Utilize este identificador para referenciar este registo: http://hdl.handle.net/10400.1/2128
Título: Energy savings in HVAC systems using discrete model-based predictive control
Autor: Ferreira, P. M.
Silva, S. M.
Ruano, A. E.
Data: 2012
Editora: IEEE
Citação: Ferreira, Pedro M.; Silva, Sergio M.; Ruano, Antonio E. Energy savings in HVAC systems using discrete model-based predictive control, Trabalho apresentado em 2012 International Joint Conference on Neural Networks (IJCNN 2012 - Brisbane), In Proceedings of the 2012 International Joint Conference on Neural Networks (IJCNN), Brisbane, Australia, 2012.
Resumo: The paper addresses the problem of controlling an heating ventilating and air conditioning system with the purpose of achieving a desired thermal comfort level and energy savings. The formulation uses the thermal comfort as a restriction and minimises the energy spent to comply with it. This results in the maintenance of thermal comfort and on the minimisation of energy, which in most operating conditions are conflicting goals requiring some sort of optimisation method to find appropriate solutions over time. In this work a discrete model based predictive control methodology is applied to the problem. It consists of three major components: the predictive models, implemented by radial basis function neural networks identified by means of a multi-objective genetic algorithm; the cost function that will be optimised to minimise energy consumption and provide adequate thermal comfort; and finally the optimisation method, in this case a discrete branch and bound approach. Each component will be described, and experimental results obtained within a classroom will be presented, demonstrating the feasibility and performance of the approach. Finally the energy savings resulting from the application of the method are estimated.
Peer review: yes
URI: http://hdl.handle.net/10400.1/2128
ISBN: 978-1-4673-1490-9
Aparece nas colecções:FCT2-Artigos (em revistas ou actas indexadas)

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
576.pdf2,05 MBAdobe PDFVer/Abrir    Acesso Restrito. Solicitar cópia ao autor!


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote Degois 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.