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ABSTRACT 

Bottom trawling for crustaceans in Portuguese coastal waters constitutes a rather 

important fishery in revenue terms, despite its clear negative impacts on deep-sea 

communities and marine ecosystems. This poorly selective harvest strategy catches 

large amounts of unwanted species that are thrown overboard for various reasons. 

However, survival of discards is not yet properly assessed and constitutes an essential 

parameter for the upcoming landing obligation, with an exemption for species with 

“high survival”. In this work, time-to-mortality and a vitality assessment were used to 

estimate immediate mortality and identify important biological characteristics on the 

susceptibility of a group of 14 by-catch species, most with commercial interest (Conger 

conger, Galeus melastomus, Helicolenus dactylopterus, Lepidorhombus boscii, Lophius 

budegassa, Lophius piscatorius, Merluccius merluccius, Micromesistius poutassou, 

Mullus surmuletus, Phycis blennoides, Scyliorhinus canicula, Trigla lyra, Trachurus 

trachurus and Trachurus picturatus). Only S. canicula and C. conger were identified as 

species with potential to survive after the discarding process. Present results on time-to-

mortality show significant differences when comparing individual sizes for some 

species, with smaller individuals dying faster than larger ones. Furthermore, species 

with scales, gas bladder and high metabolic rates are more vulnerable to die after being 

discarded. A short captive observation experiment with C. conger was conducted, with 

84% survival after 65 hours of monitoring. However, this survival rate is likely to be 

overestimated due to two facts: 1) the mortality rate did not stabilize at the end of the 

experiment; and 2) the majority of individuals showed severe injuries (scratches, bruises 

and deep wounds). These outcomes can help to identify species that will likely survive 

the discarding process, factors influencing its survival and provide reliable estimates of 

unaccounted fishing mortality, essential for stock management and conservation. 

 

 

Keywords: by-catch and discards; time-to-mortality; biological traits; survival; 
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RESUMO 

O arrasto de fundo é uma das artes de pesca mais comum em todo o mundo, apesar dos 

seus impactos destrutivos: desde modificações na morfologia dos fundos marinhos e 

ressuspensão de sedimentos a alterações nos ciclos de nutrientes e biodiversidade em 

águas profundas. Devido à sua natureza não selectiva, as redes de arrasto capturam 

grandes quantidades de espécies não desejadas que são posteriormente rejeitadas, no 

caso de não terem valor comercial, quota ou outras restrições legislativas (tamanhos 

mínimos legais, limites de percentagem de espécies não-alvo). De modo a evitar este 

problema, uma obrigação de desembarque tem vindo a ser implementada com a reforma 

da Política Comum de Pescas, que força os pescadores a manter a bordo e descarregar 

todas as espécies que possuem uma quota (ou total admissível de captura). No entanto, 

existem várias excepções a esta legislação. Uma delas é para espécies com ‘elevada 

sobrevivência’, que podem continuar a ser rejeitadas desde que haja evidências 

científicas que suportem esta decisão, daí a importância de averiguar a sobrevivência 

das rejeições.  

A frota de arrastões de marisco em Portugal tem como espécies-alvo o lagostim 

(Nephrops norvegicus), a gamba-branca (Parapenaeus longirostris) e o camarão-

vermelho (Aristeus antennatus), operando sobretudo ao largo dos canhões de Lagos, 

Portimão e Faro. Este segmento da frota representa menos de 4 % do total de licenças 

de pesca, mas os crustáceos capturados são o grupo mais caro, atingindo preços de 16 

euros por kg em 2016. Contudo, a taxa de rejeição de pescado aproxima-se dos 70 %, 

com mais de 90 espécies de vertebrados e invertebrados. Vários projectos dedicados ao 

estudo das rejeições têm vindo a ser realizados, com foco na identificação de espécies, 

quantificação das taxas de rejeição e impactos ecológicos e económicos. Estratégias de 

mitigação como diminuição do comprimento do saco da rede e sistemas de grelhas 

selectivas foram testadas, mas apenas as grelhas demonstraram eficiência em reduzir a 

captura de peixe não desejado, sem afectar significativamente a captura de crustáceos. 

Um aumento do tamanho da malha no saco de 55 para 70 mm também produziu 

resultados significativos em termos de redução de pescado rejeitado. No entanto, 

nenhuma destas alterações técnicas foi adaptada pelos pescadores, devido a possíveis 

impactos económicos. Artes de pesca estáticas como armadilhas para lagostim e gamba 

têm vindo a ser investigadas como alternativa ao arrasto de fundo, pois produzem 

reduzidos impactos nos habitats marinhos e quase nenhum pescado é rejeitado.  
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Quanto à sobrevivência das rejeições, experiências com espécies não desejadas de peixe 

e caranguejos pescados com ganchorra mostraram taxas de sobrevivência entre 54% e 

81% após 48 horas em cativeiro. No cerco, 20% a 80% da sardinha sobreviveu após a 

captura e durante um mês em tanques. No arrasto de fundo, apenas estudos com 

lagostim foram concretizados, com taxas de sobrevivência entre 13% e 60%, mas 

nenhum sobre espécies rejeitadas. Há três metodologias principais que podem ser 

usadas na investigação da sobrevivência: estudos de vitalidade; observação em 

cativeiro; e estudos de marcação-recaptura ou biotelemetria. Escalas de vitalidade e 

indicadores como tempo-para-mortalidade podem ser aplicados para avaliar a 

sobrevivência imediata. Apesar de não conseguirem prever mortalidade após rejeição, 

estes métodos são simples de aplicar e fornecem informação relevante para um elevado 

número de espécies. A observação em cativeiro consiste na captura de animais 

selvagens que, antes de serem rejeitados, são transferidos para tanques ou outras 

instalações e monitorizados durantes dias até semanas. Idealmente, a experiência de 

sobrevivência deve prolongar-se até a taxa de mortalidade estabilizar. Esta metodologia 

implica maiores custos e logística quando comparada com a anterior. No entanto, 

permite estimar de forma mais fiável a taxa de sobrevivência e fazer inferências acerca 

da sobrevivência a longo-prazo após rejeição. 

Este trabalho está dividido em duas partes: 1) estudo das susceptibilidades das espécies 

rejeitadas; 2) experiência de sobrevivência a curto prazo com congro (Conger conger). 

Ambas foram realizadas a bordo de um arrastão em pesca comercial. No primeiro, 

foram usados indicadores de sobrevivência imediata para um grupo de 14 espécies: 

escalas de vitalidade com 4 categorias, desde excelente estado a moribundo; tempo-

para-mortalidade, ou tempo até o animal não apresentar qualquer sinal de vida, quando 

exposto ao ar; e registo de vários tipos de lesões externas, como perda de escamas, 

arranhões ou feridas expostas. Estes indicadores permitem distinguir espécies com 

potencial de sobrevivência. Porém, a avaliação da vitalidade necessita de ser adaptada 

às particularidades de cada espécie, sobretudo a animais de profundidade que possuem 

estratégias de conservação de energia quando em situações de stress extremo. Foram 

também identificadas características biológicas que determinam a vulnerabilidade destas 

espécies: tamanho do animal, bexiga-natatória, escamas e taxa metabólica. Para 

algumas espécies, o tamanho dos indivíduos representou um factor relevante, pois 

animais mais pequenos são mais vulneráveis e morrem mais rapidamente do que 
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animais de maiores dimensões. Para além disso, espécies com escamas, bexiga-natatória 

e taxas metabólicas elevadas também são menos resistentes e têm reduzidas hipóteses 

de sobreviverem após rejeição. Apenas duas espécies surgiram como candidatas a 

estudos mais pormenorizados para averiguar o seu potencial de sobrevivência: pata-roxa 

(Scyliorhinus canicula) e congro ou safio (Conger conger). Assim, na segunda parte 

deste estudo, 84% dos congros sobreviveram após 65 horas de monitorização. Contudo, 

esta taxa de sobrevivência está sobrestimada devido a duas problemáticas: a mortalidade 

não estabilizou no final do período de observações, ou seja, se a experiência tivesse sido 

mais prolongada, ainda iria registar-se maior mortalidade; e cerca de 70% dos animais 

apresentaram lesões externas severas, o que coloca sérias questões acerca da sua 

recuperação e sobrevivência após rejeição. Para estudos futuros, recomenda-se 

experiências de sobrevivência mais prolongadas, em tanques em terra, de modo a evitar 

os problemas de espaço e logística que implicam trabalhar num navio. As metodologias 

escolhidas neste trabalho limitaram as conclusões obtidas, mas ao mesmo tempo 

implicaram uma estratégia de obter informação nova e importante, com baixo custo, que 

pode ser usada como ponto de partida para outros projectos. Estes resultados 

identificaram espécies que poderão sobreviver após a sua rejeição, factores que 

influenciam a sua sobrevivência e estimativas de mortalidade provocadas pela pesca que 

são essenciais à gestão e conservação das populações.  
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1. INTRODUCTION 

Most marine fisheries are mixed fisheries directed towards only a few commercial target 

species but along with the target species, a variable and often high number of by-catch 

species is captured (Borges & O’Dor 2010). The Algarve deep-water trawl fishery 

targets three main crustacean species (Parapenaeus longirostris, Nephrops norvegicus 

and Aristeus antennatus) at fishing depths of between 200 and 700 meters. Sweeping 

the seabed with heavy ground gear imposes serious consequences for benthic 

ecosystems. Also, a number of unwanted species are caught and often rejected 

overboard. This study aimed at studying the vulnerability and survival potential of these 

discarded species, taking into account biological factors that determine their mortality.  

 

1.1 The by-catch problem  

Bottom trawling represents one of the most common fishing practices around the 

world despite its severe impacts on marine ecosystems, causing modifications in sea-

bottom morphology and resuspension of sediments. As a result, alterations on the 

nutrient cycles and benthic biodiversity are evidences of its potential consequences 

(Pusceddu et al. 2014; Clark et al. 2015). Trawl nets as the ones used in crustacean 

demersal trawlers collect an extensive range of species and sizes, thus have high by-

catch rates, meaning amounts of unwanted species that are hauled on-board. For a clear 

definition, by-catch is defined as any organism caught unintentionally, while discards 

are the portion of the catch which is not used and thrown away at sea (Borges & O’Dor 

2010). In fact, by-catch can represent a large proportion of total catch and may be high 

in species diversity, especially in demersal mixed-species fisheries. In the Portuguese 

demersal trawl fishery, close to 80% of total catch weight is discarded, composed by 

more than 90 vertebrate and invertebrate species (Borges et al. 1997). Some of these 

species have economic value and are retained and sold, while others are discarded 

overboard due to no marketable value, quota or other legal restrictions (minimum 

landing sizes, catch composition regulations; Borges et al. 2001; Costa et al. 2008; 

Erzini et al. 2002). “The discard problem” raises a number of issues, from policy and 

ethical implications, fisheries management, to ecological, economic and technical 

concerns (Kelleher 2005).   Discards, when dead, may have serious consequences on the 

populations of target and non-target species, especially if the majority of the rejected 
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specimens are undersized, which can lead to decreases in future yield and reproducing 

possibilities (Tingley et al. 2000). At the same time, fisheries discards and offal 

represent an important source of food mainly for benthic scavengers and invertebrates, 

and also for mid-water opportunistic species such as sharks, marine mammals and 

seabirds (Veiga et al. 2015; Votier et al. 2004; Olaso et al. 1998). The combined effect 

of trawling disturbance and discards may favour the rapid and short-term growth of 

small scavenger benthic species of amphipods and isopods for example, leading to 

important alterations of deep-water trophic webs and species interactions (Bellido et al. 

