π

12 , nπ + 5π
24 ] then t ∈ [nπ + π

12 , nπ + 5π
12 ] thus γν(t) > 1

2 ,
and 2t ∈ [2nπ + π

12 , 2nπ + 5π
12 ] thus γν(2t) > 1

2 . It follows that ψ0,ν(t) > 1
4 and

thus ∫ nπ+
π
4

nπ

ψ0,ν(t)dt >
∫ nπ+

5π
24

nπ+
π
12

1
4dt >

3π
96 .

On the other hand, ∫ nπ+
π
4

nπ

ψ0,ν(t)dt 6
∫ nπ+

π
4

nπ

1dt 6
π

4
.

Thanks to the switching functions defined above, the system will construct
will often be of a special form that we call “reach”. The properties of this type
of system will be crucial for our proof.

Lemma 87 Let d ∈ N, [a, b] ⊂ R, z0 ∈ Rd, y ∈ C1([a, b],Rd) and A, b ∈
C0(Rd× [a, b],Rd). Assume that Ai(x, t) > |b(x, t)| for all t ∈ [a, b] and x ∈ Rd.
Then there exists a unique z ∈ C1([a, b],Rd) such that

z(a) = z0, z′i(t) = Ai(z(t), t)(yi(t)− zi(t)) + bi(z(t), t)

Furthermore, it satisfies

|zi(t)− yi(t)| 6 max(1, |zi(a)− yi(a)|) + sup
s∈[a,t]

|yi(s)− yi(a)|, ∀t ∈ [a, b].

Proof. By the Cauchy-Lipschitz theorem, there exists a unique z that satisfies
the equation over its maximum interval of life [a, c) with a < c. Let u(t) =
z(t)− y(t), then

u′i(t) = z′i(t)− y′i(t)
= −Ai(z(t), t)ui(t) + bi(z(t), t)− y′i(t)
= −Ai(u(t) + y(t), t)ui(t) + bi(u(t) + y(t), t)− y′i(t)
= Fi(u(t), y(t), t)

69



where
Fi(x, t) = −Ai(y(t) + x, t)xi + bi(y(t) + x, t)− y′i(t).

But now observe that for any t ∈ [a, c], i ∈ {1, . . . , d} and x ∈ Rd,

• if xi > 1 then Fi(x, t) < −y′i(t),

• if xi 6 −1 then Fi(x, t) > −y′i(t).

Indeed, if xi > 1 then

Fi(x, t) = Ai(y(t) + x, t)xi + bi(y(t) + x, t)− y′i(t)
> Ai(y(t) + x, t) + bi(y(t) + x, t)− y′i(t) using xi > 1

> |bi(y(t) + x, t)|+ bi(y(t) + x, t)− y′i(t) using Ai(x, t) > |bi(x, t)|
> −y′i(t)

and similarly for xi 6 |y′i(t)|. It follows that for all t ∈ [a, c),

|ui(t)| 6 max(1, |ui(a)|) + sup
s∈[a,t]

|yi(s)− yi(a)|. (27)

Indeed let Xt = {s ∈ [a, t] : |ui(s)| 6 1}. If Xt = ∅ then let t0 = a, otherwise
let t0 = maxXt. Then for all s ∈ (t0, t], |ui(t)| > 1 thus by continuity of u there
are two cases:

• either ui(s) > 1 for all s ∈ (t0, t], then u′i(s) = Fi(u(s), s) < −y′i(s)) thus

ui(t) 6 ui(t0)−
∫ s

t0

y′i(u)du = ui(t0) + yi(t)− yi(t0),

• either ui(s) < −1 for all s ∈ (t0, t], then u′i(s) = Fi(u(s), s) > −y′i(s))
thus

ui(t) > ui(t0)−
∫ s

t0

y′i(u)du = ui(t0) + yi(t)− yi(t0).

Thus in all cases
|ui(t)| 6 |ui(t0)|+ |yi(t)− yi(t0)|.

But now notice that if Xt = ∅ then t0 = a and |ui(t0)| = |ui(a)|. And otherwise,
t0 = maxXt and |ui(t0)| 6 1.

But note that the upper bound in (27) has a finite limit when t → c since
y is continuous over [a, b] ⊃ [a, c). This implies that u(c) exists and thus that
c = b because if it was not the case, by Cauchy-Lipschitz, we could extend the
solution to the right of c and contradict the maximality of [a, c).

Lemma 88 Let d ∈ N, z0, ε ∈ Rd, [a, b] ⊂ R, y ∈ C1([a, b],Rd) and A, b ∈
C0(Rd× [a, b],Rd). Assume that Ai(x, t) > 0 and |bi(x, t)| 6 εi for all t ∈ [a, b],
x ∈ Rd and i ∈ {1, . . . , d}. Then there exists a unique z ∈ C1([a, b],Rd) such
that

z(a) = z0, z′i(t) = Ai(z(t), t)(yi(t)− zi(t)) + bi(z(t), t)

Furthermore, it satisfies

|zi(t)−yi(t)| 6 |zi(a)−yi(a)| exp

(
−
∫ t

a

Ai(z(s), s)ds

)
+|yi(t)−yi(a)|+(t−a)εi.

70



Proof. The existence of a solution over [a, b] is almost immediate since b is
bounded. Let u(t) = z(t)− y(t), then

u′i(t) = z′i(t)− y′i(t) = −Ai(z(t), t)ui(t)− y′i(t) + bi(z(t), t)

and thus we have a the following closed-form expression for ui:

ui(t) = e−φ(t)

(∫ t

a

eφ(u)(bi(z(u), u)− y′i(u))du+ ui(0)

)
where

φ(t) =

∫ t

a

Ai(z(s), s)ds

Thus

|ui(t)| 6 e−φ(t)|ui(0)|+
∫ t

a

eφ(u)−φ(t)|bi(z(u), u)|du+

∣∣∣∣∫ t

a

eφ(u)−φ(t)y′i(u)du

∣∣∣∣ .
But by the Mean Value Theorem, there exists ct ∈ [a, t] such that∫ t

a

eφ(u)−φ(t)y′i(u)du = eφ(ct)−φ(t)

∫ t

a

y′i(u)du = eφ(ct)−φ(t)(yi(t)− yi(a)).

Thus by using that φ is increasing,

|ui(t)| 6 e−φ(t)|ui(0)|+
∫ t

a

|bi(z(u), u)|du+ eφ(ct)−φ(t)|yi(t)− yi(a)|

6 e−φ(t)|ui(0)|+
∫ t

a

εidu+ |yi(t)− yi(a)|

6 e−φ(t)|ui(0)|+ (t− a)εi + |yi(t)− yi(a)|.

We can now show the major result of this subsection: the composition of two
functions of AWPQ is in ATSPQ, that is computable using only rational coeffi-
cients. Note that we are intuitively doing two things at once: showing that the
composition is computable, and that weak-computability implies computability;
none of which are obvious in the case of rational coefficients.

Theorem 89 If f, g ∈ AWPQ then f ◦ g ∈ ATSPQ.

