Computability via Analog Circuits

Daniel Silva Graca
CLC and ADM/FCT, Universidade do Algarve, C. Gambelas,
8000-062 Faro, Portugal

July 11, 2003

Abstract

In this paper we are interested in a particular model of analog com-
putation, the General Purpose Analog Computer (GPAC). In particular,
we provide more solid foundations for this model and we show that it
can be used to introduce a notion of computability for smooth continuous
dynamical systems over R". We also show that hierarchies over these dy-
namical systems can be established, thereby defining a notion of relative
computability.

1 Introduction

The General Purpose Analog Computer (GPAC) was introduced in 1941 by
Shannon [19] as a mathematical model of an analog device, the Differential
Analyzer [2]. This device was one of the first (analog) computers to appear and
was intended to solve numerical problems, especially differential equations.
Unlikely to the approach in computable analysis [15, 11, 22], the GPAC is
not directly based on the Turing machine, neither on some effective procedures.
The model basically consists of circuits composed of ‘black boxes’ as indicated
in Fig. 1.1 (the so-called analog units. These are not the units originally used
by Shannon, but they are equivalent). It is required that two inputs and two
outputs can never be interconnected. It is also required that each input is
connected to, at most, one output.
Another different characterization for the GPAC has been given by Pour-El
[14]. However, this last model still have some deficiencies (see [7] for details).
We take inputs 21, ...,z for the GPAC as real unary functions (i.e. these
functions depend on the value of a variable, the time) that are applied to every
input of a unit that is not connected to the output of some other unit. Then an
output for the GPAC will consist of outputs of some units and/or some inputs
of the GPAC. Notice the existence of a parameter « in the integrator unit. This
corresponds to an initial setting that will settle the output for the integrator.
More formally, each output of an unit (and, hence, of a GPAC) will be a real
unary function. This output can be obtained by solving a set of equations. For

instance, if U is a GPAC consisting of only one adder with inputs z; and s,
then the output of the adder will be the solution of the equation y = z1 + x».
In general, if we want to determinate the output of some GPAC with n units,
we have to solve a set of n equations.

k —k “— + +—utv

v —

A constant unit associated An adder unit
to the value k € R

| R —
w f — At.a+ tto u(x)dv(z) v X —uv

v v —

An integrator unit A multiplier unit

Figure 1.1: Representations of different types of units in a GPAC.

Of course, the solution of a system of equations may not be unique or can
even not exist (and it is not difficult to find examples - cf. [7]). In the next
section, we restrict Shannon’s model in order to avoid these problems.

Another important question (already reported in [14, 17]) is what happens
if we allow other types of black boxes beside those indicated in Fig. 1.1. An
answer for this question will be supplied by using the framework introduced in
the next section. This approach will also enable us to present connections with
a hierarchy consisting of smooth continuous dynamical systems defined in R”.

We believe that the model presented in this paper might provide a comple-
mentary theory to computable analysis. An argument for this will be provided
in section 5. It is also worthwhile to notice that this theory is closely related to
the field of control theory [20].

The style of the text is rather informal. In general, we will be more concerned
with the ideas behind the concepts than with a detailed description of notions
and proofs.

2 The basic model

In this section we present the basic model that will be used in what follows. It
is essentially a restricted form of Shannon’s GPAC.!

For the matters of this paper it is only necessary to consider one input for
this model (although it is possible to adapt the model for the case of several
inputs). The first idea is to use the units in Fig 1.1, except integrators, to

1The approach that we use in this paper is slightly different from the one that is used in
[7]. However, it is possible to show that these approaches are equivalent. The author will
provide a proof of that result in a forthcoming paper.

construct acyclic circuits that compute polynomials (polynomial circuits).? The
second idea is to use these circuits as building blocks for more complex GPAC.
These more complex GPACs are constructed in the following manner. Take
n integrators Uy, ...,U,. Then use polynomial circuits such that the following
three conditions hold:

1. Each input of a polynomial circuit is the input of the GPAC or the output
of an integrator;

2. Each integrand input of an integrator is the output of a polynomial circuit;

3. Each variable of integration input of an integrator is the input of the
GPAC.

Formally, a polynomial circuit is defined as follows.