2011; Kelleher 2005; Castro et al. 2005). 

When comparing reported discard estimates from European Union (EU) 

logbooks with those obtained by scientific observers, the reported by-catch represented 

only 0.06% of the weight recorded by researchers (STECF 2013). Thus, by-catch and 

discards studies are essential not only to quantify the impacts of discarding practices on 

fish stocks but also to understand to which extent fishing activities affect and alter the 

marine environment. 

 

1.2 The Landing Obligation 

In terms of fisheries management of European Union fleets, the Common 

Fisheries Policy (CFP) aims to promote fisheries that should exploit marine resources in 

an environmentally, economically and socially sustainable way. To achieve this, an 

ecosystem-based approach shall be applied to minimise negative impacts of fishing 

activities on marine ecosystems. Moreover, the CFP targets the restoring or 

maintenance of fish stocks above biomass levels capable of producing maximum 

sustainable yield, which means the highest theoretical amount that can be constantly 

taken from a stock under regular environmental conditions without significantly 

disturbing the reproduction process (European Union 2013). Another management tool 

focusing on protection of marine biodiversity resources is the Marine Strategic 

Framework Directive (MSFD) with the main goal to achieve a good environmental 

status of EU’s marine waters (European Commission 2016). All these goals were 

planned to be achieved no later than 2020, together with a gradual elimination of 

discards through the introduction of a discard ban. This key modification obligates 

fishermen to keep on board and land all regulated species; i.e., species under quotas 
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(total allowable catches or TACs) or minimum conservation reference sizes (MCRS, in 

the Mediterranean). For this, species with TACs will suffer quota increments in order to 

represent real total catch, consequently increasing fishing mortality. For species with 

limited quota, these can become ‘choke species’, forcing the vessel to stop fishing once 

the quota is reached. However, there are several exceptions to this regulation in which 

the release of animals will still be permitted. This includes species with special 

conservation status as rays and sharks for which fishing is prohibited (European Union 

2017). 

1.2.1 ‘High survival’ exemption 

 An exemption for “species for which scientific evidence demonstrates high 

survival rates” is in place, but the term ‘high survival’ is not absolutely defined and 

might induce some ambiguity. To capture and keep on-board species that may survive 

the discarding process can also have negative impacts on spawning stock biomass, so 

this exemption should be applied in a case-by-case basis considering detailed 

characteristics of the species and fisheries (STECF 2013; paragraph 4, Article 15, 

European Union 2013). 

1.2.2 ‘De minimis’ exemption 

 Moreover, de minimis exemptions were also created that allow for discarding of 

5% of TACs for each stock, in the most challenging circumstances, namely when 

“improvements in selectivity are considered to be very difficult” and “disproportionate 

costs of handling unwanted catches do not represent more than a certain percentage”, 

concepts that also contain subjectivity in how to express ‘difficulties in improving 

selectivity’ and ‘disproportionate costs’. The problem of improving selectivity is that 

implies changing the current fishing practices that might decrease the revenues of the 

fleet. So, the real issue are the economic repercussions of increasing selectivity instead 

of a technical ‘difficulty’ (STECF 2013; paragraph 5, Article 15, European Union 

2013). 

1.2.3 Inter-species and inter-annual quota flexibilities 

 In order to avoid ‘choke species’, a mechanism of inter-species quota flexibility 

was also introduced to offer a method of exchanging quota from a target species (donor) 

to a non-target species (recipient), up to 9% of the quota of the target species. This can 
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occur when a vessel has finished its quota for a specific stock and needs to stop fishing 

in areas where that species is caught, irrespective of how much quota it has for other 

stocks in the same area (STECF 2013; paragraph 8, Article 15, European Union 2013). 

However, the recipient non-target stock must be inside safe biological limits, otherwise 

this flexibility cannot be applied. An inter-annual quota flexibility of 10% of the TAC 

can similarly be used for species under the landing obligation (paragraph 9, Article 15, 

European Union 2013). 

Theoretically, these exceptions shall only be applied after other technical 

methods to avoid capture of unwanted species have been tested, because the combined 

application of the exemptions might provide a way of continuing to discard species as 

formerly. This might discourage the objectives of improving exploitation patterns and 

minimising unwanted catches (STECF 2013, 2014). 

1.2.4 Possible negatives outcomes 

 Following this landing obligation, logistic and economic complications might 

emerge due to increased sorting time and storage on board of former non-kept species 

that can lead to greater costs and/or lower incomes. Currently, there are no prepared 

installations or procedures on harbours to manage landed discards (Veiga et al. 2015). 

Besides, previously discarded species cannot be used for direct human consumption, so 

should be processed for other means as fish meal and oil, pet food, pharmaceuticals and 

cosmetics (European Union 2013). This additional burden may cause non-compliance 

with the no-discard policy if considered as unfeasible by fishermen (STECF 2014). 

Examining fishers’ perceptions and behaviour can help to understand likely 

complications that might arise from the landing obligation (Villasante et al. 2016). As 

an example, even when applying exemptions, the results of modelling the impact of the 

landing obligation in UK demersal fisheries show that only 39% of the available quota 

could be landed in 2019, causing a drastic reduction of revenue, mainly due to the 

problematic of choke species (Russell et al. 2016).  

The evaluation of economic and social impacts of the landing obligation at this 

initial period is still being developed (European Commission 2016b). In Norway, the 

‘discard ban package’, implemented throughout the last 30 years, combines strategies 

such as a system of little  compensation for fishermen with landing discards (only to pay 

the costs) and real-time closed areas when by-catch reached a certain percentage, which 
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would obligate the vessel to travel to another fishing area. Together with other technical 

measures (e.g. grid sorting systems), this scheme promoted incentives to fish more 

selectively and allowed a quick recovery of the exploited stocks (Diamond & Beukers-

Stewart 2011). However, current economic incentives in European fisheries seem to 

encourage the usual discarding routines and retain the maximum amount of commercial 

species instead of focusing in changing exploitation patterns and fisher’s practices 

(STECF 2013; Zimmermann et al. 2015).  

Accurate information about discard rates and survival of rejected specimens is 

essential to determine sources of unaccounted fishing mortality and thus calculate 

correctly fishing at maximum sustainable yield level and other biological reference 

points (STECF 2013). Moreover, with increases in quotas for regulated species in order 

to account for the former discards that will be landed, the stock assessments need to be 

as exact as possible to maintain the primary goal of sustainable use of fisheries 

resources. 

 

1.3 The Portuguese trawl fishery 

The trawling fleet in Portugal is composed mainly by vessels targeting fish and 

crustaceans, with distinct métiers and regulation measures, operating at a minimum 

distance of six nautical miles off the coast. The crustacean bottom trawlers have limited 

licenses, for two separate mesh size categories: 55-59 mm mesh size with which target 

species have to compose 30% of total catch and 70 mm net mesh size when targeting 

Norway lobster (Diário da República 2000). The fish trawling fleet targets mainly semi-

pelagic species, such as horse mackerel (Trachurus trachurus) and Atlantic mackerel 

(Scomber scombrus); and uses nets with 65-69 mm mesh size, where 70% of total catch 

must be composed by these target species. These by-catch limitations have been one of 

the main reasons for discarding of commercial species (Campos 2003). Besides being 

managed by catches limits (total allowable catches or TACs) and technical measures 

(minimum conservation reference size or MCRS), control of the fishing effort can also 

be done for these fleets by implementing closed seasons, as for rose shrimp 

(Parapenaeus longirostris; Diário da República 2006). However, the implementation of 

a minimum landing size is not always in agreement with the biological characteristics of 

the species, often being below the size of first maturation (Campos 2003). For instance, 
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minimum landing size for European hake is set at 27 cm, though the length of first 

maturity is nearly 33 cm for male and 45 cm for female (Piñeiro & Saínza 2003). The 

same occurs for other species: Trachurus trachurus has a MCRS of 15 cm, while the 

length of first maturation ranges from 21 to 30 cm; Conger conger reaches first 

maturation at minimum of 2 meters length, but the MCRS in Portuguese legislation is 

57 cm. For one of the main target, Norway lobster, a minimum landing size of 20 mm 

was set despite reaching maturity at 23 mm of carapace length (Abelló & Sardá 1982; 

Froese & Pauly 2016; Diário da República 2001).  

This deep-water crustacean fishery targets the rose shrimp P. longirostris, the 

red shrimp Aristeus antennatus and the Norway lobster Nephrops norvegicus and 

concentrates around the Canyons of Lagos, Portimão and Faro (Barlavento or occidental 

coast of the Algarve). The substrate of these fishing grounds is composed mainly by a 

mixture of silt and mud, the preferred habitat of the target species (Silva et al. 2014). 

The distributions of the three crustacean species overlap, but P. longirostris is 

commonly found between 200 and 400 m depths, while A. antennatus from 300 to 600 

m depths; N. norvegicus has an uneven distribution between 200 and 700 m (Monteiro 

et al. 2001). During recent years, the landings of rose shrimp have been increasing in 

contrast with the declining catches of Norway lobster, possibly due to the restrictions in 

quota and fishing closures imposed for N. norvegicus to allow for the recovery of the 

stock, as well as an increased abundance of rose shrimp (Diário da República 2016; 

Silva et al. 2010). Despite the fact that trawlers only represent around 3.7% of the total 

number of Portuguese fishing licenses, they are a very important segment of the 

Portuguese fleet. For example, the mean commercial value of the crustacean species 

was more than 16 euros per kg and at the same time represented around 1% of total 

landings in 2016 (Figures 1.1 and 1.2; INE 2017). 
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Figure 1.1 - Mean landings of landed fish on Portuguese ports by main species groups in 2016. 

