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Abstract. Fish and seafood products are highly susceptible to post-mortem 

spoilage due to autolytic reactions at start, then microbiological activity and 

eventually oxidative reactions. Chemical and microbiological parameters are 

usually used to assess quality and make decisions for protecting public health, 

but they lack precision in defining which spoilage pathway is occurring at each 

moment. The objective of this work was to assess the effects of spoilage reac-

tions on nitrogen and carbon stable isotopes in the grooved carpet shell clam, 

Ruditapes decussatus, and compare them to biochemical indicators of seafood 

deterioration, in order to better understand the relations between the different 

spoilage pathways during commercial storage conditions. Clams were kept in a 

refrigerator at 5 ºC, to simulate normal commercial storage conditions, and 

sampled in the beginning of the experiment, and after eight, ten and twelve 

days. Moisture, condition index, percentage edibility, total volatile basic nitro-

gen (TVB-N), pH, nitrogen and carbon percentages and stable isotopes were de-

termined for each sampling moment. Stable isotope analyses were performed 

using a Costech Elemental Analyzer (ECS 4010) coupled to a ThermoFinnigan 

Delta V Advantage. Stable isotopes analysis, especially for nitrogen, proved to 

be a good tool for the study of clam deterioration. Nitrogen stable isotopes re-

sults showed a relation with other spoilage indicators, such as pH and TVB-N, 

and allowed identifying spoilage specific pathways, such as amino acids decar-

boxylation and production of volatile nitrogen compounds.  
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1 Introduction 

From a nutritional point of view, seafood in general, and bivalves in particular, are 

normally consumed for their high content in proteins and unsaturated fatty acids. 

Those same groups of molecules are also the cause for rapid deterioration, leading to 

serious food safety issues. The condition named “spoilage” is not clearly defined in 

objective terms, but it is related with post-mortem conditions. Seafood spoilage is the 

set of sensory changes, resulting from the production of off-odors, off-flavors, slime, 

gas, discoloration and changes in texture. These signs result in products being unac-

ceptable for human consumption, and are caused by three groups of phenomena, that 

act almost sequentially: initially there are the autolytic chemical changes; followed by 

the bacterial metabolism, where spoilage occurs actively; and lastly lipids are chemi-

cally oxidized [1]. The rate and relative importance of each group of phenomena de-

pends on the group of food species being studied (e.g. lean or fat fishes, crustaceans, 

bivalves).  

Besides the current practice of evaluating seafood freshness based on sensory 

attributes in the commercial and industry sectors, seafood spoilage is assessed through 

chemical (e.g. nitrogen- or biogenic amines-based indices) and microbiological counts 

(e.g. TVC, Escherichia coli, Listeria monocytogenes). Although these indicators sup-

port public health decisions regarding the consumption of seafood, they usually lack 

precision in defining biochemical pathways underpinning spoilage. For instance, 

chemical indicators of spoilage can originate from autolytic processes or as a conse-

quence of microbiota metabolism; the presence of microbiota does not always means 

that spoilage is occurring. Herein, we study the opportunity of using stable isotopes of 

relevant chemical elements, nitrogen and carbon, that are involved in the deterioration 

reactions, in order to identify which phenomena or biochemical pathways are tempo-

rarily controlling the seafood spoilage. 

Stable isotopes are traditionally used in geochemistry to assess the chemical 

processes controlling the lithosphere, hydrosphere and atmosphere [9], and in ecology 

and environmental sciences to trace the flow of organic matter in food webs [18, 24]. 

More recent approaches use stable isotope analysis in archaeology to assess human 

dietary preferences in the past [8, 12] and in food sciences to determine food products 

authentication [7], traceability [22] and geographic origin [15]. To our knowledge, 

stable isotopes have not been used before to study seafood spoilage. 

The use of nitrogen and carbon stable isotopes relies on their ubiquitous 

presence in organic matter and thus in the edible part of food, as in clam’s meat. Sta-

ble isotopes analysis is based on the ratio of abundance of heavy isotope to the light 

isotope of a single element, namely N or C in the present work. This ratio changes 

during chemical and/or biological processes because the atomic mass of different 

isotopes affects the chemical kinetics of reactions involving the element of choice, 

leading natural isotope fractionation. Characterizing the direction and extent of such 

fractionation allows insights into the processes that are occurring in a defined envi-

ronment [3].  

Carbon isotopes are usually studied to differentiate among sources of organic 

matter and to clarify food webs carbon flow pathways, whereas nitrogen isotopes 
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provide information on trophic level as well as on organic matter origin [20, 23]. In 

fact, both carbon and nitrogen isotopes are dependent on kinetic effects, which are 

irreversible and predominantly due to biological processes/mechanisms, such as respi-

ration, and equilibrium effects between different matter phases, such as evaporation. 