Proof. Let (f :⊆ Rm → R`) AWPQ with corresponding d, pf , qf . Let (g :⊆
Rn → Rm) ∈ AWPQ. Since g ∈ AWPQ, the function (x, µ) 7→ (g(x), µ) trivially
belongs to AWPQ. Let h(x, µ) = qf (g(x), µ), then h ∈ AWPQ by Lemma 84
since qf has rational coefficients. Using Lemma 83, we can assume that f, h ∈
AWCQ(Υ,q) with q ≡ 1. Note that we can always make the assumption that
Υ is the same for both f and h by taking the maximum. We have h ∈ AWPQ
with corresponding d′, ph, qh.

To avoid any confusion, note that qh takes two “µ” as input: the input of h
is (x, µ) but qh adds a ν for the precision: qh((x, µ), ν).

To simplify notations, we will assume that d = d′, that is both systems have
the same number of variables, by adding useless variables to either system.

71



Let x ∈ dom g = domh and µ > 0. Let R,S and Q be polynomials with
rational coefficients, to be defined later, but increasing in all variables. Let
mψ,Mψ be the constants from Lemma 86. Without loss of generality, we can
assume that the are rational numbers. Consider the following system:

µ(0)= 1, µ′(t)= ψ3,νµ(t)α,

y(0)= 0, y′i(t)= ψ0,νi0
(t)g0,i(t) + ψ1,νi1

(t)g1,i(t) + ψ2,νi2
(t)g2,i(t)

where

g0,i(t) = A0,i(t)(ri(t)− yi(t)),
g1,i(t) = αphi (y),

g2,i(t) = αpfi (y),

A0,i(t) = αQ(x, µ(t)) + 2 + g1,i(t)
2 + g1,2(t)2

α = max(1, 1
mψ

)

ri(t) = qhi (x,R(x, µ(t)), S(x, µ(t))),

νi0(t) =
(
1 + g0,i(t)

2 +Q(x, µ(t))
)
βt,

νi1(t) = νi0(t) +
(
1 + g1,i(t)

2 +Q(x, µ(t))
)
βt,

νi2(t) = νi0(t) +
(
1 + g2,i(t)

2 +Q(x, µ(t))
)
βt,

νµ(t) =
(
α+ π +Q(x, µ(t))

)
βt,

β = 4.

Notice that we took the ν...(t) such that ν...(0) = 0 since it will be necessary for
the ψj,ν . This explains the unexpected product by t.

We start with the analysis of µ, which is simplest. First note that µ′(t) > 0
thus µ is increasing. And since µ′(t) 6 α is bounded, it is clear that µ must
exist over R. As a result, since Q is increasing in µ, νµ is also an increasing
function.

Let n ∈ N, then

µ((n+ 1)π) = µ((n+ 3
4 )π) +

∫ (n+1)π

(n+
3
4 )π

µ′(t)dt

> µ(nπ) + α

∫ (n+1)π

(n+
3
4 )π

ψ3,νµ(t)dt since µ increasing

> µ(nπ) + αmψ by Lemma 86

> µ(nπ) + 1 since α > mψ.

It follows that for all n ∈ N,

µ(nπ) > n+ µ(0) > n+ 1. (28)

But on the other hand,

µ(t) = µ(0) +

∫ t

0

µ′(u)du

72



= 1 + α

∫ nπ

0

ψ3,νµ(u)du

6 α
∫ nπ

0

1du

6 1 + απt. (29)

Let n ∈ N, then by Lemma 86, for all t ∈ [nπ, (n+ 3
4 )π], |µ′(t)| 6 αe−νµ(t). So

in particular, if t > 1
β then µν(t) > π + α + Q(x, µ(t)) > π + α + Q(x, µ(nπ)).

It follows that

|µ(t)−µ(t′)| 6 3
4παe

−π−α−Q(x,µ(nπ)) 6 e−Q(x,µ(nπ)), ∀t, t′ ∈ [nπ+ 1
β , (n+ 3

4 )π].

(30)
We can now start to analyze y. Let n ∈ N, we will split the analysis in several

time intervals that correspond to different behaviors. Note that we chose β such
that 1

β 6
π
4 . We use the following fact many times during the proof: |u| 6 1+u2

for all u ∈ R.
We will prove the following invariant by induction over n ∈ N: there exists

a polynomial M such that

‖y(nπ)‖ 6M(x, µ(nπ)). (31)

At this stage M is still unspecified, but it is a very important requirement that
M is not allowed to depend Q. Note that (31) is trivially satisfiable for n = 0.

Over [nπ,nπ + 1
β ]: this part is special for n = 0, the various ν... are still

“bootstrapping” because of the product by t that we added to make µ...(0) = 0.
The only thing we show is that the solution exists, a non-trivial fact at this
stage. First note that by constrution, νi1(t) > νi0(t) and νi2(t) > νi0(t). It follows
for any t ∈ [nπ, nπ + 1

β ], using Lemma 86 that

ψ0,νi0
(t) > ψ1,νi1

(t) and ψ0,νi0
(t) > ψ2,νi1

(t). (32)

Furthermore, also by construction,

A0,i(t) > |g1,i(t)|+ |g2,i(t)|. (33)

Putting (32) and (33) we get that

A0,i(t)ψ0,νi0
(t) > |ψ1,νi1

(t)g1,i(t)|+ |ψ2,νi2
(t)g2,i(t)|. (34)

Since the system is of the form

y′i(t) = ψ0,νi0
(t)A0,i(t)(r(t)− yi(t)) + ψ1,νi1

(t)g1,i(t) + ψ2,νi2
(t)g2,i(t),

we can use (34) to apply Lemma 87 to conclude that y exists over [nπ, nπ + 1
β ]

and that

|yi(t)− ri(t)| 6 max(1, |yi(nπ)− ri(nπ)|) + sup
s∈[nπ,t]

|ri(s)− ri(nπ)|. (35)

Recall that ri(t) = qhi (x,R(x, µ(t)), S(x, µ(t))). So in particular, using (29),

|ri(t)| 6 qhi (x,R(x, 1 + απt), S(x, 1 + απt)). (36)

73



It follows that forall t ∈ [nπ, nπ + 1
β ],

|yi(t)− ri(t)| 6 max(1, |yi(nπ)− ri(nπ)|) + sup
s∈[nπ,t]

|ri(s)− ri(nπ)| using (35)

6 1 + |yi(nπ)|+ |ri(nπ)|+ 2 sup
s∈[nπ,t]

|ri(s)|

6 1 + |yi(nπ)|+ 3 sup
s∈[nπ,t]

qhi (x,R(x, 1 + απs), S(x, 1 + απs)) using (36)

6 1 +M(x, µ(nπ)) + 3 sup
s∈[nπ,t]

qhi (x,R(x, 1 + απs), S(x, 1 + απs)) using (31)

6 P1(x, µ(nπ)) (37)

for some polynomial27 P1.
Over [nπ + 1

β , (n + 1
4 )π]: it is important to note that in this case, and all

remaining cases, βt > 1. Indeed by construction we get for all t ∈ [nπ+ 1
β , (n+

1
4 )π] that

νi1(t) > |g1,i(t)|+Q(x, µ(t)) and νi2(t) > |g2,i(t)|+Q(x, µ(t)).