Weight in tonnes was converted in weight as percentage (INE 2017). 

 

Figure 1.2 - Mean prices per kilogram of landed fish on Portuguese ports by main species 

groups in 2016 (INE 2017). 

 

After 60 years of heavy trawling the seafloor in south and southwest Portuguese 

coasts, there is evidence of erosion and degradation of the sea bottom. This leads to 

alterations in habitat structure and biodiversity, with increased risk for particular 

ecosystems such as crinoid beds that host a diverse number of taxa (Morais et al. 2007; 

Fonseca et al. 2014). Another relevant effect of this fishing activity is the diversity and 

amounts of unwanted species discarded primarily due to low or no commercial value 

84% 

15% 

0% 

1% 

1% 

Marine fish Molluscs Brackish and freshwater species Crustaceans

9.46 

15.98 

3.2 

1.75 

Brackish and

freshwater species

Crustaceans Molluscs Marine fish

0

5

10

15

20

E
u

ro
s/

k
g

 



 

8 

 

(Borges et al. 1997, 2000, 2002). Previous work has shown discard rates of 

approximately 70% in crustacean trawlers (Monteiro et al. 2001; Costa et al. 2008), 

meaning weight of by-catch surpassing largely the weight of target species. The main 

discarded fish species are blue whiting (Micromesistius poutassou), European hake 

(Merluccius merluccius), Atlantic horse mackerel (Trachurus Trachurus) and blue jack 

mackerel (Trachurus picturatus), conger (Conger conger) and shark species 

(Scyliorhinus canicula, Galeus melastomus, Etmopterus spp.). Fish communities change 

according to depth range; in shallow waters until 120 meters deep, horse mackerel and 

axillary seabream compose most of the total biomass; while in deeper waters the 

biomass is dominated by blue whiting and hake, so by-catch composition will reflect 

these differences (Gomes et al. 2001). By-catch species under catch quotas (or TACs) in 

this fishery are M. merluccius, Trachurus spp., Lophius spp., Micromesistius poutassou, 

Lepidorhombus spp., and more recently Phycis blennoides (European Union 2016, 

2017). All are commercially valuable species, but discarded due to quota limitations and 

minimum landing sizes (or minimum conservation reference sizes).  

Several exceptions to the landing obligation are already in place for this fishery. Blue 

whiting (M. poutassou), despite representing the most discarded species in terms of 

weight, is not included in the 70% maximum percentage of by-catch species (Diário da 

República 2000; Monteiro et al. 2001). A ‘de minimis’ exemption for hake (M. 

merluccius) is in place; up to 7% of the TAC can still be discarded based on the fact that 

‘viable increases in selectivity are very difficult to achieve’, that could make the fishery 

possibly unprofitable (European Union 2015)
1
. Hake was considered a choke species in 

the North Sea Nephrops trawlers, obligating the fishery to stop working earlier due to 

quota exhaustion, even when applying quota uplifts of 20% (STECF 2014). In 

Portuguese waters, if an exemption was not in place, hake would also be a choke 

species because it is one of the most discarded species and at the same time only 3142 

tonnes can be landed by all fleets in national waters (European Union 2017). A recovery 

plan for hake and Norway lobster was agreed in 2005 with the aim to rebuild the stocks 

to safe biological limits until 2015 (European Union 2005). Based on this recovery plan, 

the efforts should go to decreasing fishing mortality rates, which the recent exemption 

entirely contradicts since allows fishermen to continue discarding this species. These 

regulative measures do not encourage fisher’s compliance or adoption of alternatives to 

reduce by-catches (Campos et al. 2014). 
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1.4 By-catch in Portuguese fisheries 

The knowledge about by-catch and discards in the Algarve (South Portugal) and 

the resultant ecological and economic consequences has been enriched since mid-90, 

with three European-funded projects with the goal to quantify and manage discards 

(“DISCARDS”, “DISCALG” and “BYDISCARD” projects; Borges et al. 1997, 2000, 

2002). The first two projects (from 1996 to 2000) focused on identifying and 

quantifying discards and understanding the reasons for discarding of the most important 

fishing métiers of southern Portugal (trammel net, demersal purse seine, pelagic purse 

seine, fish trawl and crustacean trawl). The demersal purse seine and the trammel net in 

particular were shown to have low discard rates. The latter study (“BYDISCARD”, 

1998-2000) was dedicated only to the three other gears (pelagic purse seine, fish trawl 

and crustacean trawl) that represent most concern in terms of discard quantities and 

rates. Nevertheless, discard studies on pelagic purse seine and trammel nets continue to 

be done (Batista et al. 2009; Gonçalves et al. 2007; Marçalo et al. 2006, 2008). Reasons 

for discarding were generally economic such low market value, damaged or poor 

quality fish or species for which there is no readily available market or regulatory 

measures (excess quota, minimum size restrictions). Within the BYDISCARDS project, 

aspects of the biology of by-catch species were considered together with accurate 

identification and recording of discard rates; ecosystem’s dynamics and economic 

outcomes of reduction of by-catch were also taken into account. A number of written-

outcomes on by-catch and discarding practices from different fishing gears in the 

Algarve were published (Monteiro et al. 2001; Borges et al. 2001; Erzini et al. 2002; 

Costa et al. 2008). Two devices aiming to minimise by-catch rates were investigated on 

crustacean trawlers: changes in the sweep length of the trawl nets (18 and 90 m lengths) 

and a sorting-grid system. The modification in sweep length did not produced any 

relevant results in terms of by-catch amounts and composition, but the sorting-grid 

demonstrated significant efficiency in maintaining the catch of target species (95% of 

the crustaceans) while allowing for the escapement of the most discarded fish species 

(73% escapement of blue whiting; Borges et al. 2002). Other studies related to codend 

selection investigating different mesh configurations and sizes were also performed, 

with varying results (Campos et al. 2003; Fonseca et al. 2007; Campos & Fonseca 

2004). For instance, an increase in cod end mesh size (55 to 70 mm) would be a 

reasonable and effective approach to avoid the catch of undersized shrimp and reduce 
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by 40% the amount of by-catch (Campos 2003). The use of a modified Nordmore 

sorting grid was also tested for by-catch reduction with high levels of exclusion of non-

commercial bycatch (48 to 74% exclusion rates), although simultaneously with short-

term losses of target species, from 4 to 15% (Fonseca et al. 2005). None of the latter by-

catch reduction devices was adopted into national law or used by fishermen. Present-

day studies have proposed measures to transform bottom trawlers into more selective 

gears because the shift to low impact gears (e.g. traps) is a serious challenge.  Until their 

effectiveness is proven, alternative gears will not be accepted, even if it means 

conserving fuel and consequently decreasing costs with almost no by-catch. Low 

impact, fuel efficient gears should be given more investment in order to explore their 

potential as future sustainable harvesting methods (Suuronen et al. 2011). 

 Since 2014, a large-scale European Union funded project is being conducted  

with the aim to “minimise unwanted catches by incentivising the adoption of fishing 

technologies and practices that reduce pre-harvest mortality and post-harvest discards, 

while avoiding damage to sensitive marine species and habitats” (MINOUW 2016). 

Solutions that incentivise fishermen first to avoid unwanted catches will be developed, 

and where this cannot be feasible, approaches on how to utilise the landed by-catch 

sustainably will be experimented but without profit to the producer. The Algarve 

demersal crustacean fishery is a case study in this project, since this harvest technology 

explores deep-water habitats with great biodiversity resulting in high by-catch rates and 

discards ratios. By-catch reduction devices are further investigated and the possibilities 

for alternative gears such as traps for Norway lobster and Deep-water rose shrimp are 

being tested in order to reduce unwanted catches and minimize overall impact. 

  

 

 

1
 To note that the trawling fleet is highly dependent on government subsidies not only to support the fuel 

costs but also for maintenance and technological improvements of the vessels (Innes & Pascoe 2009; 

Jacket & Pauly 2008). 
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1.5 Discard survival 

During the discarding process, a fish will be exposed to different influencing 

factors and injurious events that will affect its potential for survival and must be 

properly identified and described for the species and harvest strategy (ICES 2014).  

Relevant works on estimating discard survival have been conducted in commercial 

fisheries and research vessels around the world (Davis 2002; Broadhurst et al. 2006; 

Revill 2012; Uhlmann & Broadhurst 2015). For the Portuguese fisheries, a number of 

studies of post-release survival of discarded fish and invertebrate species have been 

done recently. Survival of N. norvegicus caught with trawlers and placed into cages 

ranged between 12.5% and 60% (Castro et al. 2003). In contrast, for individuals initially 

caught by traps, average survival rate reached 86% (Campos et al. 2015). Survival 

experiments of by-catch fish (Trachinus vipera; Dicologlossa cuneata) and crab 

(Polybius henslowii) from bivalve dredges showed that 54 % to 81% of the individuals 

died after 48 hours captivity (Leitão et al. 2014). On purse seine fishing, Marçalo et al. 

(2008) identified the main factors that affect early survival and stress reactions of 

sardine (Sardina pilchardus) after capture and holding in tanks, with survival rates 

varying from 20% to 80% after a month of captivity. No studies have yet been done on 

the survival of by-catch fish species in demersal trawlers in Portuguese waters.  

1.5.1 Methodologies to study discard survival 

The ICES working group on Methods for Estimating Discard Survival 

(WKMEDS) has been regularly producing reports for guidance on how to estimate 

levels of discard survival in commercial fisheries (ICES 2014). Discard survival 

assessments can be conducted through three different methodologies: vitality 

assessment that gives estimates of immediate mortality; captive observation; and 

tagging/biotelemetry. There is no standard time frame to conduct a survival experiment, 

since it depends on the study species, the factors influencing survival and the logistical 

limitations of the investigation. Ideally, the experiment should continue until the 

mortality rates stabilizes, i.e. reaches an asymptote. Otherwise, mortality will be 

underestimated.  

Vitality assessments can be applied as a first step of a survival study. Detailed 

and prolonged evaluations of discard mortality obtained by captive observation and 



 

12 

 

tagging are costly, technically difficult to acquire, and only available for a limited 

number of species and fisheries (e.g. Huse & Vold 2010; Marçalo et al. 2008; Campos 

et al. 2015; Laptikhovsky 2004). So, semi-quantitative indicators that estimate the 

degree of injury given by a vitality assessment and a coarse mortality indicator that 

calculates time-to-mortality (TTM) are more cost effective preliminary assessments. 