This is why their analysis for spoilage evaluation could be of interest, besides the fact 

that only a very small quantity of sample is needed for such analysis.  

The grooved carpet shell clam, Ruditapes decussatus (L. 1758), is one of the 

most popular and profitable mollusks exploited in rearing plots in the Mediterranean, 

and adjacent coastal areas, being used as a food source for centuries [2].  

The objective of this study was to examine the effects of spoilage-related dy-

namics of nitrogen and carbon stable isotopes in R. decussatus, and compare them to 

biochemical indicators, in order to better understand the relations between the differ-

ent aspects promoting seafood spoilage during commercial storage conditions. 

2 Materials and methods 

2.1 Sampling and processing 

Grooved carpet shell clams (R. decussatus) of commercial value (n=140 individuals) 

were obtained directly from a production plot located in the Ria Formosa (tidal lagoon 

in the South of Portugal). Immediately after harvest, the clams were transported to the 

laboratory in a refrigerated box and our experiment started with the clams’ being 

stored at 5 ºC, simulating the typical storage conditions during commercialization. 

Clams were sampled in the beginning of the experiment (d0), and subsequently after 

eight (d8), 10 (d10) and 12 days (d12). In each sampling moment, 34 specimens were 

randomly selected, four of which were used individually to measure stable isotopes 

abundances, percentage edibility and condition index. The remaining clams were used 

to determine total volatile basic nitrogen (TVB-N), pH and moisture. The latter were 

determined in three replicates obtained by dividing the 30 clams into three groups 

composed by a pool of soft tissue from ten clams. These analyses were always per-

formed at the same time of the day (9 a.m.). On each sampling occasion, the respon-

siveness to mechanical stimulation of the mantle, done using a metal stiletto, was 

observed and classified as: “alive” if a reaction was observed; or “dead” if no re-

sponse was observed.  

2.2 Chemical analysis 

TVB-N was determined according to the Conway method [5], and expressed as milli-

grams of nitrogen per 100 grams of wet weight (mg N.100 g-1). pH was measured 

directly on clam’s muscle tissues using a digital meter (model Glp 21, Crison, Spain). 

Moisture content of the meat was calculated using the [4] method ref 950.46.  
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2.3 Condition index and percentage edibility 

Biological condition of specimens was assessed using the percentage edibility (PE) 

and condition index (CI) calculated as  

 PE = (MWW/TW) × 100 

where MWW is meat wet weight (g) and TW is the total clam weight including the 

shell (g) [19, 27] and  

 CI = (MDW/SDW) × 1000 

where MDW is meat dry weight (g) and SDW is the shell dry weight (g) [14, 21].  

2.4 Stable isotope analysis 

Individual clams from a similar age group (about 25 mm maximum shell length) were 

weighted (± 0.1 mg). Samples were manually shucked by cutting the adductor muscle 

with a knife, and all the soft tissues were weighted. Contamination between samples 

was prevented by treating all specimens separately and by cleaning the cutting board 

and dissection tools between samples. The samples were subsequently dried at 60 ºC 

for 48 h and weighted again. The desiccated soft tissues were ground to a homoge-

nous fine powder using mortar and pestle, and stored in aluminum foil pouches. 

Grinding tools were decontaminated between samples using hydrogen peroxide 

(30%), hydrochloric acid (10%) and de-ionized water (MilliQ cartridge). Stable iso-

tope analyses were performed using a Costech Elemental Analyzer (ECS 4010) cou-

pled to a ThermoFinnigan Delta V Advantage. The isotopic composition δ15N is ex-

pressed in per mil (‰) relative to the atmospheric nitrogen standards (N2 atm) [6]. 

The isotopic composition δ13C is also expressed in per mil (‰) relative to Belemnitel-

la Americana from the Cretaceous Peedee formation, South Carolina (V-PDB) [6]. 

Stable isotopes are reported in delta (δ) notation according to  

 δnX = ([Rsample/Rstandard] – 1) x 103  

where X = N or C; n = atomic mass of heaviest isotope; R = 15N:14N or R = 13C:12C. 

Data accuracy was monitored through routine analyses of in-house standards, which 

are calibrated against international standards. Nitrogen and carbon content was also 

assessed in the dried samples. 