It follows from Lemma 86 and the fact that µ is increasing that

|ψ1,νi1
(t)g1,i(t)| 6 e−ν

i
1(t)|g1,i(t)| 6 e−Q(x,µ(t)) 6 e−Q(x,µ(nπ)) (38)

and
|ψ2,νi1

(t)g2,i(t)| 6 e−ν
i
2(t)|g2,i(t)| 6 e−Q(x,µ(t)) 6 e−Q(x,µ(nπ)). (39)

Thus we can apply Lemma 88 and get that

|yi(t)−ri(t)| 6 |yi(nπ+ 1
β )−ri(nπ+ 1

β )|e−B(t)+2e−Q(x,µ(nπ))+|ri(t)−ri(nπ+ 1
β )|

(40)
where

B(t) =

∫ (n+
1
4 )π

nπ+
1
β

ψ0,νi0
(u)A0,i(u)du

>
∫ (n+

1
4 )π

nπ+
1
β

ψ0,νi0
(u)αQ(x, µ(u))du

> αQ(x, µ(nπ))

∫ (n+
1
4 )π

nπ+
1
β

ψ0,νi0
(u)du since Q and µ increasing

> αQ(x, µ(nπ))mψ using Lemma 86

> Q(x, µ(nπ)) since αmψ > 1. (41)

Recall that ri(t) = qhi (x,R(x, µ(t)), S(x, µ(t)) where qhi and R are polynomials.
It follows that there exists a polynomial28 ∆r such that for all t, t′ > 0,

|ri(t)− ri(t′)| 6 ∆r(x,max(|µ(t)|, |µ(t′)|))|µ(t)− µ(t′)|.
27Note for later that P1 depends on qh,M,R and S.
28Note for later that ∆r depends on qh, R and S.

74



And using (29), and (30) we get that

|ri(t)− ri(t′)| 6 ∆r(x, 1 + απt)e−Q(x,µ(nπ)). (42)

It follows that Putting , (41) and (42) we get that

|yi(t)− ri(t)| 6 |yi(nπ + 1
β )− ri(nπ + 1

β )|e−B(t) using (40)

+ 2e−Q(x,µ(nπ)) + |ri(t)− ri(nπ + 1
β )|

6 P1(x, µ(nπ))e−B(t) + 2e−Q(x,µ(nπ)) + |ri(t)− ri(nπ + 1
β )| using (37)

6 P1(x, µ(nπ))e−Q(x,µ(nπ)) + 2e−Q(x,µ(nπ)) + |ri(t)− ri(nπ + 1
β )| using (41)

6 P1(x, µ(nπ))e−Q(x,µ(nπ)) + 2e−Q(x,µ(nπ)) + ∆r(x, 1 + απt)e−Q(x,µ(nπ)) using (42)

6 P2(x, µ(nπ))e−Q(x,µ(nπ)) (43)

for some polynomial29 P2.
Over [(n + 1

4 )π, (n + 1
2 )π]: for all t in this interval,

νi0(t) > |g0,i(t)|+Q(x, µ(t)) and νi2(t) > |g2,i(t)|+Q(x, µ(t)).

It follows from Lemma 86 and the fact that µ is increasing that

|ψ0,νi1
(t)g0,i(t)| 6 e−ν

i
0(t)|g0,i(t)| 6 e−Q(x,µ(t)) 6 e−Q(x,µ(nπ)) (44)

and
|ψ2,νi1

(t)g2,i(t)| 6 e−ν
i
2(t)|g2,i(t)| 6 e−Q(x,µ(t)) 6 e−Q(x,µ(nπ)). (45)

Consequently, the system is of the form

y′i(t) = αψ1,νi1
(t)phi (y(t)) + εi(t) where |εi(t)| 6 2e−Q(x,µ(nπ)). (46)

For any t ∈ [(n+ 1
4 )π, (n+ 1

2 )π], let

ξ(t) = (n+ 1
4 )π +

∫ t

(n+
1
4 )π

αψ1,νi1
(u)du.

Since ψ1,νi1
> 0, ξ is increasing and invertible. Now consider the following

system:

zi((n+ 1
4 )π) = yi((n+ 1

4 )π), z′i(u) = phi (z(u)) + ε(ξ−1(u)). (47)

It follows that, on the interval of life,

yi(t) = zi(ξ(t)). (48)

Note using Lemma 86 that

1 6 αmψ 6 ξ((n+ 1
2 )π)− ξ((n+ 1

4 )π) 6 αMψ. (49)

Now consider the following system:

wi((n+ 1
4 )π) = qhi (x,R(x, µ(nπ)), S(x, µ(nπ))), w′i(u) = phi (z(u)). (50)

29Note that P2 depends on P1 and ∆r. In particular it does not depend, even indirectly,
on Q.

75



By definition of qh and ph, the solution w exists over R and satisfies that

|wi(u)− hi(x,R(x, µ(nπ)))| 6 e−S(x,µ(nπ)) for all u− (n+ 1
4 )π > 1 (51)

since h ∈ AWCQ(Υ,q) with q ≡ 1, and

|wi(u)| 6 Υ(‖(x,R(x, µ(nπ)))‖ , S(x, µ(nπ)), u− (n+ 1
4 )π)

6 P3(x, µ(nπ), u− (n+ 1
3 )π) for all u ∈ R

(52)

for some polynomial30 P3. Following Theorem 16 of [BGP16c], let η > 0 and
a = (n+ 1

4 )π and let

δη(u) =

(
‖z(a)− w(a)‖ +

∫ u

a

∥∥ε(ξ−1(s))
∥∥ ds) exp

(
kΣph

∫ u

a

(‖w(s)‖ + η)k−1ds

)
(53)

where k = deg(ph). Let u ∈ [a, b] where b = ξ((n+ 1
2 )π), then∫ b

a

∥∥ε(ξ−1(s))
∥∥ ds 6 2(b− a)e−Q(x,µ(nπ)) using (46),

‖z(a)− w(a)‖ =
∥∥qh(x,R(x, µ(nπ), S(x, µ(nπ))))− y(a)

∥∥
= ‖r(nπ)− y(a)‖
6 P2(x, µ(nπ))e−Q(x,µ(nπ)) using (43),

kΣph
∫ b

a

(‖w(s)‖ + η)k−1ds 6 kΣph(b− a)
(
η + P3(x, µ(nπ), b)

)k−1
using (52),

b 6 a+ αMψ using (49).

Plugging everything into (53) we get that for all u ∈ [a, b],

δ1(u) 6 P4(x, µ(nπ))e−Q(x,µ(nπ))eP5(x,µ(nπ)) (54)

for some polynomials31 P4 and P5. Since we have no chosen Q yet, we now let

Q(x, ν) = P5(x, ν) + P4(x, ν) +Q∗(x, ν) (55)

where Q∗ is some unspecified polynomial to be fixed later. Note that this
definition makes sense because P4 and P5 do not (even indirectly) depend on
Q. It then follows from (54) that

δ1(u) 6 e−Q
∗(x,µ(nπ)) 6 1

and thus we can apply Theorem 16 of [BGP16c] to get that

|zi(u)− wi(u)| 6 δ1(u) 6 e−Q
∗(x,µ(nπ)) for all u ∈ [a, b]. (56)

But in particular, (49) implies that b− a > 1 so by (51)

|zi(b)− hi(x,R(x, µ(nπ)))| 6 e−Q
∗(x,µ(nπ)) + e−S(x,µ(nπ)). (57)

30Note that P3 depends on Υ, R and S.
31Note that P4 depends on P2 and P5 on Υ and ph.