Complementary studies are still needed to predict post-release survival of discards and 

to justify an exemption to the landing obligation. Nevertheless, these methods allow 

estimating immediate mortality, for a large number of species and over a wide range of 

conditions. Based on the outcomes, they can be used to distinguish species that 

demonstrate potential for survival after discarding and may need further investigation 

(Benoît et al. 2013; Benoît et al. 2010; Depestele et al. 2014; STECF 2014). Captive 

observation consists of transferring wild-caught animals (before being discarded) into 

tanks or other holding facilities (e.g. underwater cages) and monitoring them until the 

mortality rate stabilizes, which might take days to weeks or months. The survival 

estimate using this approach is representative of real fishing conditions and when 

combined with previous vitality assessments, can give a more exact survival rate 

(excluding predation) illustrative of the particular fishery and species in study (ICES 

2014). This methodology has higher costs and logistics when compared with vitality 

assessments, but allows making inferences on long-term survival more realistically and 

supported with statistical modelling.  

1.5.2 Factors influencing discard survival 

Discard mortality results from the interactions of the individuals with the fishing 

gear and is affected by environmental, technical and biological factors. A combination 

of these should be considered when designing a discard survival study (ICES, 2014; 

Davis 2002; Broadhurst et al. 2006; Revill 2012; Uhlmann & Broadhurst 2015). There 

are a wide range of variables that can possibly be measured and taken into account. 

Biological traits, such as body size, presence and type of gas bladder, as well as other 

covariates i.e. water and air temperature, sea conditions, tow duration and speed, size of 

total catch and its composition, have been shown to affect discard mortality, both within 

and between species (Benoît et al. 2013; Davis 2002; Broadhurst et al. 2006). This work 

prioritized the biological characteristics of the different species: body size, deciduous 

scales, injuries, presence and type of gas bladder and metabolic rates. These appear to 

be the most influential factors and could be easily measured and analysed given the 
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available resources. This information was compiled from general literature and field 

observations; when detailed information was not available, species were given the same 

trait category as other species within its family or order (Froese & Pauly 2016; WoRMS 

Editorial Board 2016; IUCN 2016; FAO 2016; ICES-FishMap 2014; Hill & 

Wassenberg 1990; Jacobsen et al. 2002; Revill et al. 2005; Encyclopaedia Britannica 

2017). 

Body length  

Smaller individuals appear to be more vulnerable to discard mortality due to 

increased susceptibility to injury while crushing during the haul or greater exhaustion 

from swimming and trying to escape the trawl (Suuronen 2005). However, one effect 

that can be considered more relevant is that fish of smaller size are likely to be more 

susceptible to hypoxia due to their increased mass-specific metabolic rates and 

consequently higher energy expenditures in breathing activities (Benoît et al. 2013).  

Gas bladder 

Species that possess gas bladder, especially a closed swim bladder, where there 

is no connection between this organ and the gut (physoclistous condition), suffer 

significantly increased mortality due to depressurization when fish are brought to 

surface, such as extrusion of internal organs and the rupture of the gas bladder itself 

(Benoît et al. 2013). On the other hand, physostomous gas bladders (open bladders 

where there is a connection to the gut) allow for a regulation of the amount of gas via 

esophagus and therefore depressurization may not have such drastic effects. For 

individuals without a swim bladder, it is assumed that depressurization effects would 

not be so damaging when compared with organisms that hold a gas bladder (Broadhurst 

et al. 2006). 

Deciduous scales 

Loss of scales can contribute to higher mortality of fish in the medium to long 

term due to risk of infection. In the context of this work, deciduous or soft scales that 

easily fall off can represent a biological trait that increase susceptibility to injury and 

desiccation when the fish are stressed and compressed together inside the trawl net as 

well as when exposed to air after capture and handling (Benoît et al. 2013; Broadhurst 

et al 2006). 
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Metabolic rate 

Metabolic rates of low activity level fish can be related with increased resistance 

to stress as a strategy to conserve energy of sedentary species (Helfman et al. 2009). So, 

metabolic rate was considered as a possible explanatory variable in species 

susceptibilities. This information was gathered from metabolism studies and when 

metabolic rate values were not found at the species level, major groups were used 

(Clarke & Johnston 1999; Yang et al. 1992; Cowles & Childress 1995; Carlson et al. 

2004).  

 

 

1.6 Objectives 

 This project had two main goals: first, to study bycatch species susceptibilities; and 

second, to assess the potential survival of Conger conger in a short experiment. Both 

were conducted on-board a commercial trawler. In the first part, vitality assessments 

(time-to-mortality or TTM and a categorical vitality assessment, CVA) were used to 

estimate immediate mortality of a group of 19 by-catch species, in order to prioritise 

which species might have the possibility to survive for further investigations. Also, the 

effects of biological traits (e.g. size, presence and type of gas bladder, scales, injuries 

and metabolic rate) on TTM were considered since these determine to a great degree the 

susceptibility of a species to die after being caught and discarded. For the second study, 

individuals of C. conger were caught and maintained in captivity to estimate the 

mortality rate. Types and number of injuries were also registered and related with the 

observed mortality. C. conger was chosen because it demonstrated high possibility of 

survivorship in the initial assessment and no previous survival studies were found. 
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2. MATERIALS AND METHODS 

2.1 Study of by-catch species susceptibilities 

2.1.1 Methodologies 

Three assessment methods were applied: a categorical vitality assessment (CVA), time-

to-mortality (TTM) and evaluation of external injuries.  

 Categorical vitality assessment (CVA) 

CVA is based on four vitality classes (table 2.1) that consider at one extreme very lively 

and responsive fish (score 1) and at the other extreme, unresponsive and without any 

movement fish (score 4). This method provides a scored index of an individual’s vitality 

may be used to infer potential discard survival (ICES 2014). 

 Time-to-mortality (TTM) 

TTM is the time required to induce mortality during air exposure; previous works have 

indicated that air exposure is one of the greatest contributors to discard mortality rates, 

making this estimator a good discard mortality proxy (Benoit et al. 2012; Davis 2002; 

Broadhurst et al. 2006). Besides, provides a rough measure of the sensitivity of different 

species that can be used to rank them and identifying which ones have greater 

probabilities of survival (ICES 2014). 

 External injuries 

External damages were also registered for each individual based on simple descriptions 

of 4 types of injuries – scale loss, bruises, superficial wounds and deep wounds (scored 

as present, 1, when clearly observed and as absent 0, when not present or when was not 

obvious its occurrence; table 2.2). This assessment was applied separately from CVA 

because different species shown specific characteristics. For example, European conger, 

monkfish and the sharks do not have scales. Presence of injuries has a direct 

relationship with trauma and possible infections, and consequently mortality (ICES 

2014). 
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2.1.2 Sampling design 

Sampling was conducted in December 2016 (during six days) and February 2017 

(five days duration) in a commercial fishing vessel along the south coast of Portugal, at 

a minimum distance of 6 nautical miles off the coast (figure 2.2). Positional data 

(latitude and longitude), depth, fishing operation details and environmental information 

(air temperature, sea state and light level) were recorded for most of the forty hauls. 

Water temperature ranged between 17 °C and 18 °C and the sea was mostly at moderate 

state, with waves reaching 1.3 meters. The temperature of the air varied from 17 °C to 

20 °C, with cloudy sky in half of the period. The trawl gear was towed for 4 hours (95% 

confidence interval, or CI, of 3.6 to 5.2 hours), between 123 and 841 meters depth. 

Average speed of towing was 2.9 to 3 knots (given by the skipper), and hauling took 20 

minutes on average (95% CI from 16.4 to 23 minutes). The cod end was emptied into a 

container below deck and in most hauls the net was re-deployed prior to catch sorting, 

which lasted around seven minutes. Total catch was roughly estimated to be 181 kg 

(95% CI from 155.1 to 208.1 kg) and the sorting process took on average 18 minutes 

(95% CI 15.6 to 20 minutes). Time 0 was defined as when the catch was dropped into 

this container below deck. The crew sorted the catch by hand and samples were taken 

right after the sorting process started. 

For practical reasons, random samples of 10 to 15 individuals were collected 

from each species, depending on the by-catch composition of the haul, for further 

mortality monitoring. Individuals were monitored for 2-3 seconds for vitality 

assessment (table 2.1) and injury evaluation (table 2.2), until there were no signs of life. 

Immobile individuals were manipulated and tested for reflexes responses in order to be 

sure of dead state (if at least one of the reflexes was present, the individual was 

considered still alive; table 2.3). At the end of the monitoring period, total body length 

was measured and individuals of some species frozen for later observations of the type 

of gas bladder.  
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Table 2.1 - Description of the codes used to score the vitality (Benoît et al. 2010) 

 

 

Table 2.2 - Description of the codes used to score the injuries (Catchpole et al. 2015) 

 

 

 

 

 

 

Table 1.3 - Description of the reflex responses tested (Catchpole et al. 2015) 

 

  

 

 

Vitality state Score Description 

Excellent 1 Vigorous body movement without stimuli 

Good 2 Weak body movement, but responds to touching 

Poor 3 No body movement, no obvious response to stimuli, but fish can 

move operculum/mouth/fins 

Dead/moribund 4 No body or opercular movements, no response to touching or 

grabbing 

Fish injury Description 
Scale loss Visible area of scale loss 

Bruises Red bruising visible on the body 

Wounding Visible shallow cuts on the body 

Deep wounding Visible deep cuts on the body 

Name Stimulus action Reflex response 

Operculum 

closure 

The operculum of the fish is 

gently opened with a blunt object 

Ability to tightly close/clamp its 

operculum after being opened within 5 

seconds 

Mouth closure The mouth of the fish is gently 

opened with a blunt object 

Ability to tightly close/clamp its mouth 

after being opened within 5 seconds 

Gag response A blunt object is inserted in the 

mouth of the fish and touch the 

throat 

Fish gagged/vomit 
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Concerning the biological traits, injuries and deciduous scales were scored as 

present (1) or absent (0). Gas bladder was divided in three categories: no gas bladder, 

open gas bladder or closed gas bladder. The metabolic rate was classified in three levels 

(low, medium and high metabolic rate), according to the range of values found for the 

group of taxa. 

 

2.1.3 Data analysis 

CVA and TTM 

Immediate mortality for each species was calculated, given by the number of 

individuals that were classified as dying/dead state (state four of vitality assessment) at 

the first minute of visual evaluation. Survival analysis was conducted using statistical R 

programming language ('survival package', R Development Core Team 2008) to model 

survival probability as a function of time, as a measure of fish tolerance to stress and air 

exposure.  