2.5 Statistics 

Initially, linear discriminant analysis (LDA) of individually determined parameters 

(CI, PE, carbon content, 13C, nitrogen content, 15N and C/N ratio) was carried out to 

account for the variation in isotopic composition due to the time of death differing 

from the actual sampling instant. Two specimens were ‘reclassified’ into different 

sampling days according to the ‘best’ LDA model (Accuracy=0.875, No Information 

Ratio (NIR)=0.25 with p=2.6×10-7) that included variables PE, 15N and CI. The ‘re-
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classified’ data were used thereafter. One-way analysis of variance (ANOVA) and the 

Tukey HSD test for post-hoc multiple comparisons were carried out to uncover any 

significant changes over time on the magnitude of spoilage indicators. Whenever the 

homogeneity of variances could not be verified (via Levene’s test), Welch’s F-test 

was used instead of ANOVA and multiple comparisons were done using the Games-

Howell test. All analyses were conducted using R [26] and a level of significance of 

0.10 was chosen has a reasonable balance between type I and type II errors, consider-

ing individual variation and the amount of data. 

3 Results 

During the experiment, all clams were responsive to mechanical stimulation during 

the first seven days, and thus considered to be alive. Between d7 and d10, clams pro-

gressively stopped responding to stimuli. After d10, all remaining clams were consid-

ered dead because they were unresponsive to mechanical stimulation, and their shells 

were permanently closed due to rigor mortis. In the last day of the experiment (d12), 

some clams opened their valves again displaying signs of post-rigor. 

Change of spoilage and quality-related parameters in clams as a result of 

sampling time is presented in Figure 1 and the results of statistical analyses summa-

rized in Table 1. Moisture content showed a slight but significant (p=0.028) decrease 

(81.4% to 79.6%) with time. In contrast, TVB-N values were practically constant (ca. 

8 mg N/100 g) while clams were alive, and increased rapidly (and significantly; 

p=0.032) after death (to 20.8 mg N/100 g at d12). An increasing and significant 

(p<0.001) trend was also observed for pH (6.3 to 7.7). On the other hand, the condi-

tion index decreased over time in opposition to the percentage edibility even if differ-

ences between d0 and d12 were non-significant for both. 

In terms of stable isotopes, nitrogen content and 15N signature have similar 

trends, decreasing from d0 to d8, increasing between d8 and d10, and decreasing af-

terwards. Conversely, carbon content and 13C signature did not vary in a significant 

way (ANOVA, p>0.10) during the experiment. The carbon-nitrogen ratio offsets the 

trends observed for nitrogen and varied significantly (ANOVA, p=0.027) among 

sampling days (Table 1 and Figure 2). 

The relationships among 15N and 13C and their respective elemental con-

centrations are illustrated in Figure 3.  Both C and N isotopic signatures vary slightly 

from heavier towards lighter compositions, except for d10, which shows the most 15N-

enriched value together with the higher C and N contents.  
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Fig. 1. Temporal variations (mean ± standard error) of moisture, TVB-N, pH, condition index 

and percentage edibility in R. decussatus during chilled storage. 
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Table 1. Results of one-way ANOVA and multiple comparisons post-hoc tests applied to the 

parameters analyzed during chilled storage of clams R. decussatus. 

Parameter Mean§ F p 

Moisture (%)  5.20 0.028 

Time (days) 0 81.4b   

8 80.7ab   

10 79.3a   

12 79.6a   

TVB-N (mg N/100 g)  8.56¶ 0.032 

Time (days) 0 8.2a   

8 7.9b   

10 15.5ab   

12 20.8b   

pH  362.34¶ <0.001 

Time (days) 0 6.3a   

8 7.2b   

10 7.6c   

12 7.7c   

Condition Index 85.1 1.09 0.393 

Edibility (%) 27.4 2.11 0.153 

Carbon (%) 41.1 0.48 0.703 

Nitrogen (%)  6.42 0.008 

Time (days) 0 10.63bc   

8 10.24a   

10 10.93c   

12 10.34ab   

C/N ratio  3.75 0.042 

Time (days) 0 4.52ab   

8 4.68b   

10 4.43a   

12 4.60ab   

13C (‰) -18.12 2.03 0.163 

15N (‰)  4.34 0.027 

Time (days) 0 8.66b   

8 8.18ab   

10 8.78b   

12 8.14a   

 

Legend: § - In case of significant ANOVA results (where p<0.10), means per sampling time 

(days) are presented – values sharing a common superscript are not significant at =0.10 (Tuk-

ey HSD test);  - Data considering the “re-classified” individuals according to LDA (see main 

text for further details); ¶ - Due to lack of homogeneity among variances (Levene’s test 

p<0.05), the Welch’s adjusted F-ratio and the Games-Howell post-hoc test were used instead of 

ANOVA and Tukey HSD, respectively. 
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Fig. 2. Temporal variations (mean ± standard error) of nitrogen and carbon contents, carbon-

nitrogen ratio, and 15N and 13C abundances in R. decussatus during chilled storage. 
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Fig. 3. Relations between of 15N and 13C contents, and between each stable isotope composi-

tion and its respective elemental content. 