76



And finally, using (48) we get that

|yi((n+ 1
2 )π)− hi(x,R(x, µ(nπ)))| 6 e−Q

∗(x,µ(nπ)) + e−S(x,µ(nπ)). (58)

At this stage, we let
Q∗(x, ν) = S(x, ν) +R(x, ν) (59)

so that
|yi((n+ 1

2 )π)− hi(x,R(x, µ(nπ)))| 6 2e−S(x,µ(nπ)). (60)

Over [(n + 1
2 )π, (n + 3

4 )π]: the situation is very similar to the previous case
so we omit some proof steps. The system is of the form

y′i(t) = αψ2,νi1
(t)pfi (y(t)) + εi(t) where |εi(t)| 6 2e−Q(x,µ(nπ)). (61)

We let

ξ(t) = (n+ 1
2 )π +

∫ t

(n+
1
2 )π

αψ1,νi1
(u)du

and consider the following system:

zi((n+ 1
2 )π) = yi((n+ 1

2 )π), z′i(u) = pfi (z(u)) + ε(ξ−1(u)). (62)

It follows that, on the interval of life,

yi(t) = zi(ξ(t)). (63)

It is again the case that

1 6 αmψ 6 ξ((n+ 3
4 )π)− ξ((n+ 1

2 )π) 6 αMψ. (64)

We introduce the following system:

wi((n+ 1
2 )π) = qfi (g(x), R(x, µ(nπ))), w′i(u) = pfi (z(u)). (65)

By definition of qf and pf , the solution w exists over R and satisfies that

|wi(u)− fi(g(x))| 6 e−R(x,µ(nπ)) for all u− (n+ 1
2 )π > 1 (66)

since f ∈ AWCQ(Υ,q) with q ≡ 1, and

|wi(u)| 6 Υ(‖g(x)‖ , R(x, µ(nπ)), u− (n+ 1
2 )π)

6 P6(x, µ(nπ), u− (n+ 1
2 )π) for all u ∈ R (67)

for some polynomial32 P6 since ‖g(x)‖ 6 1+Υ(‖x‖ , 0, 1). Following Theorem 16
of [BGP16c], let η > 0 and a = (n+ 1

2 )π and let

δη(u) =

(
‖z(a)− w(a)‖ +

∫ u

a

∥∥ε(ξ−1(s))
∥∥ ds) exp

(
kΣpf

∫ u

a

(‖w(s)‖ + η)k−1ds

)
(68)

where k = deg(pf ). Let u ∈ [a, b] where b = ξ((n+ 1
2 )π), then∫ b

a

∥∥ε(ξ−1(s))
∥∥ ds 6 2(b− a)e−Q(x,µ(nπ)) using (61),

32Note that P6 depends on Υ and R.

77



6 2(b− a)e−S(x,µ(nπ)) using (55) and (59),

‖z(a)− w(a)‖ =
∥∥qf (g(x), R(x, µ(nπ)))− y(a)

∥∥
= ‖h(x,R(x, µ(nπ)))− y(a)‖
6 2e−S(x,µ(nπ)) using (60),

kΣpf
∫ b

a

(‖w(s)‖ + η)k−1ds 6 kΣph(b− a)
(
η + P6(x, µ(nπ), b)

)k−1
using (67),

b 6 a+ αMψ using (64).

Plugging everything into (68) we get that for all u ∈ [a, b],

δ1(u) 6 P7(x, µ(nπ))e−S(x,µ(nπ))eP8(x,µ(nπ)) (69)

for some polynomials33 P7 and P8. Since we have no chosen S yet, we now let

S(x, ν) = P7(x, ν) + P8(x, ν) + S∗(x, ν) (70)

where S∗ is some unspecified polynomial to be fixed later. Note that this defi-
nition makes sense because P7 and P8 do not (even indirectly) depend on S. It
then follows from (69) that

δ1(u) 6 e−S
∗(x,µ(nπ)) 6 1

and thus we can apply Theorem 16 of [BGP16c] to get that

|zi(u)− wi(u)| 6 δ1(u) 6 e−S
∗(x,µ(nπ)) for all u ∈ [a, b]. (71)

But in particular, (64) implies that b− a > 1 so by (66)

|zi(b)− fi(g(x))| 6 e−S
∗(x,µ(nπ)) + e−R(x,µ(nπ)). (72)

And finally, using (63) we get that

|yi((n+ 3
4 )π)− fi(g(x))| 6 e−S

∗(x,µ(nπ)) + e−R(x,µ(nπ)). (73)

Finally we let
S∗(x, ν) = R(x, ν) (74)

so that
|yi((n+ 3

4 )π)− fi(g(x))| 6 2e−R(x,µ(nπ)). (75)

Also note using (63), (67) and (71) that

|yi(t)| 6 1 + P6(x, µ(nπ), b− a) 6 P9(x, µ(nπ)) (76)

for some polynomial34 P9.
Over [(n + 3

4 )π, (n + 1)π]: for all j ∈ {0, 1, 2}, apply Lemma 86 to get that

|ψj,νij (t)| 6 e
−νij(t) and νij(t) > |gj,i(t)|+Q(x, µ(t)). (77)

It follows that
|y′i(t)| 6 3e−Q(x,µ(t)) 6 3e−Q(x,µ(nπ)) (78)

33Note that P7 depends on P6 and P8 on Υ and pf .
34Note that P9 depends on P6.

78



and

|yi(t)− yi((n+ 3
4 )π)| 6

∫ t

(n+
3
4 )π

|y′i(u)|du 6 3e−Q(x,µ(t)) 6 5e−Q(x,µ(nπ)). (79)

And thus

|yi(t)− fi(g(x))| 6 |yi(t)− yi((n+ 3
4 )π)|+ |yi((n+ 3

4 )π)− fi(g(x))|
6 3e−Q(x,µ(nπ)) + |yi((n+ 3

4 )π)− fi(g(x))|| using (79)

6 3e−Q(x,µ(nπ)) + 2e−R(x,µ(nπ)) using (75)

6 5e−R(x,µ(nπ)) using (55) and (59).
(80)

It follows using (79) and (76) that

‖y((n+ 1)π)‖ 6 1 +
∥∥y((n+ 3

4 )π)
∥∥

6 1 + P9(x, µ(nπ)).

We can thus let
M(x, ν) = 1 + P9(x, ν) (81)

to get the induction invariant. Note, as this is crucial for the proof, that M
does not depend, even indirectly, on Q.

We are almost done: the system for y computes f(g(x)) with increasing
precision in the time intervals [(n + 3

4 )π), (n + 1)π] but the value could be
anything during the rest of the time. To solve this issue, we create an extra
system that “samples” y during those time intervals, and does nothing the rest
of the time. Consider the system

zi(0) = 0, z′i(t) = ψ3,νi3
(t)g3,i(t)

where

g0,i(t) = A3,i(t)(yi(t)− zi(t)),
A3,i(t) = αR(x, µ(t)) + αN(x, µ(t))

νi3(t) =
(
3 + g3,i(t)

2 +R(x, µ(t))
)
βt.