Definition 1 A polynomial circuit is an acyclic GPAC built only with adders,
constants units, and multipliers in the following inductive way:

1. A constant unit is a polynomial circuit with zero inputs and one output;
2. An adder is a polynomial circuit with two inputs and one output;

8. A multiplier is a polynomial circuit with two inputs and one output;

4

. If A and B are polynomial circuits and if we connect the outputs of A and
B to an adder, then the resulting circuit is a polynomial circuit in which
the inputs are the inputs of A and B, and the output is the output of the
adder.

5. If A and B are polynomial circuits and if we connect the outputs of A
and B to a multiplier, then the resulting circuit is a polynomial circuit in
which the inputs are the inputs of A and B, and the output is the output
of the multiplier.

The proof of the following proposition will be left to the reader.

Theorem 2 If xy,...,z, are the inputs of a polynomial circuit, then the output
of the circuit will be y = p(x1,...,x,), where p is a polynomial. Reciprocally,
if y = p(x1, ..., zy), where p is a polynomial, then there is a polynomial circuit
with inputs X1, ..., Tn, and output y.

Definition 3 Consider a GPAC U with n integrators Uy, ...,U, and one input
x. Suppose that to each integrator U;, i =1, ...,n, we can associate a polynomial
circuit A; with the property that the integrand input of U; is connected to the
output of A;. Suppose that each input of A; is connected to the output of an
integrator or to the input x. Suppose also that the variable of integration input

of each integrator is connected to the input x. In these conditions we say that U
is a polynomial GPAC (PGPAC) with input x. (cf. Fig. 2.1.)

2Notice that multipliers could be replaced by integrators and adders (cf. [14, p. 11]).
However, this is not very relevant to our results.

Before continuing with our work, we have to set up more conditions on this
model. We have admitted that the inputs x4, ..., z,, of a GPAC are functions
of a parameter ¢, but we didn’t make any assumption on these functions (about
computability, differentiability, or whatever). When we consider the integrator
units one problem still arises: if I = [a,b] is a closed interval, the Riemann-
Stieltjes integral [; p(t)dy(t) is not defined for every pair of functions ¢,,
even if they are continuous [21].

p(@,y1,Un) — [w

7 —

Figure 2.1: Schema of inputs and outputs of Uy in
the PGPAC U. p denotes a polynomial.

However, it is possible to show that if , 1) are continuously differentiable on
I, then [; p(t)dy(t) is defined. So, from now on, we will always assume that
the inputs are continuously differentiable functions of time.

3 Properties of the model

Provided with the former definitions, we can show that the output of a PGPAC
exists and is unique, in contrast to Shannon’s GPAC.3

Theorem 4 Suppose that the input of a PGPAC is of class C™ on some interval
1, for some r > 1, possibly co. Then the outputs are also of class C" on I.

Theorem 5 Suppose that U is a PGPAC with one input x, of class C' on an
interval [to, tr), where ty may possibly be co. Then there exists an interval [to, t*)
(with t* < ty) where each output exists and is unique. Moreover, if t* < ty, then
there exists an integrator with output y such that y(t) is unbounded as t — t*.

Theorem 6 If y is generated on some non-trivial interval I by a PGPAC with
n integrators and one input x, then there is a nonzero polynomial p with real
coefficients such that

p (‘rayyyly 7y(n)) - O, on I (1)

Definition 7 The unary function y is differentially algebraic if there exists a
nonzero polynomial p with real coefficients such that (1) holds.

Theorem 8 Suppose that y is differentially algebraic on some non-trivial in-
terval I. Then there is a closed subinterval I' C I with non-empty interior such
that y can be generated by a PGPAC on I'.

3Shannon says in its paper [19, p. 338] the following: ‘We shall assume that all ordinary
differential equations have unique solutions and that formal processes of differentiation, inte-
gration, etc. are valid in the region of interest’. However, he does not provide a criteria for
deciding when these conditions hold, in contrast to the PGPAC model.

The proofs of these results are rather technical and can be found in [8]. The
last two theorems assert a classical result on the literature about the GPAC [19,
14, 12]: unary functions generated by (P)GPACs are, in essence, differentially
algebraic functions.

This result indicates that a large class of functions, such as polynomials,
trigonometric functions, elliptic functions, etc., can actually be generated by a
PGPAC. As a corollary, some functions such as the Gamma function,

F(:L'):/ t* e tdt,
0

cannot be generated because they are not differentially algebraic functions [16].

Although this may appear problematic in the context of computable analysis
(for instance, in [15, p. 27] it is indicated that I" is computable), we believe that
the problem is apparent. We will refer to this in section 5.