Simple non-parametric Kaplan-Meier models were applied to estimate time to 

50% mortality (TTM), after data censoring (table 2.4). This median value and its 

confidence intervals (CI) were defined by drawing a horizontal line at 0.5 on the plot of 

the survival curve and its confidence bands. The intersection of this line with the lower 

CI band defined the lower limit for the median’s interval, and similarly for the upper 

band (error bars represented in figure 3.3). Data censoring occurs when the exact time 

of an event, in this case time of mortality after capture and handling, is not known 

(Benoît et al. 2013).  Fish that were dead (score four on vitality assessment) when first 

observed at time 0 (before monitoring period, time T) are treated as left-censored 

observations in that their actual time of mortality occurred before time T. Fish that were 

still alive when mortality monitoring ceases are considered right-censored observations 

(t > T); the remaining individuals (i.e. those that died during TTM monitoring) are 

considered as uncensored observations (t  T). In addition, interval censoring was 

applied when mortality was known to occur between two times (a<T<b) but the exact 

time of mortality was not registered. This type of censoring was used specifically to join 

the TTM data for 12 species.  
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After data censoring, from a group of 19 species, 7 were excluded from the 

further statistical analysis (table 2.4, species with *) due to small sample size (Citharus 

linguatula, Lepidopus caudatus, Hoplostethus mediterraneus, Scomber spp.) or because 

the individuals were taken just from one haul (Capros aper, Nezumia sclerorhynchus, 

Setarches guentheri). 

Table 2.4 – Results of censoring and further statistical analysis for each species. * represents 

species with small sample size or data coming from only one haul. KM – Kaplan-Meier 

 

 

 

 

 

 

 

 

 

 

 

 

 

Parametric Weibull models were used to correlate survival (from time-to-mortality 

estimates) with vitality at first observation and individual size. This was applied only 

for species with at least 40 individuals whose observations were mainly uncensored or 

right censored. In addition, the Akaike information criterion (AIC) was calculated to 

give the goodness-of-fit of each model and likelihood tests were performed in order to 

check if there were significant differences in AIC when comparing distinct models. 

 

Species Censoring   

Total 

Data analysis 

None Right Left 

Capros aper* 22 0 0 22 Excluded 

Conger conger 13 27 0 40 KM & Weibull 

Citharus linguatula* 2 0 2 4 Excluded 

Galeus melastomus 14 0 6 20 KM 

Helicolenus 

dactylopterus 

51 4 8 63 KM & Weibull 

Hoplostethus 

mediterraneus* 

4 0 6 10 Excluded 

Lepidorhombus boscii 13 0 7 20 KM 

Lepidopus caudatus* 0 0 3 3 Excluded 

Lophius spp. 41 0 9 50 KM & Weibull 

Merluciius merluccius 19 0 14 33 KM 

Micromesistius 

poutassou 

6 0 24 30 KM 

Mullus surmuletus 17 0 14 31 KM 

Nezumia sclerorhynchus* 0 0 33 33 Excluded 

Phycis blennoides 6 0 34 40 KM 

Scyliorhinus canicula 16 24 0 40 KM & Weibull 

Setarches guentheri* 4 0 11 15 Excluded 

Scomber spp.* 5 0 3 8 Excluded 

Trigla lyra 13 0 25 38 KM 

Trachurus spp. 45 0 3 48 KM & Weibull 
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Biological traits analysis 

TTM interval censored data was collated for 12 species that have distinct 

combinations of biological traits (injuries, scales, gas bladder and metabolic rate; table 

2.5) and Weibull models were applied to determine whether these factors have an 

influence in the TTM results. Gas bladder was divided in three categories – absence of 

gas bladder, open gas bladder and closed gas bladder. Deciduous scales were defined as 

present or absent as well as injuries of different types. Metabolic rate was separated in 

three classes – low metabolic rate (0 – < 3 mg O2/h per 50 g body mass), medium (3 – 6 

mg O2/h per 50 g body mass) and high metabolic rate (> 6 mg O2/h per 50 g body 

mass). Information from different groups and publications was converted into the same 

unit of consumption of milligrams of oxygen per hour, per 50 grams of body mass, 

assuming oxygen solubility 7.9 mg/L or 5.9 mL/L at salinity 35 g/kg, pressure of 1 bar 

and temperature around 15 °C. 

 

Table 2.5 – Summary of the biological traits for each species and major groups – gas bladder, 

deciduous scales, metabolic rate class and metabolic rate values. 

Group Species/Variables Gas 

bladder 

Deciduous 

scales 

Metabolic 

rate class 

Metabolic rate 

(mg O2/h) per 50 

g body mass 

Anguilliformes Conger conger  Yes 

(open) 

No (tough 

skin) 

Low 2.75 (15°C) 

Scorpaeniformes Helicolenus 

dactylopterus 

No Yes 

(ctenoid) 

Medium 6.61 (10°C) 

Lophiiformes Lophius spp. No No Low 0.77 (5 °C) 

Carcharhiniformes Scyliorhinus 

canicula 

No No Low 1.91 (15°C) 

Perciformes Trachurus spp. Yes 

(closed) 

Yes Medium 6.18 (15°C) 

Carcharhiniformes Galeus melastomus No No Low 1.91 (15°C) 

Pleuronectiformes Lepidorhombus 

boscii 

No Yes Medium 5.54 (15°C) 

Gadiformes Merluccius 

merluccius 

Yes 

(closed) 

Yes High 13.34 (15°C) 

Gadiformes Micromesistius 

poutassou 

Yes 

(closed) 

Yes High 13.34 (15°C) 

Perciformes Mullus surmuletus Yes 

(closed ) 

Yes Medium 6.18 (15°C) 

Gadiformes Phycis blennoides Yes 

(closed) 

Yes High 13.34 (15°C) 

Scorpaeniformes Trigla lyra Yes 

(open ) 

Yes Medium 6.61 (10°C) 
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2. Potential for survival of by-catch – an experimental trial 

 

2.2.1 Sampling design and methodology 

The experiment was conducted in July (23 to 27) on-board a commercial 

demersal trawler along the south coast of Portugal, at a minimum distance of 6 nautical 

miles off the coast (figure 2.2). Positional data (latitude and longitude) and fishing depth 

were recorded. Once the net was emptied to the container below deck and the catch 

started to be sorted, 20 to 30 individuals (C. conger) were collected from each haul (if 

there are enough individuals) and placed in the tanks (first haul – tank 1; second haul – 

tank 2; figure 2.1). The fish were maintained on the tanks for up to 65 hours and 

monitored every 4 to 6 hours to check for dead fish and remove them. Water 

temperature in the tanks ranged between 13 °C and 18 °C using the on-board cooling 

system. It was not possible to have a continuous water flow, but the water in the tanks 

was completely renewed every 3 hours. When first placed in water, the position and 

behaviour of the fish was noted: if it floats or sinks (FL/SK) and if it tries to swim or not 

(SW: 1/0), within the first 5 seconds on water. The behaviour in water was also noted 

during the monitoring period: immobile (IM) or swimming (SW) and on the bottom 

(BT) or in the water column (WC). Major injuries were assessed at the end of the 

experiment – scratches, deep cuts, wounds or bruises (scored as presence/absence, 1/0). 

In-water reflexes were observed to confirm the vitality/survival status and at the end of 

the experiment (scored as 1, present if a response is clearly present or 0, absent if the 

response was not present or of weak or questionable strength; table 2.6). Total length 

and a photographic record was taken for all individuals. 
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Table 2.6 – Description of the codes used to evaluate in-water reflexes (Catchpole et al. 2015) 

 

 

 

 

Figure 2.1 - Experimental design 

 

 

2.2.2 Data analysis 

Non-parametric Kaplan-Meier models were used to describe survival over time 

and plot survival curves to visually explore the obtained mortality rates. Log-rank tests 

compared and check for significant differences between the survival curves of the two 

tanks. Also, the percentage of individuals showing different types of injuries was 

calculated and number of injuries in each individual as added as a possible explanatory 

variable of the mortality results in a Weibull model. These analyses were performed 

using the ‘survival’ package in R software.  

 

Name Stimulus action Reflex response 

Startle touch Fish is underwater and hand 

approaches to touch fish 

Actively moves away before 

or at first touch 

Tail grab Fish is grabbed gently by its tail Actively struggles to escape 

within 5 seconds 

Orientation/Righting Fish is held on the palm of the hand 

on its back just below the water 

surface and released 

Actively righting itself 

underwater within 5 seconds 
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Figure 2.2 - Location of the study area off South Portugal (Algarve) where the trawls were performed 

(brown lines). The dashed line represents the 6 minimum nautical miles limit of fishing for trawlers. The 

grey lines represent the bathymetry every 100 m depth. 
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3. RESULTS 
 

3.1 Study of by-catch species susceptibilities 

Data on time-to-mortality was collected for a total of 502 individuals, belonging 

to 19 species, from 40 hauls. The number of individuals dead when first observed was 

computed for each species, expressed as immediate mortality in percentage (table 3.1). 

Table 3.1 - Results of immediate mortality (%) calculated for each species. 

Species Immediate 

mortality 

(%) 

Species Immediate 

mortality 

(%) 

Merluciius merluccius 52 

Capros aper* 15 Micromesistius poutassou 80 

Conger conger 3 Mullus surmuletus 45 

Citharus linguatula* 50 Nezumia sclerorhynchus* 100 

Galeus melastomus 30 Phycis blennoides 85 

Helicolenus dactylopterus 13 Scyliorhinus canicula 8 

Hoplostethus mediterraneus* 60 Setarches guentheri* 73 

Lepidorhombus boscii 44 Scomber spp.* 38 

Lepidopus caudatus* 100 Trigla lyra 66 

Lophius spp. 18 Trachurus spp. 17 

 

The species with * were excluded from further statistical analysis because were 

not representative of the population. The further analysis was conducted with the 

remaining group of 12 species (M. poutassou, P. blennoides, L. boscii, T. lyra, M. 

merluccius, M. surmuletus, Trachurus spp., H. dactylopterus, G. melastomus, Lophius 

spp., S. canicula, C. conger). 

When looking at the injuries, more than 80% of the individuals from the group 

of 12 species shown some sort of injuries, except Trachurus spp., S. canicula and T. 

lyra (figure 3.1). 
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Figure 3.1 - Percentage (%) of individuals with 4 types of injuries (scale loss, bruises, wounds 

and deep wounds) for each species. 

 

M. merluccius, P. blennoides and T. lyra often exhibited severe forms of 

damage, as inflated gas bladder and eversion of stomach (personal observations). The 

shark G. melastomus and S. canicula appeared mostly with bruises on the skin. Most 

fish with scales (M. surmuletus, L. boscii, P. blennoides, M. merluccius, M. poutassou, 

H. dactylopterus) suffered scale loss during the capturing and handling process; 

Trachurus spp. and T. lyra were the exceptions and conserved their scales. Trachurus 

spp. presented frequently bruises on the pectoral fins, as well as C. conger; this last one 

also showed scratched skin.  

