Utilize este identificador para referenciar este registo: http://hdl.handle.net/10400.1/2338
Título: Supervised training algorithms for B-Spline neural networks and neuro-fuzzy systems
Autor: Ruano, A. E.
Cabrita, Cristiano Lourenço
Oliveira, J. V.
Kóczy, László T.
Data: 2002
Citação: Ruano, A. E.; Cabrita, C.; Oliveira, J. V.; Kóczy, L. T. Supervised training algorithms for B-Spline neural networks and neuro-fuzzy systems, International Journal of Systems Science, 33, 8, 689-711, 2002.
Resumo: Complete supervised training algorithms for B-Spline neural networks and fuzzy rulebased systems are discussed. By introducing the relationships between B-Spline neural networks and Mamdani (satisfying certain assumptions) and Takagi±Kang±Sugeno fuzzy models, training algorithms developed initially for neural networks can be adapted to fuzzy systems. The standard training criterion is reformulated, by separating its linear and nonlinear parameters. By employing this reformulated criterion with the Levenberg-Marquardt algorithm, a new training method, offering a fast rate of convergence is obtained. It is also shown that the standard Error-Back Propagation algorithm, the most common training method for this class of systems, exhibits a very poor and unreliable performance.
Peer review: yes
URI: http://hdl.handle.net/10400.1/2338
ISSN: 0020-7721
Aparece nas colecções:FCT2-Artigos (em revistas ou actas indexadas)

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
ruano 2002.pdf1,1 MBAdobe PDFVer/Abrir    Acesso Restrito. Solicitar cópia ao autor!


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote Degois 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.