4 An extension of the model

In the previous models (GPAC, PGPAC) we always worked with the units in-
dicated in Fig. 1.1. But what happens if other types of units are allowed?

Consider an indexed set F = (f;);cr such that f; : R¥ — Ris a C! function,
for k; € N and each 7 € I. Now consider a new kind of PGPAC that is obtained
by allowing only units associated to functions in F or integrators.

Definition 9 A F-circuit is a circuit built inductively like a polynomial circuit,
but using units associated to functions in F instead of those indicated in Fig.
1.1.

Definition 10 An F-integrating circuit (F-1C) is a circuit built like a PGPAC,
where F-circuits are used instead of polynomial circuits.

In recursion theory one defines classes of functions by considering algebras
of functions. Formally,

Definition 11 Let x be a set of functions and OP a collection of operators.
Then [OP; x| denotes the smallest set of functions containing x and closed under
the operations of OP. The set [OP;x] is called a function algebra.

The notation will not be very rigorous (e.g. [OP, G;x] means [OPU{G}; x],
[OP; x1, x2] means [OP; x1 Uxz2], etc.), but the context will be enough to clarify
all situations. We shall consider the following functions and operators.

1. The projections. Let A be a set. For each n,i € N, where 1 <i <n, U™ :
A™ — Ais called projection (over A) and is defined by U* (x4, ..., zp) = ;;

2. The constant functions. For each k € R, fr : R — R is defined by
fe(z) = k;

3. Composition: Suppose that g is an p-ary function, with p > 1, and that
fi,..., fp are n-ary functions. Then the composition operator applied to
these functions by that order yields the n-ary function h given by h(x) =

g(f1(x), ., fp(x)). We write b = C(g; f1, ..., fp)-

We set the following notation

U={U":n,ieNand1<i<n},
CRZ{fk:kER}.

Notice that a PGPAC is simply a (Cg, +, x)-IC. The following result, as we
will see, provides fundamental links between the IC model and the theory of
continuous dynamical systems.

Theorem 12 Let U be a F-IC with n integrators and one input x. Then there
exist n (n + 1)-ary functions hy,...,h, € [C;U, F| such that (Y1, ...,1;) is an
output of U iff there exist n unary functions yi, ..., yn such that:

1. aty1 = hi(t7y17 ayn> and yl(‘r(o)) = Q, where o; € R;'

2. There exist j (n + 1)-ary functions g1,...,g; € [C;U,F| such that ¢; =
gi(gjayl OXy...;Yn © I)a fOT‘i =1,..,7

Proof. It is possible to show that if ¢, ...,7, are the outputs of the in-
tegrators, then the output of each F-circuit is given by f(x, %1, ..., Jn), where
f € [C;U, F] (simply generalize theorem 2). Therefore, each output g; of an
integrator satisfies

@m:%+ﬁmuw@mwmmmmm

where o; € R and h; € [C;U, F]. Then there are unary functions yi, ..., yn
satisfying

w

yi(w) = a; + /(0) hi(w, y1(w), ..., yn(w))dw, (2)

and ¥;(t) = y; o x(t). In fact, if o : R — R is a C! function, then

»(b) b b
s)ds = op(t) ¢ (t)dt = o @(t)do(t).
Lwﬂ) Afwmw> Afw)w)

The first equality comes from the substitution formula for definite integration
[4, p. 265]. The second equality comes from a well known result for Riemann-
Stieltjes integrals [21, formula (1.2.3)]. Part 1 of the theorem follows by differ-
entiating equation (2).

Part 2 of the theorem follows from the fact that each output is the input z,
the output of some integrator, or a single output of a F-circuit.

Reciprocally, if conditions 1 and 2 are satisfied, then it is not difficult to
construct a F-IC U with input z, n integrators, and output (1, ...,7;). =

Corollary 13 y is generated by a PGPAC iff it is a component of the solution
v = (Y1, -, Yn) of a differential equation Z—’I’ = p(y,x), where p is a vector of
polynomials.