Kaplan-Meier models were applied individually for 12 species (M. poutassou, P. 

blennoides, L. boscii, T. lyra, M. merluccius, M. surmuletus, Trachurus spp., H. 

dactylopterus, G. melastomus, Lophius spp., S. canicula, C. conger), in order to 

calculate time to 50% mortality and visually explore the effect of vitality state on TTM 

(figures 3.2 and 3.3). Vitality states 1 and 2 were not observed for G. melastomus, M. 

merluccius, T. lyra, M. poutassou and P. blennoides (figure 3.2). For the species G. 

melastomus and M. poutassou, vitality 3 and 4 survival curves and confidence intervals 

overlapped throughout the graphics. On the contrary, for M. merluccius, T. lyra and P. 

blennoides, the two observed vitality states could be distinguished in the plots. Vitality 

0 20 40 60 80 100

T. lyra
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1, 2 and 4 was registered for M. surmuletus, but the KM model could not separate the 

survival curve for each vitality category. The opposite occurred for L. boscii, for which 

the vitality states 2, 3 and 4 had clearly separated survival curves in the plot.  

 

Figure 3.2 – Results of Kaplan-Meier for the species where only this model was applied (Galeus 

melastomus, Lepidorhombus boscii, Merluccius merluccius, Trigla lyra, Micromesistius 

poutassou, Mullus surmuletus and Phycis blennoides). In the left column are shown graphs with 

the base survival curve and in the right graphs with survival curves separately for each vitality 

category. Dashed lines represent 95% confidence intervals. 
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Figure 3.2 (cont.) – Results of Kaplan-Meier for the species where only this model was applied 

(Galeus melastomus, Lepidorhombus boscii, Merluccius merluccius, Trigla lyra, 

Micromesistius poutassou, Mullus surmuletus and Phycis blennoides). In the left column are 

shown graphs with the base survival curve and in the right graphs with survival curves 

separately for each vitality category. Dashed lines represent 95% confidence intervals. 
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In figure 3.3, there are two highly resistant species, S. canicula and C. conger, with 

mean times to 50% mortality of over 100 minutes. In fact, these two species together 

with H. dactylopterus were the only that had right censored observations, the remainder 

died during the monitoring period.  

 

 

Figure 3.3 – Time to 50% mortality for the species included in the analysis. Error bars represent 

95% confidence intervals (CI). 

  

Weibull models were applied for S. canicula, H. dactylopterus, C. conger,  

Lophius spp. and Trachurus spp. in order to verify the effect of vitality state in TTM 

results (figures 3.4 – 3.8 and tables 3.2 – 3.6). Body size was also added as a possible 

explanatory variable, but only when size was registered for at least 40 individuals. This 

was not the case for Lophius spp. and Trachurus spp.  
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Scyliorhinus canicula 

Vitality state 1 was not observed in S. canicula. Also, vitality states 2 and 3 

overlap, with non-significant differences between them (vitality 2: n=16; vitality 3: 

n=21). Vitality state 4 individuals died significantly faster than vitality state 2 and 3 

animals (vitality 4: n=3). Individual animal size was a significant explanatory variable, 

meaning that smaller individuals died at a faster rate than larger ones (figure 3.4 and 

table 3.2). 

 

Figure 3.4 – Results of Kaplan-Meier for Scyliorhinus canicula, with base survival curve on left 

and survival curves for each vitality category shown on the right. 

 

Table 3.2 – Results of Weibull models for Scyliorhinus canicula – without covariates and with 

vitality and size as possible explanatory variables. 

Parameters/

Models for S. 

canicula 

Base model (without 

covariates) 

+ Vitality + Size 

 Value Std. 

Error 

p-value Value Std. 

Error 

p-value Value Std. 

Error 

p-value 

Intercept 4.84 0.16 6.37e-198 5.00 0.188 1.05e-155 2.16 0.55 8.99e-5 

Vitality state 3 - - - -0.267 0.255 0.294 - - - 

Vitality state 4 - - - -1.780 0.324 3.79e-8 - - - 

Size - - - - - - 0.073 0.018 3.06e-5 

AIC 194.230 184.540 174.221 

p-value 

likelihood test 

- 0.0011 2.7126e-6 
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Helicolenus dactylopterus 

 According to the Weibull model, in particular the AIC value, vitality was 

significantly correlated with TTM (table 3.3). However, closer examination of the data 

in figure 3.5 (right) shows that only vitality states 1 and 4 have significantly different 

TTM curves. Due to the wide confidence interval around vitality state 4, it is 

indistinguishable from states 2 and 3 (vitality 1: n=2; vitality 2: n=28; vitality 3: n=25; 

vitality 4: n=8). Body size had no significant effect on TTM. 

 

Figure 3.5 – Results of Kaplan-Meier for Helicolenus dactylopterus, with base survival curve on 

left and survival curves for each vitality category shown on the right. 

Table 3.3 – Results of Weibull models for Helicolenus dactylopterus – without covariates and 

with vitality and size as possible explanatory variables. 

Parameters/Mod

els for H. 

dactylopterus 

Base model (without 

covariates) 

+ Vitality + Size 

 Value Std. 

Error 

p-

value 

Value Std. 

Error 

p-value Value Std. 

Error 

p-value 

Intercept 3.13 0.0556 0.00 3.450 0.351 8.91e-

23 

2.667 0.343 7.81e-

15 

Vitality state 2 - - - -0.392 0.365 0.283 - - - 

Vitality state 3 - - - -0.165 0.360 0.646 - - - 

Vitality state 4 - - - -1.408 112.63 0.99 - - - 

Size - - - - - - 0.023 0.017 0.172 

AIC 53.651 33.803 53.962 

p-value 

likelihood test 

- 1.027e-5 0.194 
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Conger conger 

 Vitality has a significant effect on TTM in the Weibull model for C. conger. 

However, only vitality state 4 can be separately distinguished from the other three 

states, having a significantly more rapid TTM (figure 3.6; vitality 1: n=3; vitality 2: 

n=7; vitality 3: n=29; vitality 4: n=1).  Size also had a small (0,009) but significant 

effect on TTM, with larger animals surviving longer (table 3.4). 

 

Figure 3.6 – Results of Kaplan-Meier for Conger conger, with base survival curve on left and 

survival curves for each vitality category shown on the right. 

 

Table 3.4 – Results of Weibull models for Conger conger – without covariates and with vitality 

and size as possible explanatory variables. 

Parameters/Mod

els for C. 

conger 

Base model (without 

covariates) 

+ Vitality + Size 

 Value Std. 

Error 

p-

value 

Value Std. 

Error 

p-value Value Std. 

Error 

p-value 

Intercept 4.78 0.065 0.000 4.621 0.136 1.1e-

253 

4.285 0.204 1.33e-

97 

Vitality state 2 - - - 0.198 0.158 0.212 - - - 

Vitality state 3 - - - 0.192 0.169 0.255 - - - 

Vitality state 4 - - - -1.01 0.235 1.76e-5 - - - 

Size - - - - - - 0.009 0.004 0.025 

AIC 138.516 134.377 134.951 

p-value 

likelihood test 

- 0.017 0.018 
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Lophius spp. 

 For Lophius spp., only vitality categories 3 and 4 were observed due to its 

sedentary behaviour when on-board and exposed to air (figure 3.7 and table 3.5; vitality 

3: n=41; vitality 4: n=9). Moreover, the estimated value for vitality state 4 did not 

produce significant differences when compared with vitality state 3 and has a rather 

large standard error. However, the fit of the model improved compared with the base 

model, which makes it difficult to correctly interpret these results. 

 

Figure 3.7 – Results of Kaplan-Meier for Lophius spp., with base survival curve on left and 

survival curves for each vitality category shown on the right. 

 

 

Table 3.5 – Results of Weibull models for Lophius spp. – without covariates and with vitality as 

possible explanatory variable. 

 

 

 

 

 

 

 

 

 

 

Parameters/Mo

dels for 

Lophius spp. 

Base model (without 

covariates) 

+ Vitality 

 Value Std. 

Error 

p-value Value Std. 

Error 

p-value 

Intercept 3.59 0.039 0.000 3.67 0.023 0.000 

Vitality state 4 - - - -1.88 87.558 0.983 

AIC 340.136 264.941 

p-value 

likelihood test 

- 1.548e-18 
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Trachurus spp. 

Although the Weibull model shows a highly significant effect of vitality (at first 

observation) on TTM (table 3.6), the relationship is counter-intuitive and not very 

informative. Figure 3.8 shows that the Kaplan-Meier (KM) curves for vitality states 1 

and 4 are highly overlapped, while state 3 has the longest TTM (vitality 1: n=19; vitality 

2: n=11; vitality 3: n=10; vitality 4: n=8). This contradicting relationship is most likely 

due to the highly active behaviour of healthy animals (vitality 1 and 2) when exposed to 

air, which thus rapidly exhaust themselves leading to a premature TTM.  

 

Figure 3.8 – Results of Kaplan-Meier for Trachurus spp., with base survival curve on left and 

survival curves for each vitality category show on the right. 

Table 3.6 – Results of Weibull models for Trachurus spp. – without covariates and with vitality 

as possible explanatory variable. 

 

 

 

 

 

 

 

 

 

 

Parameters/Models 

for Trachurus spp. 

Base model (without 

covariates) 

+ Vitality 

 Value Std. 

Error 

p-value Value Std. 

Error 

p-value 

Intercept 3.39 0.052 0.000 3.076 0.0576 0.000 

Vitality state 2 - - - 0.368 0.0868 2.2e-5 

Vitality state 3 - - - 0.626 0.0971 1.15e-10 

Vitality state 4 - - - 0.329 0.102 1.26e-3 

AIC 337.937 312.407 

p-value likelihood 

test 

- 6.572e-7 
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Biological Traits Analysis 

Information on four biological traits was compiled from general literature and 

field observations for 12 species (table 2.5).  

Not all the biological traits had relevant effects – injuries and open gas bladder 

appeared to have no influence on TTM for these species, shown in table 3.7. On the 

contrary, deciduous scales, closed gas bladder and high metabolic rates have 

significantly reduced time-to-mortality results (p-value < 0.0001). 

