Utilize este identificador para referenciar este registo: http://hdl.handle.net/10400.1/2151
Título: Exploiting the separability of linear and nonlinear parameters in radial basis function networks
Autor: Ferreira, P. M.
Ruano, A. E.
Data: 2000
Editora: IEEE
Citação: Ferreira, P. M.; Ruano, A. E. Exploiting the separability of linear and nonlinear parameters in radial basis function networks, Trabalho apresentado em Symposium on Adaptive Systems for Signal Processing Communications and Control, In Proceedings of the IEEE 2000 Adaptive Systems for Signal Processing, Communications, and Control Symposium (Cat. No.00EX373), Lake Louise, Alta., Canada, 2000.
Resumo: In intelligent control applications, neural models and controllers are usually designed by performing an off-line training, and then adapting it on-line when placed in the operating environment. It is therefore of crucial importance to obtain a good off-line model by means of a good off-line training algorithm. In this paper a method is presented that fully exploits the linear-nonlinear structure found in Radial Basis Function networks, being additionally applicable to other feed-forward supervised neural networks. The new algorithm is compared with two known hybrid methods.
Peer review: yes
URI: http://hdl.handle.net/10400.1/2151
ISBN: 0-7803-5800-7
Aparece nas colecções:FCT2-Artigos (em revistas ou actas indexadas)

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
ferreira_RBF.pdf66,89 kBAdobe PDFVer/Abrir    Acesso Restrito. Solicitar cópia ao autor!


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote Degois 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.