4 Discussion 

In each sampling moment, the majority of analyzed parameters showed a significant 

variation among their replicates values, especially in the elemental and stable isotopic 

parameters. This observation can probably be explained by individual specific charac-

teristics and the fact that the clams died at different days (between d7 and d10), mak-

ing the standard error higher because the sampled clams, although having the same 
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time of experiment, had different times of death, which interfere with the level of 

spoilage, because spoilage only truly starts after the individuals death [11].  

The continuous increase in pH shows that muscle alterations began once the 

individuals were captured and subject to food deprivation, even when they were still 

alive. Post–mortem pH increase indicates lack of important lactic acid production. 

The main spoilage processes in action here must therefore be related to the production 

of basic compounds resulting from nitrogen deamination, as shown by the increase in 

TVB-N. 

Our results compare well with those of Aníbal et al. [2] for PE and CI, indi-

cating a consistent annual cycle in the physiological conditions of this species. PE is 

not a good spoilage index for experiments conducted in a refrigerated chamber be-

cause once the individuals open their valves the intravalvar water is loss, which can 

be misleading, given that loss of water might then suggest, through PE, that during 

spoilage clams increase their edible content. Instead, CI is a good index for clam dete-

rioration because it is related to dry weight and hence not influenced by moisture 

content. 

Regarding the carbon and nitrogen stable isotope signatures, the values ob-

tained for the clams at the beginning of the experiment are in agreement with previ-

ously published data from the same species and same environment [16]. The initial 

decrease of nitrogen content (from d0 to d8) may be a response to metabolic starva-

tion, where muscle tissue is catabolized to produce energy, with ammonia formation 

and subsequent elimination. This is supported by lower 15N values associated with a 

loss in the heavy 15N isotope [17]. After the animals’ death, the microbiota that devel-

oped in the in-shell liquid start colonizing the meat, increasing the total nitrogen con-

tent because they are also sampled and quantified along with the clam’s flesh. The 

observed enrichment in heavy isotopes from d8 to d10 is also reflecting the addition 

of microorganisms that were developing onto the heavier excreted in-shell fluids with 

a probable N concentration effect explaining different enrichment factors compared 

initial isotopic signatures [10, 25]. From this moment on (d10 to d12), equilibrium is 

established between the microbiota proliferation and the nitrogen losses by the for-

mation of volatile compounds attested by TVB-N content. This process is registered 

in the decrease of 15N values and can be linked either to the continuation of progres-

sive deamination [17] or to bacterial growth adding 15N-depleted biomass to the dete-

riorating clam flesh [13].  

Carbon content did not show significant variations during the experiment be-

cause spoilage processes in clams/seafood are normally nitrogen related (Huss et al. 

2004). However, the C isotopic compositions does reflect a 13C-depletion from d0 to 

d8, while clams are dying and living on their own resources, probably reflecting a 

selective preservation of 13C-depleted organic compounds and release of 13C enriched 

CO2 [13]. Between d8 and d10, the observed increase in 13C values may be due to 

the incorporation of bacterial cells enriched in 13C relative to clam flesh, also explain-

ing the decrease in C/N, or to equilibrium isotopic effects within the shell inducing a 

preferential loss of light carbon [17]. Finally, d10 to d12 present a decrease in 13C, 

probably linked again to a 13C preferential release but this time due to bacterial feed-

ing onto the degraded clam organic matter, as observed in oxic algal degradation [13].  
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In order to fully understand the results it is necessary to comprehend that 

while the clams were alive, bacteria only survived and feed in the intravalvar liquid, 

not being accounted in the stable isotopes analysis. Once the clams died, bacteria 

colonized the clam flesh and their isotopic composition merged with the clams’ flesh 

itself, making the results’ interpretation more complex. 

5 Conclusions 

Stable isotopes analysis, especially for nitrogen, proved to be a good tool for the study 

of clam deterioration and its underpinning drivers. 15N results were able to be related 

with other spoilage indicators, such as pH and TVB-N, and were also suitable to iden-

tify spoilage specific reactions, such as the decarboxylation of amino acids and pro-

duction of volatile nitrogen compounds.  

 In future studies, 34S might prove to be a good spoilage related parameter, be-

cause of the action of hydrogen sulfide-producing bacteria, which are considered 

spoilage specific organisms. 

Regarding spoilage assessment, stable isotopes analysis is possibly not a 

good method for immediate quality control assessment, because it is not a rapid 

method, and requires very expensive instruments that are very difficult to master 

technically. But stable isotopes analysis might play a future role in setting-up or veri-

fying quality assurance programs, where rapidity and cost are less important. 
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