 

 

Parameters Base model AIC p-value 

likelihood 

test 

 Value Std p-value 1648.13  

________ 

 

 

Intercept 3.16 0.045 0.00 

+ Injury 0.23 0.153 0.141 1386.75 7.07e-32 

+ Gas bladder (no 

bladder) 

   

Open gas bladder 0.22 0.102 0.0301 1527.90  

1.06e-27 Closed gas bladder -0.88 0.081 3e-27 

+ Scales -1.16 0.066 4.82e-70 1419.09  

3.55e-52 

+ Metabolic rate                    

(High) 

 1377.64 2.49e-60 

Low 1.61 0.086 2.18e-78 

Medium 0.59 0.085 3.30e-12 

 

Kaplan-Meier graphs (figure 3.9) explore visually the fitted values from the 

Weibull models. A clear separation in the survival curves is seen when comparing 

closed and no gas bladder; presence as opposed to absence of deciduous scales and 

between the three classes of metabolic rates. 

 

 

 

 

 

Table 3.7 – Results of Weibull models for 12 species – without covariates (base model) 

and models including each biological trait as possible explanatory variable.  
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Figure 3.9 - Kaplan-Meier results for the effects of biological traits (injuries, gas bladder, scales and 

metabolic rate) on time-to-mortality for data pulled from 12 species (M. poutassou, P. blennoides, L. boscii, 

T. lyra, M. merluccius, M. surmuletus, Trachurus spp., H. dactylopterus, G. melastomus, Lophius spp., S. 

canicula and C. conger). Shaded areas represent 95% confidence intervals. 
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3.2 Potential for survival of by-catch – an experimental trial 

Overall, 64 fish from 2 tows, maintained in different tanks, were used in the 

survival analysis. In tank 1, 4 out of 36 total fish died during the monitoring period, 

meaning a survival rate of 89% (95% CI: 78.6 to 99.2 %). In the second tank, 22 fish 

survived (total of 28 fish), which matches a survival proportion of 79% (95% CI: 63.4 

to 93.8 %) at the end of the experiment (figure 3.10).  

 

Figure 3.10 – Kaplan-Meier survival curves for C. conger separate by tanks. Dashed lines 

represent 95% confidence intervals. 

 

Most mortality occurred in the first 14 hours: 8% in tank 1 (95% CI: 1 to 17.4%) 

and 18% in tank II (95% CI: 3.7 to 32%). However, the mortality rate did not reach an 

asymptote at the end of the observation period. 

When comparing survival results between the two tanks, there were no 

significant differences (p=0.218), so the data was grouped into one survival curve, 

corresponding to an overall survival probability close to 84% (95% CI: 75.5 to 93.3%). 

All fish started to swim immediately after being placed in water and 98% responded 

positively to the in-water reflexes tested. 

Every individual had some sort of injury, from scratches in the surface of the 

skin to more severe ones, e.g. deep wounds in tail and fins (Annex - images 7.1 to 7.6). 

The frequency of injuries is shown in figure 3.11, with almost 70% of C. conger 
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exhibiting scratched skin, likely due to crowding inside the trawling net. Around 40% of 

the fish had bruises on the tail and pectoral fins; 5% shown affected eyes, maybe due to 

infection or result of abrasion; and 3% presented an inflated stomach, a probable sign of 

barotrauma. Nevertheless, most of the fish appeared to be swimming calmly during the 

experiment and were eating after 22h in water. 

 

 

 

The number of injuries to each individual was included as a covariable in a 

Weibull model in order to see whether the presence of injuries influenced the observed 

mortality. Only individuals that presented 3 types of injuries had a significant and 

negative effect on the results (value = -0.32; p-value =0.01; table 3.8); meaning that fish 

with more injuries suffered higher mortality. As shown in figure 3.12, this can be 

confirmed because the survival curves of individuals that presented zero, one and two 

injuries (green, yellow and orange lines) are identical, but all the individuals that died 

during the course of the monitoring period presented 3 types of injuries (red line). 

 

Figure 3.11 – Frequency of injuries shown as percentage (%) of individuals with each type 

of injury. 
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Table 3.8 – Results of Weibull model for survival of C. conger - without covariates (base 

model) and model including number of injuries as possible explanatory variable. 

 

 

 

Figure 3.12 - Kaplan-Meier results for the effects of number of injuries (0, 1, 2, and 3 types of 

injuries) on survival of C. conger. 

 

 

Parameters/Models Base model p-value likelihood test 

 Value Std p-value  

Intercept 6.62 0.904 2.41e-13 ________________________ 

AIC (base model) 140.03 

+ Number of injuries (1)    0.038 

 
0 injuries 1.38 1.44 0.34 

2 injuries 0.35 0.95 0.71 

3 injuries -0.32 1.25 0.01 

AIC 137.62 
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4. DISCUSSION 

  4.1 Study of by-catch species susceptibilities 

As a preliminary survival assessment, this work provided estimates of immediate 

mortality and time-to-mortality (TTM) data for a wide range of species: C. conger, G. 

melastomus, H. dactylopterus, L. boscii, Lophius spp. (L. budegassa and L. piscatorius), 

M. merluccius, M. poutassou, M. surmuletus, P. blennoides, S. canicula, Trigla lyra and 

Trachurus spp. (T. picturatus and T. trachurus). This enabled a preliminary evaluation 

of the vulnerability of these animals to the stressors associated with capture and 

exposure to air, from which some inferences can be made on their potential to survive 

the discarding process.  

Time to 50% mortality (50% TTM), immediate mortality (%) and the Kaplan-

Meier survival probability curves identify M. poutassou, P. blennoides, L. boscii, T. 

lyra, M. merluccius, M. surmuletus, Trachurus spp. and H. dactylopterus as highly 

susceptible to air exposure; with 50% TTMs of less than 30 minutes, and in most cases 

less than 20 minutes. However, S. canicula and C. conger appear to be relatively 

resistant with 50% TTMs in excess of 100 minutes.  

Almost all species were observed with some form of external injuries, mostly 

scale loss, bruises and shallow wounds. In particular, M. merluccius, P. blennoides, T. 

lyra, N. sclerorhynchus and S. guentheri often exhibited evidence of barotrauma, in the 

form of everted stomach, inflated abdomen or popped eyes (personal observations). For 

this species, survival after discarding is virtually impossible.  

Based on the Kaplan-Meier and Weibull models, vitality at first 

observation is a very limited predictor of time-to-mortality. Species specific behavioural 

traits need to be considered when interpreting the results. Two major inconsistencies 

were identified: the absence of vitality states 1 and 2; and species with high vitality 

scores but low time-to-mortality. Lophius spp., C. conger, S. canicula and G. 

melastomus are sedentary, benthic species with body musculature and skeletons adapted 

for energy saving mechanisms (Helfman et al. 2009). When subjected to extreme stress 

conditions such as air exposure, these species reduce activity to a minimum in order to 

conserve energy. Consequently, vitality states 1 and 2 were never observed. The same 

was the case of L. boscii, M. merluccius, T. lyra, M. poutassou and P. blennoides. These 
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species suffer decompression effects, injuries or/and immense extenuation which leads 

to a state of most individuals dying or arriving dead on deck (vitality state 3 & 4). In 

contrast, Trachurus spp., M. surmuletus and Scomber spp. display signs of intense 

activity and occasionally shivering movements when brought on deck; in accordance 

with the vitality scale, this response is “positive” and classified with high vitality scores 

for these species. But in reality, these signs seem to be an advanced stress-response. 

When placed in water, these individuals are disorientated, not able to hold position in 

the water column and/or unable to swim (personal observations). These observations are 

confirmed by the substantially reduced TTM. Behavioural disturbances such as loss of 

equilibrium have been related with different stressors, one being air exposure 

(Gingerich et al. 2007; Davis 2005). 

Therefore, two separate vitality scales are proposed (tables 4.1 and 4.2) to 

distinguish the behaviour categories for benthic/sedentary species and bathypelagic, fast 

swimming fish. For sedentary species, a combined methodology of vitality together 

with testing reflex actions evaluates more adequately the overall state of the animal. In 

particular, the absence of a clear transition from alive to dead requires adaptions in the 

visual assessments. The solution is the use of innate or reflex responses to precisely 

stimulate, for example, the gag response or opening the operculum. Reflex actions are 

innate fixed movement patterns that are directly related to vitality, without being 

confounded by other factors. The vitality scale for bathypelagic and pelagic species 

stays identical but should be complemented if possible with testing reflex actions in-

water, recorded as presence (1) or absence (0) of the reflex response. 

 

 

Vitality state Score Description 

Excellent 1 Vigorous body movement without 

stimuli 

Good 2 Weak body movement, but responds to 

touching 

Poor 3 No body movement, no obvious 

response to stimuli, but fish can move 

operculum/mouth/fins 

Table 4.1 – Proposed vitality scale with description of the codes for bathypelagic and pelagic 

species (based on ICES 2014 and Catchpole et al. 2015) 
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Dead 4 No body or opercular movements, no 

response to touching or grabbing 

   

Reflex actions in-

water 

Stimulus action Reflex response 

Startle touch Fish is underwater and hand 

approaches to touch fish 

Actively moves away before or at first 

touch 

Tail grab Fish is grabbed gently by its 

tail 

Actively struggles to escape within 5 

seconds 

Orientation/Righting Fish is held on the palm of 

the hand on its back just 

below the water surface and 

released 

Actively righting itself underwater 

within 5 seconds 

 

 

Vitality state Score Description 

Good 1 Some spontaneous body movements, responds to all reflex 

actions 

Poor 2 No spontaneous body movements, responds to at least one reflex 

action 

Moribund/Dead 3 No body movement, no response to any reflex action 

 

Reflex actions Stimulus action/ 

Description of response 

Operculum 

closure 

The operculum of the fish is gently opened with a blunt object/Ability to 

close or clamp its operculum after being opened within 5 seconds. 

Mouth closure The mouth of the fish is gently opened with a blunt object/Ability to tightly 

close its mouth after being opened within 5 seconds. 

Gag response A blunt object is inserted in the mouth of the fish and touch the throat/Fish 

gagged or vomit. 

 

 

 

Table 4.2 – Proposed vitality scale with description of the codes for benthic/sedentary species 

(based on ICES 2014 and Catchpole et al. 2015) 
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Body size was a significant explanatory variable for S. canicula and C. conger 

which endure long periods of air exposure. Smaller fish have a higher rate of mortality, 

explained by their increased susceptibility to injuries in the net and higher respiration 

demands (Benoît et al. 2013). However, for species with high susceptibility to air 

exposure and consequent low TTM, such as Trachurus spp. and H. dactylopterus, body 

size seems to be less relevant.   

Concerning the analysis of biological traits, there were particular traits that had a 

significant influence on TTM. Species with a closed gas bladder died at a faster rate 

compared to individuals without a gas bladder. Fish with a closed gas bladder cannot 

resist depressurization effects when brought to surface. Hauling occurs at such high 

speeds (~20 meters per minute) causing over-inflation or a rupture of the swim bladder,  

and consequently release of gas into the body cavity and eversion of stomach and gut 

(ICES 2014; Nichol & Chilton 2006; Rummer & Bennett 2005; Breen 2004).  

