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ABSTRACT 

 

In this work, the standard procedures required for the operation, verification and 

maintenance of a liquid chromatography coupled to mass spectrometry system have 

been developed. These procedures have been designed and prepared with the aim to 

establish a quality control system to ensure the proper functioning of each component of 

the instrumentation, the LC and the MS, and to verify the performance of the LC-MS 

coupling. For this purpose, standard procedures were elaborated and proved in the 

normal routine laboratory work to evaluate their real applicability. Moreover, the 

verification of the performance of the LC-MS system was carried out experimentally 

through an in-house procedure based on the analysis of naphthylacetics.   
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0. OBJECTIVES 

The main objective of this work was the development of a quality system for an LC-MS 

instrument used in a research laboratory. In order to achieve this main objective, the 

following activities were carried out:  

a. verification of the performance of an HPLC instrument; 

b.  calibration and verification of a mass spectrometer; 

c. verification of the performance of an LC-MS system by determination of quality 

parameters (limit of detection, limit of quantification, linearity and precision) for 

LC-MS/MS analysis of naphthylacetics; 

d. preparation of documents necessary for carrying out instrument operation, 

maintenance and verification for HPLC, MS and the LC-MS coupling.  
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1. INTRODUCTION 

1.1. Quality assurance and quality control in analytical laboratories 

Analytical laboratories have the desire to produce quality results since chemical 

measurements have great impact on the functioning of a society such as in the areas of 

forensic analysis, trade, environmental monitoring, and healthcare, among others. By 

producing valid, reliable and traceable analytical results, the laboratory is benefited by 

the mutual acceptance of the data by manufacturers, regulators, traders and governments 

on national and international levels. Moreover, laboratories producing valid 

measurement data have a higher status in the analytical world which makes them 

competitive in an open market (Prichard and Barwick, 2007). 

Quality assurance and quality control are component´s of the laboratory´s 

quality management system. The International Organization for Standardization (ISO) 

(2005) defines quality assurance (QA) as “part of quality management focused on 

providing confidence that quality requirements will be fulfilled”.  These are the overall 

measures taken by the laboratory to ensure and monitor quality.  

At present, there are a number of standards dealing with quality assurance: (a) 

ISO 9001:2000, Quality Management Systems – Requirements; (b) ISO 17025:2005, 

General Requirements for the Competence of Testing and Calibration Laboratories; (c) 

ISO 15189:2003, Medical Laboratories – Particular Requirements for Quality and 

Competence; and (d) GLP, Good Laboratory Practice (GLP). However, these quality 

assurance systems only provide the general guidelines on how to implement and 

maintain a given quality system. The implementation of a quality system is a voluntary 

process and it is the responsibility of the laboratory to define the appropriate procedures 

necessary to assure that an adequate quality is achieved (Masson, 2007). 

 

ISO (2005) defines quality control as “part of quality management focused on 

fulfilling quality requirements”. It is the planned activities designed to verify the quality 

of the measurements.  Quality control can be internal or external. Internal quality 

control involves the operations carried out by the laboratory staff as part of the 

measurement process which provides evidence that the system is operating satisfactorily 
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with acceptable results. External quality control, on the other hand, provides confidence 

that the laboratory´s performance is comparable with other laboratories. In order to 

achieve this, the laboratory participates in formal (proficiency testing schemes) or 

informal intercomparison exercises (Prichard and Barwick, 2007).  

 

The CITAC/Eurachem Guide (1999) to quality in analytical chemistry cites that 

the laboratories must operate an appropriate level of internal QC checks and participate 

in appropriate proficiency testing schemes as part of their quality system and monitoring 

of day-to-day and batch-to-batch analytical performance. The degree of quality control 

that needs to be carried out depends on the nature of the analysis, the frequency of 

analysis, the batch size, the degree of automation, and the test difficulty and reliability. 

Typical measures includes (a) analysis of reference materials/measurement standards, 

(b) analysis of blind samples, (c) use of QC samples and control charts, (d) analysis of 

blanks, (e) replicate analysis, and (f) proficiency testing (Simonet, 2005).  

 

In laboratories, the quality processes that are implemented should demonstrate 

that the analytical method and instrument provide accurate and precise results. With this 

regard, a quality procedure should include tests which provide information on the 

performance characteristics of the method and the instrument and set performance 

criteria to assist in evaluating the said performance characteristics. 

 

1.2. Implementation of the analytical quality control system 

Over the past years, liquid chromatography coupled to mass spectrometry (LC-

MS) has become a routine method for many analytical determinations. Highly specific 

requirements are imposed on these methods to assure that the results obtained are 

reliable, with high accuracy and precision. Both the method and the instrument 

contribute to the quality of the results and for these reasons it is necessary to check 

whether the instrument and the method meets the demands made on the analytical 

system through validation. 