Proof. The PGPAC uses as basic functions elements of (Cg,+, x). But
[C; U, Cr,+, x] is the set of all polynomials. Then part 1 of theorem 12 gives us
yi = pi(t,y1, ..., yn), where p; is a polynomial. Moreover, by using part 2 of that
theorem, we conclude that each g; is a polynomial. Hence, it can be written as
gi = qi, where g; is a polynomial. Therefore, for the special case of polynomials,
part 1 and 2 of theorem 12 can be condensed in a single system Zl%’ = p(y,z),
where z is the input. (Note that some of the y;’s actually represent the functions

gi.) m

5 Dynamical systems

In this section we explain the importance of theorem 12 and corollary 13. One
of their consequences is that although the IC model and standard computable
analysis theory may appear quite different, from the dynamical systems point
of view, they complete each other (at least, in R™).

We first start with a few basic definitions.

Definition 14 A dynamical system defined on the topological space S over A =
Ry (A =N) is a triple (S, A, ¢), where ¢ : S x A — S is a function satisfying

1. Initial condition: ¢(p,0) =p for any p € S;
2. Continuity on both arguments;

3. Semigroup property:

o(B(p, 1), t2) = o(p, t1 + t2),
for any point p € S and any t1,t5 € A.

When A = R;{ , we say that we have a continuous dynamical system. On the
other side, when A = N, we say that we have a discrete dynamical system. S is
the state space and points in S are called states.

Notice that in the above definition we could replace Rg by R and N by Z.
In these cases we say that we have reversible dynamical systems.

Let us analyze the reasons that motivated our dynamical systems approach
to computability (notice that this already appears in some papers, e.g. [13, 10,
1, 18]).

One of the reasons is tied up to the notion of time. It seems natural that a
computer carries out a sequence of instructions along time. For example, one of
the most important measures of computational complexity is time complexity.
In dynamical systems, time is handled by the semigroup A.

Another important aspect is the existence of some space where the process
of computation is carried out. For instance, a Turing machine has one or more
tapes and also some states. This is modelled by the state space.

Finally, a computer must follow some ‘mechanical process’ while it is com-
puting. This is given by the function ¢. It is also natural that, given a computer
and some initial state, and for time 0, we should have as current state the given
initial state (cf. point 1 of definition 14). Moreover, if we compute from an
initial state pg for ¢; time units, obtaining a state p;, and then start computing
to time units from state p;, we should get as final state the same state that
we would obtain starting from py and computing for ¢; 4 to time units. This
explains the semigroup property. Finally, condition 2 says that we do not want
functions ¢ ‘too strange’.

As a concrete example, each Turing machine is a discrete dynamical system
in Z? [1, proposition 5.1]. Taking in account all the facts presented above we
could perhaps say that a computer is simply a dynamical system. Then a notion
of computability can be defined as follows.

Take the class of functions that can be generated by a model of computa-
tion. This is defined to be the class of computable functions. Notice that in the
classical case, and also in computable analysis, some object is computable if it
is the limit object obtained by carrying out a sequence of steps in the respective
model, perhaps through infinite time. For instance, if we take as model the
Turing machine, then the computable functions correspond to recursive func-
tions. If we take Type-2 Machines [22] and a represented space (R, dgr), then
the computable functions correspond to (dg, dg)-computable functions.

Hence, if the computational model is seen as a dynamical system, then com-
putable objects do not correspond to dynamical systems, but instead to their
attractors. In this manner a continuous object can be generated by a model
associated to a discrete dynamical system, working with a discrete state space.
It is important to remark that, in this case, dynamical systems are not directly
related to computable objects, but instead to the underlying model of compu-
tation and, indirectly, to these computable objects.

In opposition to the previous case, when using the PGPAC model, com-
putable objects are no longer objects obtained through limit operations. Al-
though it is possible to use this approach (and to show that, e.g. points and
many chaotic attractors are computable) it does not reflect the type of com-
putation carried out by many continuous time devices, such as the Differential
Analyzer, where the output is obtained in ‘real time’. Hence, the work presented
in this paper differs from the computable analysis approach in two aspects: (i)
it uses a continuous time model of computation, instead of using a discrete time
model (ii) the outputs are obtained in ‘real time’, instead of being successively
approximated. Under these assumptions, the PGPAC-computable functions are
given by corollary 13.

Moreover, by adding more power to the model, we can generate a full hier-
archy having as bottom the class of computable functions. For example, in the
classical case, we can consider the jump operation [6]. This is done by consid-
ering Turing machines with oracles. It is well known that the Halting Problem

is not computable by a Turing machine and, hence, if we use an oracle that
solves the problem, we will get more power. This defines the class next to the
computable functions. By taking a similar approach (use an oracle that solves
the Halting Problem for the previous class), we get a non-collapsing hierarchy
having as bottom the computable functions.

