Utilize este identificador para referenciar este registo: http://hdl.handle.net/10400.1/5884
Título: Enhancing time-frequency parameters estimation for Doppler ultrasound blood-flow signals
Autor: Zabihian, B.
Ruano, M. Graça
Data: 16-Nov-2011
Resumo: Doppler Ultrasound (DU) blood flow signals, particularly when collected under intra-operative conditions are noisy; accurate extraction of clinical parameters from their spectra becomes a difficult task. The spectral center frequency and bandwidth were estimated using two estimators with alternative time-frequency resolutions: a fixed resolution method, the Short-Time Fourier Transform (STFT) and the multi-resolution Continuous Wavelet Transform (CWT). Their performance was also assessed when the DU signals were pre-processed by a recently proposed Noise Cancellation Technique (NCTech). The NCTech algorithm enables quantification of the magnitude of the canceled noise in the form of percentage, called Cancellation Level (CL). Quantitative comparisons have been performed in terms of bias of the estimators when four signal-to-noise (SNRs) on DU simulated signals are employed: infinity, 20 dB, 10 dB and 5 dB. Results prove that CWT produced spectral parameters estimates with less bias than STFT; however these estimates were less consistent than the STFT ones. When NCTech is primarily applied to the signal, the STFT is the method to benefit most from this pre-processing technique. The CWT combined with NCTech produced estimates of both spectral parameters with better accuracy over the majority of the cardiac cycle, except where the frequency varies within a small range of frequencies during a short period of time. © 2011 IEEE.
Peer review: yes
URI: http://hdl.handle.net/10400.1/5884
DOI: http://dx.doi.org/10.1109/WISP.2011.6051708
Aparece nas colecções:FCT2-Artigos (em revistas ou actas indexadas)

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
2011_Enhancing_Wisp.pdf994,1 kBAdobe PDFVer/Abrir    Acesso Restrito. Solicitar cópia ao autor!


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote Degois 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.