According to the ISO 9000 standard series (2005), validation is the 

“confirmation, through the provision of the objective evidence, that requirements for a 
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specific intended use or application have been fulfilled”. It provides documented 

evidence that an instrument, a system, a method or a procedure performs as expected 

within the specified parameters and requirements to ensure that the results obtained are 

reliable. Validation efforts should address both the instrument and the computer 

controlling it and the analytical method run on that equipment. Finally, after these had 

been verified, they should be checked together (normally in a form of a system 

suitability test) to confirm the overall performance limits. 

The need for validation may originate from regulations and accreditation 

standards but this is also a prerequisite in terms of any good analytical practice. 

Validation is a regular process that consists of at least three stages: (1) equipment 

validation/qualification, (2) analytical method validation, and (3) analytical system 

suitability test (SST) (Papadoyannis and Samanidou, 2005). 

 

1.2.1. Equipment validation/qualification 

Equipment qualification is one of the first steps in analytical method validation 

and it is a formal systematic process that provides confidence and documented evidence 

that an instrument is fit for its intended purpose and kept in a state of maintenance and 

calibration consistent with its use. Qualification is not a single, continuous process but 

is a result of many discrete activities which have been grouped into four phases: design 

qualification (DQ), installation qualification (IQ), operational qualification (OQ) and 

performance qualification (PQ).  A typical qualification process is shown in Figure 1.1 

(Smith, 2007). Qualification is performed via documented procedures which contains 

the specific instructions and acceptance criteria that need to be executed and met 

(Bedson and Rudd, 1999).  

Design qualification covers all the procedures prior to the installation of the 

system in the selected environment. This is the `planning part´ of the EQ process where 

user requirements specifications and the details for purchasing the equipment are 

defined (Bedson and Rudd, 1999). Typically DQ includes: (a) description of the 

intended use of the equipment; (b) selection of the analysis technique, of the technical, 

environmental and safety precautions, final selection of the supplier and of the 
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equipment; and (c) development and documentation of final functional and operational 

specifications (Papadoyannis and Samanidou, 2005).  

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1. A typical qualification lifecycle (Smith, 2007). 

 

Installation qualification is a process used to establish that the instrument was 

received as specified and installed correctly according to the design requirements in an 

environment suitable for its operation. Proper installation ensures proper functioning of 

the equipment.  
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the absence of any contributory effects which may be introduced by the method. This 
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manufacturer´s recommended intervals, the required performance of the instrument, the 

nature and usage of the instrument, the environmental conditions where the instrument 

is installed and the time that the instrument performance is operating under control. In 

some instances, event-driven OQ is repeated whenever there is (a) routine maintenance, 

servicing and replacement of parts, (b) movement or relocation, (c) interruption to 

services and/or utilities, (d) modification or upgrades, (e) troubleshooting/faultfinding 

after PQ failure. 

Performance qualification (PQ) documents the performance of the instrument on 

continuous operation. It can be considered as having two stages: (1) an initial PQ which 

is performed after OQ in order to verify the overall performance of the system via a 

holistic test which involves analyzing a test mixture on a test column; and (2) an 

ongoing PQ (system suitability checking) to provide continued evidence of the 

suitability of the instrument´s performance (Bedson and Rudd, 1999).  In the event that 

PQ fails to meet the specifications, the instrument requires maintenance or repair or 

calibration and the relevant PQ test(s) should be repeated to ensure that the instrument 

remains qualified. In all these undertakings, standard operating procedures must be 

maintained and all the activities are recorded (Bansal, et.al., 2004).  

 

1.2.1.1. Instrument maintenance, calibration and verification 

Laboratory instrument has to be maintained on a regular basis in order to avoid 

system failure during operation. Its performance must be reviewed on a regular basis in 

order to ensure that the instrument is reliable and continues to comply with the 

requirements specified by the user. Proper maintenance not only makes sense from a 

scientific point of view but also for financial reasons. Any routine maintenance 

procedure suggested by the vendor should be followed. The laboratory can also 

establish its own set of maintenance procedures based upon how the instrument is being 

used, the types of samples run, and the number of users (considering their level of 

training and expertise) that have access to the instrument.  

Section 5.5.2 of the ISO 17025 standard (2005) states that “…Calibration 

programmes shall be established for key quantities or values of the instruments where 
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these properties have a significant effect on the results. Before being placed into service, 

equipment (including that used for sampling) shall be calibrated or checked to establish 

that it meets the laboratory´s specifications requirements and complies with relevant 

standard specifications. It shall be checked and/or calibrated before use.” Hence, for 

laboratories adopting a quality system it is necessary that instrument calibration and 

verification are put into practice. 

Calibration and verification are two terms that are often used incorrectly but 

each has distinct meaning. ISO/IEC Guide 99 (2007) defines calibration as the 

“operation that, under specified conditions, in a first step, establishes a relation between 

the quantity values with measurement uncertainties provided by measurement standards 

and corresponding indications with associated measurement uncertainties and, in second 

step, uses this information to establish a relation for obtaining a measurement result 

from an indication.”  Calibration is also used to describe the process where several 

measurements are necessary to establish the relationship between response and 

concentration which results to the generation of a calibration graph (Prichard and 

Barwick, 2007).  