The same thing can be done with ICs. The bottom of the hierarchy would be
given by corollary 13. Then, because I' does not belong to this class, we could
add a unit generating I', obtaining (Cg,+, X,I')-ICs. In this manner we can
define the next class. Then we might add to the model a function not generated
by (Cg,+, x,T')-ICs (the class of functions generated by this model is given by
theorem 12), therefore defining a new larger class and so on.

The following question can be put about the last procedure: Is there always
a next class? By other words, does the hierarchy collapses? We know that there
is a class that properly contains the functions generated by PGPACs. But what
about for further classes?

We don’t have an answer for this yet but we strongly believe that there is a
non-collapsing hierarchy of C! functions that can be defined as suggested above.

Relatively to the issue of continuous time dynamics, it is worthwhile to
mention that a continuous dynamical system working on the euclidean space S
is associated to an ordinary differential equation

x' = f(x), (3)

where x is a unary function with x(¢) € S (provided ¢ is of class C1) [9, p. 160].
There is also a converse result.

It might appear that the last result is only true for autonomous equations like
(3) (the equation does not depend on t), but we can always reduce a differential
equation

x = f(xa t)

in R™ to an autonomous differential equation in R**!. This is done by consid-

ering the system
y' = [f(y.?)
2 =1.

It is easily seen that y = x, thus showing the result.

Therefore, C'' continuous dynamical systems in R™ can be identified with
differential equations like (3). Hence, by theorem 12, it seems that the IC is
especially well suited to deal with continuous dynamical systems over R™.

This is the reason for the assertion in the beginning of this section: the IC
model and computable analysis are complementary while studying computabil-
ity issues in R"™. Indeed, the first uses continuous dynamical systems to define
a notion of computability, while the second uses models related to discrete dy-
namical systems to achieve its purposes.

We believe that this is meaningful, because we provide a tool for dealing
with computability in continuous time dynamics.

For example, although modern computers are best described using discrete
procedures, as physical devices they compute in continuous time. Moreover,

discrete procedures are not very well designed to deal with processes that work
in ‘real time’. These processes are common, for example, in control theory.

Therefore, this continuous time dynamics approach is needed if one wants
to study the computational capabilities of natural phenomena. We think that
only this kind of approach can answer questions such as: ‘Is there some realistic
physical device with super-Turing power?’.

So, we believe that the IC has an important role to play in the description
of continuous dynamical systems, perhaps similar to the one that is played by
the Turing machine in discrete dynamical systems.

6 Conclusion

We have presented a new model (PGPAC) based on Shannon’s GPAC and we
have shown that this model presents some characteristics that make it more
suitable than Shannon’s and Pour-El’s GPAC. Moreover, we have extended this
model (to the IC model) and also established links with the theory of continuous
dynamical systems.

We have also explained how the IC model can provide a complementary
theory relatively to computable analysis, by using the framework of dynamical
systems. In this manner, the traditional point of view in computable analysis
is to introduce a notion of computability via discrete dynamical systems, while
the IC gives a notion of computability via continuous dynamical systems.

It is worthwhile to explore relations between those two approaches. For
instance, one could ask under which assumptions PGPACs lead to computable
functions, in the sense of computable analysis. In [3, p. 3] it is pointed out
that any analytic differentially algebraic function (functions generated by the
PGPAC are of this type) satisfies an equation like (1), where p has integer
coefficients and, therefore, the computational power of the PGPAC does not
rely on its capacity to use the infinite amount of information which can be
encoded in a real number. Moreover, Campagnolo also presents a conjecture [3,
conjecture 3.5.1], where functions computable by PGPACs that only have access
to rational constants in its initial conditions and parameters, are expected to
have primitive recursive upper bounds and, therefore, be computable.

An alternative direction that might provide a bridge between these two dis-
tinct areas can also be found in [8]. Here it is presented a sketch of ‘effective
GPACs’, where initial parameters can only take values in some set A C R. Then,
by using an ‘initialization procedure’, it is possible to generate other constants,
and therefore to bound the computational power of the model. For instance, if
we pick A = {—1,0,1}, the corresponding model will only access a countable
number of constants in opposition to the standard model that has access to all
real constants. Among these constants are the rational numbers, e, 7, and v/2.
However, none of the previous approaches have been further developed.