We will show the following invariant by induction n:

‖z(nπ)‖ 6 N(x, µ(nπ)) (82)

for some polynomial N to be fixed later that is not allowed to depend on
R. Note that since z(0) = 0, it is trivially satisfiable for n = 0.

Over [0. 1β ]: similarly to y, the existence of z is not clear over this time

interval because of the bootstrap time of νi3. Since the argument is very similar
to that of y (simpler in fact), we do not repeat it.

Over [nπ, (n + 3
4 )π] for n > 1: apply Lemma 86 to get that

|ψ3,νi3
(t)| 6 e−ν

i
3(t) 6 e−|gi,3(t)|−Q(x,µ(nπ))−2.

79



It follows that for all t ∈ [nπ, (n+ 3
4 )π],

|zi(t)− zi(nπ)| 6 3
4πe
−R(x,µ(nπ))−2 6 e−R(x,µ(nπ)) 6 1. (83)

Over [(n + 3
4 )π, (n + 1)π]: apply Lemma 88 to get that

|zi(t)− yi(t)| 6 |zi((n+ 3
4 )π)− yi((n+ 3

4 )π)|e−B(t) + |yi(t)− yi((n+ 3
4 )π)| (84)

where

B(t) =

∫ t

(n+
3
4 )π

A3,i(u)ψ3,νi3
(u)du.

Let b = (n+ 1)π, then

B(b) =

∫ (n+1)π

(n+
3
4 )π

A3,i(u)ψ3,νi3
(u)du

> α(R(x, µ(nπ)) +N(x, µ(nπ)))

∫ (n+1)π

(n+
3
4 )π

ψ3,νi3
(u)du using Lemma 86

> (R(x, µ(nπ)) +N(x, µ(nπ)))αmψ

> R(x, µ(nπ)) +N(x, µ(nπ)) using αmψ > 1.

It follows that

|zi(b)− yi(b)| 6 |zi((n+ 3
4 )π)− yi((n+ 3

4 )π)|e−R(x,µ(nπ))−N(x,µ(nπ))

+ |yi(t)− yi((n+ 3
4 )π)|

6
(
|zi((n+ 3

4 )π)|+ |yi((n+ 3
4 )π)|

)
e−R(x,µ(nπ))−N(x,µ(nπ))

+ |yi(t)− yi((n+ 3
4 )π)|

6
(
|zi(nπ)|+ 1 + |yi((n+ 3

4 )π)|
)
e−R(x,µ(nπ))−N(x,µ(nπ))

+ 5e−R(x,µ(nπ)) using (79)

6
(
N(x, µ(nπ)) + 1 + |yi((n+ 3

4 )π)|
)
e−R(x,µ(nπ))−N(x,µ(nπ)) using (82)

+ 5e−R(x,µ(nπ))

6 |yi((n+ 3
4 )π)|e−R(x,µ(nπ))−N(x,µ(nπ)) + 7e−R(x,µ(nπ))

6 (|yi((n+ 1)π)|+ 1)e−R(x,µ(nπ))−N(x,µ(nπ)) + 7e−R(x,µ(nπ)) using (79)

6 (M(x, µ(nπ)) + 1)e−R(x,µ(nπ))−N(x,µ(nπ)) + 7e−R(x,µ(nπ)) using (31).

Since we have not specified N yet, we can take

N(x, ν) = M(x, µ) (85)

so that
|zi(b)− yi(b)| 6 8e−R(x,µ(nπ)). (86)

It follows that

|zi(b)− fi(g(x))| 6 |zi(t)− yi(t)|+ |yi(t)− fi(g(x))|
6 8e−R(x,µ(nπ)) + |yi(t)− fi(g(x))| using (86)

80



6 8e−R(x,µ(nπ)) + 5e−R(x,µ(nπ) using (80)

6 13e−R(x,µ(nπ)). (87)

Furthermore (84) gives that for all t ∈ [(n+ 3
4 )π, (n+ 1)π],

|zi(t)− yi(t)| 6 |zi((n+ 3
4 )π)− yi((n+ 3

4 )π)|+ |yi(t)− yi((n+ 3
4 )π)|

6 |zi((n+ 3
4 )π)− yi((n+ 3

4 )π)|+ 5e−Q(x,µ(nπ)) using (79)

6 |zi((n+ 3
4 )π)− zi(nπ)|+ |zi(nπ)− fi(g(x))|

+ |fi(g(x))− yi((n+ 3
4 )π)|+ 5e−Q(x,µ(nπ))

6 e−R(x,µ(nπ)) + |zi(nπ)− fi(g(x))| using (83)

+ 2e−R(x,µ(nπ)) + 5e−Q(x,µ(nπ)) using (75)

6 8e−R(x,µ(nπ)) + |zi(nπ)− fi(g(x))|. (88)

We can now leverage this analysis to conclude: putting (83) and (87) together
we get that

|zi(t)− fi(g(x))| 6 14e−R(x,µ(nπ)) for all t ∈ [(n+ 1)π, (n+ 7
4 )π] (89)

and for all t ∈ [(n+ 7
4 )π, (n+ 2)π],

|zi(t)− fi(g(x))| 6 |zi(t)− yi(t)|+ |yi(t)− fi(g(x))|
6 8e−R(x,µ(nπ)) + |zi(nπ)− fi(g(x))|+ |yi(t)− fi(g(x))| using (88)

6 8e−R(x,µ(nπ)) + |zi(nπ)− fi(g(x))|+ 2e−R(x,µ(nπ)) using (75)

6 10e−R(x,µ(nπ)) + |zi(nπ)− fi(g(x))|. (90)

And finally, putting (89) and (90) together, we get that

|zi(t)− fi(g(x))| 6 24e−R(x,µ(nπ)) for all t ∈ [(n+ 1)π, (n+ 2)π] (91)

Since we have not specified R yet, we can take

R(x, ν) = 24 + ν (92)

so that

|zi(t)− fi(g(x))| 6 e−µ(nπ) 6 e−n for all t ∈ [(n+ 1)π, (n+ 2)π]. (93)

This concludes the proof that f ◦ g ∈ ATSPQ since we have proved that the
system converges quickly, has bounded values and the entire system has a poly-
nomial right-hand side using rational numbers only.

10.2 From AWPRG
to AWPQ

The second step of the proof is to recast the problem entirely in the language of
AWPQ. The observation is that given a system, corresponding to f ∈ AWPRG ,
we can abstract away the coefficients and make them part of the input, so that
f(x) = g(x, α) where g ∈ AWPQ and α ∈ RkG. We then show that we can see α

81



as the result of a computation itself: we build h ∈ AWPQ such that α = h(1).
Now we are back to x = g(x, h(1)), in other words a composition of functions
in AWPQ.

First, let us recall the definition of RG from [BGP16b]:

RG =
⋃
n>0

G[n](Q)

where
G(X) = {f(1) : (f : R→ R) ∈ GPVALX }.