There were no differences in TTM for species with open and no gas bladder, 

mainly due to C. conger possessing an open gas bladder but at the same time 

representing one of the most resistant species to air-exposure. For the group of 12 

species (M. poutassou, P. blennoides, L. boscii, T. lyra, M. merluccius, M. surmuletus, 

Trachurus spp., H. dactylopterus, G. melastomus, Lophius spp., S. canicula, C. conger), 

presence of scales and medium/high metabolic rates significantly decreased time-to-

mortality. Fish with deciduous scales are more vulnerable to water losses due to scale 

loss and consequent collapse of the osmoregulatory functions of the skin, resulting in 

increased sensitivity to hypoxia (ICES 2014; Breen 2004). These outcomes are in line 

with Benoît et al. (2013), where mass-specific respiration demand, physoclistous and 

physostomous bladders and deciduous scales all had significant and negative effects on 

survival. They identified as well that sedentariness, defined as a species’ average 

activity level that relates to its overall resistance to stress, was the most influential trait 

on TTM. In this work, metabolic-rate-class can be considered comparable to 

sedentariness, and indeed has a pronounced effect on how different fish species cope 

with the stressors related with hypoxia. Energy conserving behaviour of low metabolic 

rates, characteristic of species such as Lophius and S. canicula, is translated into greater 

time-to-mortality results when compared with species with fast metabolism and high 

susceptibility to air exposure (M. surmuletus, M. poutassou). When injuries are included 

in the analysis, contradicting results show up of a non-significant but positive result 
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(value = 0.225; p-value > 0.01), meaning injured animals survive longer than healthy 

individuals. This bias may be due to anomalies in the unbalanced sample distribution of 

only 40 individuals without injuries against 367 with injuries. 

It is important to identify species’ characteristics that can explain the observed 

mortality rates. A biological traits analysis (BTA) of by-catch and target species was 

performed as an assessment of species vulnerability, also taking into account the 

diversity of life strategies (Demestre et al. 2017). Vulnerability was assessed into three 

components: catchability or susceptibility to be caught; resistance or potential survival 

on-board; and resilience of a population to fishing. This method provided a final score 

that reflected susceptibility at an individual, species and population level to the fishing 

operations. Most by-catch fish species were highly vulnerable, mainly attributable to 

high catchability together with low to moderate resistance. However, most of these 

species were at the same time considered highly resilient to fishing, explained by 

long/average life span, annual reproduction and age at maturity lower than 5 years. 

Scyliorhinus canicula was the only species considered less vulnerable when compared 

with the others (moderately vulnerable category).  

The results of this BTA match the ones from the current work, that is the 

majority of by-catch fish species are fragile and do not resist the overload of stressors 

coming from the capture, handling and the discarding process. Only crustacean, 

bivalves, echinoderm and occasionally elasmobranch species are likely to survive but 

these also represent a low percentage of discarded weight (Hill & Wassenberg 2000; 

Depestele et al. 2014; Monteiro et al. 2001). The most likely fate is being eaten by 

marine birds or other predators in the water column or by bottom scavengers if the 

animals sink (Hill & Wassenberg 2000; Castro et al 2005). Complementary studies are 

still needed to accurately predict post-release survival of discards, since these methods 

are restricted to the specific stressors observed in hypoxia conditions and cannot be 

inferred for a range of stressors associated with the whole fishery (ICES 2014). 

Nevertheless, these indicators are certainly useful to calculate immediate mortality for a 

large number of species, in an easy and simple manner, providing valuable information 

of real fishing conditions with little costs. In addition, biological traits and other 

explanatory variables can be addressed in determining to which extent can influence 

mortality of these species.  
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4.2 Potential for survival of by-catch – an experimental trial 

As a result of the first part of this work, Conger conger emerged as one of the 

species with a high likelihood of survival. A specific on-board experiment was 

conducted to investigate the survival potential of this species. 84 % (95% CI: 75.5 to 

93.3%) of individuals survived the observation period of 65 hours. It is a rather high 

survival rate, taking into account that these fish had been exposed to extreme stressors 

associated with capture by a heavy chain gear, compression in the codend of the net and 

possible effects of vessel motion while on tanks. In fact, individuals started to feed on 

crustaceans after 22 hours on the system.  

The experimental conditions between the two tanks were not exactly the same. 

The water temperature in tank II was slightly higher (2 to 4 °C higher) than in tank I; 

and the two tanks had different capacity and were made of different materials (tank 1 

made of metal, tank 2 made of plastic). Nevertheless, these differences had no 

significant effect on the survival curves, so the two tanks were treated as replicates and 

the survival estimate grouped from both.  

There are no reference studies on survival of C. conger. In the Northwest 

Mediterranean similar experiments were conducted with C. conger and S. canicula 

(Demestre et al. 1998). After three days in tanks, C. conger had 75% survival, but due 

to small sample size (3 individuals) no further conclusions could be reached. For S. 

canicula, all 11 individuals survived the experiment. However, mortality did not 

stabilize during the observation period and individuals kept dying. Also, dissections 

showed multiple internal traumas (personal observation from Demestre et al. 1998).  On 

the other hand, recent studies show that S. canicula was able to fully recover after 48 

hours, with a survival rate of around 98% (95% CI: 96 to 100%; Revill et al. 2005) and 

78% (95% CI: 47.1 to 90.5%; Rodriguez-Cabello et al. 2005).  

It is questionable that conger will show a similar survival success. All 

individuals in this work exhibited some form of injury, including severe wounds and 

scratches, bruises on skin and fins, inflated stomach and affected eyes (figures 7.1 – 7.6 

in Annex). In fact, individuals that presented more types of injuries had higher 

mortality. Impaired fish have reduced ability to avoid predation and are more 

susceptible to physiological disturbances or disease, thus the survival rate calculated 

here is likely to be over-estimated (Davis 2002; Davis 2010; Davis & Ottmar 2006; 
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Breen 2004). As in the study by Demestre et al. (1998), the monitoring time of this 

experiment was not enough for the mortality rate to stabilize; meaning that if the study 

had been longer, more congers would probably die. Ideally, captive observation studies 

should terminate only once the mortality of held fish becomes constant, but this can take 

up to several weeks (Depestele et al. 2014), which in this case was not practical due to 

logistic limitations of working on board the vessel.  

Another methodological concern is the absence of control fish. When survival is 

less than 100%, control individuals can help to distinguish whether it was the treatment 

(having gone through the capture and handling process) or the method (having been 

contained in tanks) which was associated to the observed mortality (ICES 2014). 

However, in this study it was not possible to have control individuals of C. conger 

caught with other fishing gears mainly due to financial constraints. There are always 

stressors associated with capturing fish that might induce mortality, even if static gears 

are used (e.g. traps), so proper controls are quite difficult to arrange, especially in such 

deep waters. Moreover, it is plausible to assume that in this experiment the effects of 

capturing and handling are much more relevant to the observed mortality than any 

stressor related with holding the fish in tanks.  
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5. CONCLUSIONS 

Overall, the categorical vitality assessment used in this study does not seem to 

be a good predictor of time-to-mortality. Adjustments in this methodology to account 

for differences in behaviour between species should be considered in future work, as 

suggested previously.  

 It can be concluded that M. poutassou, P. blennoides, L. boscii, T. lyra, M. 

merluccius, M. surmuletus, Trachurus spp. (T. trachurus and T. picturatus) and H. 

dactylopterus are all vulnerable to the stressors associated with capture in this bottom 

trawl fishery, as well as exposure to air on deck. G. melastomus and Lophius spp. (L. 

piscatorius and L. budegassa) seem more resistant, but the only species that 

demonstrated resilience to these stressors were S. canicula and C. conger.  

Smaller individuals in this study appear to be more susceptible than larger ones. 

Specific biological traits such as open gas bladder, presence of scales and high 

metabolic rates also increase a species’ vulnerability. This allows inferences on 

probable mortality of not yet examined species; although, only for the same gear in 

identical fishing conditions. Since there is a large number of interacting variables of 

various types (environmental, technical, biological) that influence by-catch mortality, 

the implications of the results of this study are limited by the experimental factors taken 

into account (ICES 2014). 

Regarding the survival experiment, C. conger had high survival (84%; 95% CI: 

75.5 to 93.3%) but likely overestimated due to the fact that the mortality rate did not 

stabilize by the end of the observation period and also severe injuries were present in 

almost 70% of the individuals. For additional investigation of survival potential, inland 

tank trials are recommended in order to conduct a longer study, preferably using control 

fish. Analysis of cortisol, glucose and ions (Na
+
, Cl

-
 and K

+
) from blood sampling can 

provide a method to study stress levels of fish in captivity (Marçalo et al. 2008) . Also, 

mark-and-recapture studies using tags can be applied, considering that the proportion of 

tag returns is often minimal (ICES 2014). Every method has its advantages and 

drawbacks. The chosen methods for this work limited the conclusions that can be made, 

but also implied a cost-effective approach of having a large amount of new information 

that can be used as starting point for future projects.  
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Bottom trawling results in a large proportion of dead discards that are consumed 

immediately or sink. In this case study, 5% of total discards might survive, constituted 

by S. canicula and C. conger and without considering other phyla (e.g. molluscs or 

tunicates). The primary solution to reduce discard mortality is avoiding catching 

unwanted species in the first place; a difficult task considering that many discarded 

species are frequently retained due to their high market value (e.g. hake and monkfish). 

Both mesh configurations and sorting grids to improve trawl selectivity resulted in a 

slight decrease of crustacean catches and therefore never were implemented (Fonseca et 

al. 2004; Campos et al. 2003). More promising are minor changes to the procedures, 

such as reducing trawls duration and handling the catch with urgency and care, 

minimizing injuries and exposure to air (Breen et al. 2017). However, considering the 

extensive physical disruption of deep-sea habitats and the little post-discard survival in 

this particular fishery, alternative gears should be considered. Low-impact, no-discard 

gears can substitute crustacean demersal trawling (e.g. traps, creels), besides being a 

more economically viable fishery with reduced costs and fuel consumption (Leocádio et 

al. 2012). 
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7. ANNEX 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

  

 

  

 

Figure 7.1 – Conger conger specimen exhibiting few scratches 

Figure 7.2 – Conger conger specimen exhibiting scratches 
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Figure 7.4 – Conger conger specimens exhibiting pectoral fin injuries 

Figure 7.3 – Conger conger specimens exhibiting tail injuries 
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Figure 7.5 – Conger conger specimens exhibiting inflated stomach 

Figure 7.6 – Conger conger specimens 

exhibiting affected eyes 