Some directions for further research on the IC model can be pointed out.
Let us present some of them.

10

. The Turing machine is usually seen as an adequate model of computability

for discrete dynamical systems. Can we say that the IC model has the
same role for processes working in continuous time?

Can we extend the class of functions generated by a PGPAC in a realistic
manner? By other words, the class of all dynamical systems associated to
a differential equation y’ = p(y,z), where p is a vector of polynomials,
should be taken as the bottom of the hierarchy described in section 5, or
should we consider a larger class?

How can we precisely define a notion of complexity for the PGPAC? And
which are its connections with the theory of dynamical systems? For
instance, in [5] it is shown that restricted forms of integration lead to a
hierarchy of continuous time systems related to the Grzegorczyk hierarchy.

. Is it possible to establish connections with computable analysis? In par-

ticular, is it possible to further exploit the ideas presented above?

Acknowledgments. The author would like to thank Manuel Campagnolo,

José Félix Costa, Vasco Brattka, and the anonymous referee for their helpful
comments on this paper. This work was partially supported by Fundacdo para a
Ciéncia e a Tecnologia (FCT) and FEDER via the Center for Logic and Compu-
tation - CLC, and is inserted in the FCT project ConTComp POCTI/MAT /4597
8/2002. Part of this work appeared in the author’s MSc dissertation supervised
by José Félix Costa.

References

1]

M. S. Branicky. Universal computation and other capabilities of hybrid and
continuous dynamical systems. Theoretical Computer Science, 138(1):67-
100, 1995.

V. Bush. The differential analyzer. A new machine for solving differential
equations. Journal of the Franklin Institute, 212:447-488, 1931.

M. L. Campagnolo. Computational Complezity of Real Valued Recursive
Functions and Analog Circuits. PhD thesis, IST/UTL, 2002.

R. Courant and F. John. Introduction to Calculus and Analysis, volume I,
Springer, 1989.

M. L. Campagnolo, C. Moore, and J. F. Costa. An analog characterization
of the Grzegorczyk hierarchy. Journal of Complexity, 18(4):977-1000, 2002.

N. J. Cutland. Computability: An introduction to Recursive Function The-
ory, Cambridge University Press, 1980.

11

[7]

8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]
[21]

22]

D. S. Graga and J. F. Costa. Analog computers and recursive functions
over the reals. Journal of Complezity, to appear.

D. S. Graga. The General Purpose Analog Computer and Recursive Func-
tions over the Reals, MSc thesis, IST/UTL, 2002. (available online at
http://w3.ualg.pt/ ~dgraca.)

M. W. Hirsch and S. Smale. Differential Equations, Dynamical Systems,
and Linear Algebra, Academic Press, 1974.

P. Koiran, M. Cosnard, and M. Garzon. Computability with low-
dimensional dynamical systems. Theoretical Computer Science, 132:113-
128, 1994.

Ker-I-Ko. Computational Complexity of Real Functions, Birkh&user, 1991.

L. Lipshitz and L. A. Rubel. A differentially algebraic replacement theorem,
and analog computation. Proceedings of the AMS, 99(2):367-372, 1987.

C. Moore. Unpredictability and undecidability in dynamical systems. Phys-
ical Review Letters, 64(20):2354-2357, 1990.

M. B. Pour-El. Abstract computability and its relations to the general
purpose analog computer. Transactions of the AMS, 199:1-28, 1974.

M. B. Pour-El and J. I. Richards. Computability in Analysis and Physics,
Springer, 1989.

L. A. Rubel. A survey of transcendentally transcendental functions. The
American Mathematical Monthly, 96:777-788, 1989.

L.A. Rubel. The extended analog computer. Advances in Applied Mathe-
matics, 14:39-50, 1993.

H. T. Siegelmann and S. Fishman. Analog computation with dynamical
systems. Physica D, 120:214-235, 1998.

C. Shannon. Mathematical theory of the differential analyzer. Journal of
Mathematics and Physics, 20:337-354, 1941.

E. D. Sontag. Mathematical Control Theory, Springer, 2nd Edition, 1998.

D. W. Stroock. A Concise Introduction to the Theory of Integration,
Birkhéauser, 3rd edition, 1999.

K. Weihrauch. Computable Analysis: An Introduction, Springer, 2000.

12