Note that in [BGP16b], we defined G slightly differently using GVAL, the class
of generable functions, instead of GPVAL. Those two definitions are equivalent
because if f ∈ GVAL[X], we can define h(t) = f( 2t

1+t2 ) that is such that h(0) =
f(0), h(1) = f(1) and belongs to GPVALX .

Lemma 90 Let (f :∈ AWPX where Q ⊆ X, then there exists ` ∈ N, β ∈ X`

and h ∈ AWPQ with domh = dom f such that f = h ◦ g where g(x) = (x, β) for
all x ∈ dom f .

Proof. Let q and Υ polynomials such that (f :⊆ Rn → Rm) ∈ AWC(Υ,q)
with corresponding d, q and p. Let x ∈ dom f and µ > 0 and consider the
following system:

y(0) = q(x, µ), y′(t) = q(y(t)).

By definition, for any t > q(‖x‖ , µ),

‖y1..m(t)− f(x)‖ 6 e−µ

and for all t > 0,
‖y(t)‖ 6 Υ(‖x‖ , µ, t).

Let ` be the number of nonzero coefficients of p and q. Then there exists β ∈ R`,
p̂ ∈ Qd[Rd+`] and q̂ ∈ Qd[Rn+1+`] such that for all x ∈ Rn, µ > 0 and u ∈ Rd,

q(x, µ) = q̂(x, β, µ) and p(u) = p̂(u, β).

Now consider the following system for any (x,w) ∈ dom f × {β} and µ > 0:

u(0) = w , u′(t) = 0,
z(0) = q̂(x,w, µ), z′(t) = p̂(z(t), u(t)).

Note that this system only has rational coefficients because q̂ and p̂ have rational
coefficients. Also u(t) is the constant function equal to w and w = β since
(x,w) ∈ dom f ×{β}. Thus z′(t) = p̂(z(t), β) = p(z(t)), and z(0) = q̂(x, β, µ) =
q(x, µ). It follows that z ≡ y and thus this system weakly-computes h(x,w) =
f(x):

‖z1..m(t)− f(x)‖ = ‖y1..m(t)− f(x)‖ 6 e−µ

and
‖(u(t), z(t))‖ 6 ‖u(t)‖ + ‖z(t)‖ 6 ‖w‖ + Υ(‖x‖ , µ, t).

Thus h ∈ AWPQ. It is clear that if g(x) = (x, β) then (h◦g)(x) = h(x, β) = f(x).

82



Lemma 91 For any X ⊇ Q and (f : R → R) ∈ GPVALX , (x ∈ R 7→ f(1)) ∈
AWPX .

Proof. Expand the definition of f to get d ∈ N, y0 ∈ Xd and p ∈ X[Rd] such
that

y(0) = y0, y′(t) = p(y(t))

satisfies for all t ∈ R,
f(t) = y1(t).

Now consider the following system for x ∈ R and µ > 0:

ψ(0) = 1 , ψ′(t) = −ψ(t),
z(0) = y0, z′(t) = ψ(t)p(z(t)).

This system only has coefficients in X and it is not hard to see that

ψ(t) = e−t and z(t) = y

(∫ t

0

ψ(s)ds

)
= y

(
1− e−t

)
.

Furthermore, since f(1) = y1(1),

|f(1)− z1(t)| = |y1(1)− y1(1− e−t)|

=

∣∣∣∣∫ 1

1−e−t
y′1(s)ds

∣∣∣∣
6
∫ 1

1−e−t
|p1(y(s))|ds

6 e−t sup
s∈[0,1]

|p1(y(s))|.

Let A = sups∈[0,1] |p1(y(s))| which is finite because y is continuous and [0, 1] is
compact, and let q(x, µ) = µ+A. Then for any µ > 0 and t > q(‖x‖ , µ),

|f(1)− z1(t)| 6 e−tA 6 e−q(‖x‖,µ)A 6 e−µ−AA 6 e−µ.

Furthermore,
‖z(t)‖ =

∥∥y(1− et)
∥∥ 6 sup

s∈[0,1]

‖y(s)‖

where the right-hand is a finite constant because y is continuous and [0, 1]. This
shows that (x ∈ R 7→ f(1)) ∈ AWPX .

Proposition 92 For all n ∈ N, AWPG[n](Q) ⊆ ATSPQ.

Proof. When n = 0, the result is trivial because G[0](Q) = Q.
Assume the result is true for n and take f ∈ AWPG[n+1](Q). Apply Lemma 90

to get h ∈ AWPQ such that f = h ◦ g where g(x) = (x, β) where β ∈
G[n+1](Q)` for some ` ∈ N. Let i ∈ {1, . . . , `}, by definition of βi, there ex-
ists yi ∈ GPVALG[n](Q) such that βi = yi(1). Apply Lemma 91 to get that
(x ∈ R 7→ yi(1)) ∈ AWPG[n](Q). Now by induction, (x ∈ R 7→ βi) = (x ∈ R 7→
yi(1)) ∈ AWPQ. Putting all those systems together, and adding variables to
keep a copy of the input, it easily follows that g ∈ AWPQ. Apply Theorem 89
to conclude that f = h ◦ g ∈ ATSPQ.

We can now prove the main theorem of this section.

83



Theorem 93 AWPRG = ATSPQ.

Proof. The inclusion AWPRG ⊆ AWPQ is trivial. Conversely, take f ∈
AWPRG . The system that computes f only has a finite number of coefficients,
all in RG. Thus there exists n ∈ N such that all the coefficients belong to
G[n](Q) and then f ∈ AWPG[n](Q). Apply Proposition 92 to conclude.

As clearly ALPK = ATSPK over any field K [BGP16c], it follows that ALP =
AWPRG = ATSPQ = ALPQ and hence Definitions 3 and 11 are defining the
same class. Similarly, and consequently, Definitions 1 and 67 are also defining
the same class.

Acknowledgments. Daniel Graça was partially supported by Fundação para
a Ciência e a Tecnologia and EU FEDER POCTI/POCI via SQIG - Instituto
de Telecomunicações through the FCT project UID/EEA/50008/2013. Olivier
Bournez and Amaury Pouly were partially supported by DGA Project CAL-
CULS and French National Research Agency (ANR) Project ANR-15-CE040-
0016-01.

This project has received funding from the European Union’s Hori-
zon 2020 research and innovation programme under the Marie
Sk lodowska-Curie grant agreement No 731143.

EU disclaimer: the results presented in this paper reflect only the author’s view
and the EU is not responsible for any use that may be made of the information
it contains.

84



APPENDIX

A Notations

Sets

Concept Notation Comment

Real interval [a, b] {x ∈ R| a 6 x 6 b}
[a, b[ {x ∈ R| a 6 x < b}
]a, b] {x ∈ R| a < x 6 b}
]a, b[ {x ∈ R| a < x < b}

Line segment [x, y] {(1− α)x+ αy ∈ Rn, α ∈ [0, 1]}
[x, y[ {(1− α)x+ αy ∈ Rn, α ∈ [0, 1[}
]x, y] {(1− α)x+ αy ∈ Rn, α ∈]0, 1]}
]x, y[ {(1− α)x+ αy ∈ Rn, α ∈]0, 1[}

Integer interval Ja, bK {a, a+ 1, . . . , b}
Natural numbers N {0, 1, 2, . . .}
Integers Z {. . . ,−2,−1, 0, 1, 2, . . .}
Rational numbers Q
Dyadic rationnals D {m2−n,m ∈ Z, n ∈ N}
Real numbers R
Non-negative numbers R+ R+ = [0,+∞[

Non-zero numbers R∗ R∗ = R \ {0}
Positive numbers R∗+ R∗+ =]0,+∞[

Set shifting x+ Y {x+ y, y ∈ Y }
Set addition X + Y {x+ y, x ∈ X, y ∈ Y }
Matrices Mn,m (K) Set of n×m matrices over field K

Mn (K) Shorthand for Mn,n (K)

Mn,m Set of n×m matrices over a field is deduced
from the context

Polynomials K[X1, . . . , Xn] Ring of polynomials with variables
X1, . . . , Xn and coefficients in K

K[An] Polynomial functions with n variables, coef-
ficients in K and domain of definition An

Fractions K(X) Field of rational fractions with coefficients in
K

Power set P(X) The set of all subsets of X

Domain of definition dom f If f : I → J then dom f = I

Cardinal #X Number of elements

Polynomial vector Kn[Ad] Polynomial in d variables with coefficients in
Kn

K[Ad]n Isomorphic Kn[Ad]

85



Concept Notation Comment

Polynomial matrix Mn,m (K) [An] Polynomial in n variables with matrix coef-
ficients

Mn,m (K[An]) Isomorphic Mn,m (K) [An]

Smooth functions Ck Partial derivatives of order k exist and are
continuous

C∞ Partial derivatives exist at all orders

Complexity classes

Concept Notation Comment

Polynomial Time P Class of decidable languages

FP Class of computable functions

Polytime computable numbers RP
Polytime computable real func-
tions

PC[a,b] Over compact interval [a, b]

Generable reals RG See [BGP16b]

Poly-length-computability ALP See Definition 3

ATSC(Υ,q) Notation defined page 19

AOC(Υ,q,Λ) Notation defined page 19

AXC(Υ,q,Λ,Θ) Notation defined page 19

Metric spaces and topology

Concept Notation Comment

p-norm ‖x‖p

(
n∑
i=1

|xi|p
) 1
p

Infinity norm ‖x‖ max(|x1|, . . . , |xn|)

Polynomials

Concept Notation Comment

Univariate polynomial

d∑
i=0

aiX
i

Multi-index α (α1, . . . , αk) ∈ Nk

|α| α1 + · · ·+ αk

α! α1!α2! · · ·αk!

Multivariate polynomial
∑
|α|6d

aαX
α where Xα = Xα1

1 · · ·X
αk
k

86



Concept Notation Comment

Degree deg(P ) Maximum degree of a monomial, Xα is of
degree |α|, conventionally deg(0) = −∞

deg(P ) max(deg(Pi)) if P = (P1, . . . , Pn)

deg(P ) max(deg(Pij)) if P = (Pij)i∈J1,nK,j∈J1,mK

Sum of coefficients ΣP ΣP =
∑
α |aα|

ΣP max(ΣP1, . . . ,ΣPn) if P = (P1, . . . , Pn)

ΣP max(ΣPij) if P = (Pij)i∈J1,nK,j∈J1,mK

A polynomial poly An unspecified polynomial

Miscellaneous functions

Concept Notation Comment

Sign function sgn(x) Conventionally sgn(0) = 0

Ceiling function dxe min{n ∈ Z : x 6 n}
Rounding function bxe argminn∈Z |n−x|, undefined for x = n+ 1

2

Integer part function int(x) max(0, bxc)
intn(x) min(n, int(x))

Fractional part function frac(x) x− intx

fracn(x) x− intn(x)

Composition operator f ◦ g (f ◦ g)(x) = f(g(x))

Identity function id id(x) = x

Indicator function 1X 1X(x) = 1 if x ∈ X and 1X(x) = 0 other-
wise

nth iterate f [n] f [0] = id and f [n+1] = f [n] ◦ f

Calculus

Concept Notation Comment

Derivative f ′

nth derivative f (n) f (0) = f and f (n+1) = f (n)′

Partial derivative ∂if,
∂f
∂xi

with respect to the ith variable

Scalar product x · y
∑n
i=1 xiyi in Rn

Gradient ∇f(x) (∂1f(x), . . . , ∂nf(x))

Jacobian matrix Jf (x) (∂jfi(x))i∈J1,nK,j∈J1,mK

Taylor approximation Tna f(t)

n−1∑
k=0

f (k)(a)

k!
(t− a)k

Big O notation f(x) = O (g(x)) ∃M,x0 ∈ R, |f(x)| 6M |g(x)| for all x > x0

Soft O notation f(x) = Õ (g(x)) Means f(x) = O
(
g(x) logk g(x)

)
for some

k

87



Concept Notation Comment

Subvector xi..j (xi, xi+1, . . . , xj)

Matrix transpose MT

Past supremum supδf(t) supu∈[t,t−δ]∩R+
f(t)

Partial function f :⊆ X → Y dom f ⊆ X
Restriction f�I f�I(x) = f(x) for all x ∈ dom f ∩ I

Words

Concept Notation Comment

Alphabet Σ,Γ A finite set

Words Σ∗
⋃
n>0 Σn

Empty word λ

Letter wi ith letter, starting from one

Subword wi..j wiwi+1 · · ·wj
Length |w|
Repetition wk ww · · ·w︸ ︷︷ ︸

k times

References

[AD90] Rajeev Alur and David L. Dill. Automata for modeling real-
time systems. In Mike Paterson, editor, Automata, Languages and
Programming, 17th International Colloquium, ICALP90, Warwick
University, England, July 16-20, 1990, Proceedings, volume 443
of Lecture Notes in Computer Science, pages 322–335. Springer,
1990.

[BC08] Olivier Bournez and Manuel L. Campagnolo. New Computational
Paradigms. Changing Conceptions of What is Computable, chap-
ter A Survey on Continuous Time Computations, pages 383–423.
Springer-Verlag, New York, 2008.

[BCdNM05] Olivier Bournez, Felipe Cucker, Paulin Jacobé de Naurois, and
Jean-Yves Marion. Implicit complexity over an arbitrary structure:
Sequential and parallel polynomial time. Journal of Logic and
Computation, 15(1):41–58, 2005.

[BCGH06] Olivier Bournez, Manuel L. Campagnolo, Daniel S. Graça, and
Emmanuel Hainry. The General Purpose Analog Computer and
Computable Analysis are two equivalent paradigms of analog com-
putation. In J.-Y. Cai, S. B. Cooper, and A. Li, editors, Theory
and Applications of Models of Computation TAMC’06, LNCS 3959,
pages 631–643. Springer-Verlag, 2006.

[BCGH07] Olivier Bournez, Manuel L. Campagnolo, Daniel S. Graça, and
Emmanuel Hainry. Polynomial differential equations compute all

88



real computable functions on computable compact intervals. J.
Complexity, 23(3):317–335, 2007.

[BCSS98] Lenore Blum, Felipe Cucker, Mike Shub, and Steve Smale. Com-
plexity and Real Computation. Springer, 1998.

[BGP16a] Olivier Bournez, Daniel Graça, and Amaury Pouly. On the Func-
tions Generated by the General Purpose Analog Computer. Tech-
nical report, January 2016. Under review for Information and
Computation (current status: accepted for publicaton under mi-
nor revision).

[BGP16b] Olivier Bournez, Daniel S. Graça, and Amaury Pouly. On the func-
tions generated by the general purpose analog computer. CoRR,
abs/1602.00546, 2016.

[BGP16c] Olivier Bournez, Daniel Graça, and Amaury Pouly. Computing
with polynomial ordinary differential equations. Journal of Com-
plexity, pages –, 2016.

[BHFFS03] Asa Ben-Hur, Joshua Feinberg, Shmuel Fishman, and Hava T.
Siegelmann. Probabilistic analysis of a differential equation for
linear programming. Journal of Complexity, 19(4):474–510, 2003.

[BHSF02] Asa Ben-Hur, Hava T. Siegelmann, and Shmuel Fishman. A the-
ory of complexity for continuous time systems. J. Complexity,
18(1):51–86, 2002.

[Bou97] Olivier Bournez. Some bounds on the computational power of
piecewise constant derivative systems (extended abstract). In
ICALP, pages 143–153, 1997.

[Bou99] Olivier Bournez. Achilles and the Tortoise climbing up the hyper-
arithmetical hierarchy. Theoret. Comput. Sci., 210(1):21–71, 1999.

[Bus31] Vannevar Bush. The differential analyzer. A new machine for solv-
ing differential equations. J. Franklin Inst., 212:447–488, 1931.

[Cop98] B. Jack Copeland. Even Turing machines can compute uncom-
putable functions. In C.S. Calude, J. Casti, and M.J. Dinneen,
editors, Unconventional Models of Computations. Springer-Verlag,
1998.

[Cop02] B. Jack Copeland. Accelerating Turing machines. Minds and Ma-
chines, 12:281–301, 2002.

[CP02] Cristian S. Calude and Boris. Pavlov. Coins, quantum measure-
ments, and Turing’s barrier. Quantum Information Processing,
1(1-2):107–127, April 2002.

[Dav01] Edward B. Davies. Building infinite machines. The British Journal
for the Philosophy of Science, 52:671–682, 2001.

89



[Fay91] Leonid Faybusovich. Dynamical systems which solve optimization
problems with linear constraints. IMA Journal of Mathematical
Control and Information, 8:135–149, 1991.

[Fey82] Richard P. Feynman. Simulating physics with computers. Internat.
J. Theoret. Phys., 21(6/7):467–488, 1982.

[GBC07] Daniel S. Graça, Jorge Buescu, and Manuel L. Campagnolo.
Boundedness of the domain of definition is undecidable for poly-
nomial ODEs. In R. Dillhage, T. Grubba, A. Sorbi, K. Weihrauch,
and N. Zhong, editors, 4th International Conference on Com-
putability and Complexity in Analysis (CCA 2007), volume 202 of
Electron. Notes Theor. Comput. Sci., pages 49–57. Elsevier, 2007.

[GBC09] Daniel S. Graça, Jorge Buescu, and Manuel L. Campagnolo. Com-
putational bounds on polynomial differential equations. Appl.
Math. Comput., 215(4):1375–1385, 2009.

[GC03] Daniel S. Graça and José Félix Costa. Analog computers and recur-
sive functions over the reals. Journal of Complexity, 19(5):644–664,
2003.

[GM95] Erich Grädel and Klaus Meer. Descriptive complexity theory over
the real numbers. In Proceedings of the Twenty-Seventh Annual
ACM Symposium on the Theory of Computing, pages 315–324, Las
Vegas, Nevada, 29May–1June 1995. ACM Press.

[GM02] Marco Gori and Klaus Meer. A step towards a complexity theory
for analog systems. Mathematical Logic Quarterly, 48(Suppl. 1):45–
58, 2002.

[Gra04] Daniel S. Graça. Some recent developments on Shannon’s General
Purpose Analog Computer. Math. Log. Quart., 50(4-5):473–485,
2004.

[Kar84] Narendra Karmarkar. A new polynomial-time algorithm for linear
programming. In Proceedings of the sixteenth annual ACM sym-
posium on Theory of computing, pages 302–311. ACM, 1984.

[Kaw10] Akitoshi Kawamura. Lipschitz continuous ordinary differential
equations are polynomial-space complete. Computational Com-
plexity, 19(2):305–332, 2010.

[KMNY91] Masakazu Kojima, Nimrod Megiddo, Toshihito Noma, and Akiko
Yoshise. A unified approach to interior point algorithms for lin-
ear complementarity problems, volume 538. Springer Science &
Business Media, 1991.

[Ko91] Ker-I Ko. Complexity Theory of Real Functions. Progress in The-
oretical Computer Science. Birkhaüser, Boston, 1991.

[Mac09] Bruce J MacLennan. Analog computation. In Encyclopedia of
complexity and systems science, pages 271–294. Springer, 2009.

90



[MC06] Jerzy Mycka and José Felix Costa. The p 6= np conjecture in the
context of real and complex analysis. J. Complexity, 22(2):287–303,
2006.

[MM93] Norbert Müller and Bernd Moiske. Solving initial value problems
in polynomial time. In Proc. 22 JAIIO - PANEL ’93, Part 2, pages
283–293, 1993.

[Moo96] Cristopher Moore. Recursion theory on the reals and continuous-
time computation. Theoretical Computer Science, 162(1):23–44,
5 August 1996.

[PE74] Marian B. Pour-El. Abstract computability and its relations to
the general purpose analog computer. Trans. Amer. Math. Soc.,
199:1–28, 1974.

[PG16] Amaury Pouly and Daniel S. Graça. Computational complexity of
solving polynomial differential equations over unbounded domains.
Theor. Comput. Sci., 626:67–82, 2016.

[Pou16] Amaury Pouly. Computational complexity of solving polynomial
differential equations over unbounded domains with non-rational
coefficients. CoRR, abs/1608.00135, 2016.

[Ruo93] Keijo Ruohonen. Undecidability of event detection for ODEs. Jour-
nal of Information Processing and Cybernetics, 29:101–113, 1993.

[Ruo94] Keijo Ruohonen. Event detection for ODEs and nonrecursive hier-
archies. In Proceedings of the Colloquium in Honor of Arto Salo-
maa. Results and Trends in Theoretical Computer Science (Graz,
Austria, June 10-11, 1994), volume 812 of Lecture Notes in Com-
puter Science, pages 358–371. Springer-Verlag, Berlin, 1994.

[Sha41] Claude E. Shannon. Mathematical theory of the differential anal-
yser. Journal of Mathematics and Physics MIT, 20:337–354, 1941.

[Ulm13] Bernd Ulmann. Analog computing. Walter de Gruyter, 2013.

[Wei00] Klaus Weihrauch. Computable Analysis: an Introduction.
Springer, 2000.

91