Verification, on the other hand, is defined by ISO/IEC Guide 99 (2007) as 

the “provision of evidence that a given item fulfills specified requirements” -

Performance verification of an analytical instrument involves comparison of the test 

results with specifications. It includes testing and requires the availability of clear 

specifications and acceptance criteria.  Calibration permits the estimation of errors of 

the measuring instrument or the assignment of values to marks on arbitrary scales, 

whereas, verification of an instrument provides a means of checking whether the 

deviations between the values indicated by the instrument and the known values of a 

measured quantity are acceptable or not (Prichard and Barwick, 2007).  

The instrument performance will continue to deteriorate through time due to 

wear and ageing of the components. While routine maintenance can counteract this 

reduced performance in a short term, it will be inevitable in the long run. However, it is 

necessary to establish that the instrument continuously meets the minimum established 

criteria or acceptance limits. These acceptance criteria should not exceed more than 

what is appropriate for the actual needs of the laboratory otherwise if the established 
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acceptance criteria are unnecessarily high then it will be difficult to maintain the 

instrument “within specification”. In common applications, when confronted with 

having more than one instrument of the same type but are from different manufacturers 

and having different ages, the performance testing process is simplified by choosing less 

stringent common acceptance criteria that all of the instruments can meet (Currell, 

2000).  

1.2.1.2. LC-MS performance verification 

For an LC-MS system, it is necessary to verify the performance of LC and the 

MS separately. Likewise, it is important that the coupling of these two instruments 

demonstrates satisfactory performance. The complexity of the instrumentation often 

dictates the level of verification necessary to be performed. This is the case with 

hyphenated instruments such as the LC-MS especially when the individual systems 

come from different vendors. Normally, the performances of the individual systems (the 

LC and the MS) are readily verified according to each of the vendor´s procedure. 

However, when dealt with a coupled system such as LC-MS, the verification of its 

performance as a whole system can be a quite complicated process. The laboratory is 

responsible for ensuring that the performance of the LC-MS is still under quality 

control. To achieve this purpose, the laboratory can choose to develop its own 

verification process that is scientifically sound, straightforward to use and adequate for 

the intended application. In this context, it is proposed to use a method with known 

performance characteristics in order to verify the whole LC-MS system.  

1.2.1.2.1. HPLC performance verification   

The performance of an HPLC system can be evaluated by examining the key 

attributes of the various modules comprising the system, followed by a holistic test that 

takes into account performance of the integrated system as a whole. According to Lam 

(2004), these are the key performance attributes of the HPLC modules that are checked:  

a) Pump module – flow rate accuracy, gradient accuracy and precision, 

pressure test 

b) Injector module – precision, linearity, carryover 



   INTRODUCTION 

 

12 

 

c) UV-Visible detector module – wavelength accuracy, linearity of response, 

noise and drift 

d) Column heating module – temperature accuracy and temperature stability 

After a verification test, the results are assessed in terms of the predefined 

acceptance criteria. These criteria had been defined from previously set user 

requirements. Whenever failure is indicated after the performance verification tests, an 

impact assessment should be made to evaluate the effect of the failure on the quality of 

the data generated by the system.  

1.2.1.2.2. Column performance verification 

The chromatographic column influences the effective separation of the analytes 

in a given sample. Before a column is purchased, it is necessary to obtain some 

information regarding column specifications and performance characteristics which are 

valuable for method development and routine use. The quality or performance of the 

column deteriorates through time depending on how the operator uses it. Eventually, an 

HPLC column will decrease its efficiency hence it is important to monitor its 

performance. The following parameters are normally determined in a given test 

compound: (a) number of plates (N), (b) peak tailing factor (or symmetry factor) and (c) 

capacity factor (k´).  

The plate number (N) measures the ability of a column to produce a peak that is 

narrow in relation to its retention time. It is generally estimated from a peak (a neutral 

compound) which appears towards the end of the chromatogram in order to get a 

reference value. It is dependent on the chosen solute and the operational conditions 

adopted.  

Symmetrical peaks are always preferred since peaks with poor symmetry can 

result to inaccurate measurements of plate number and resolution, imprecise 

quantitation, poor resolution leading to undetected minor bands in the peak tail a poor 

reproducibility of retention times (Snyder, et.al., 1997). The quality of the peak shape is 

measured in terms of the tailing factor (Tf).  
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The capacity factor or retention factor (k´) is a measure of the time the sample 

component resides in the stationary phase relative to the time it resides in the mobile 

phase; it expresses how much longer a sample component is retarded by the stationary 

phase than it would take to travel through the column with the velocity of the mobile 

phase (IUPAC, 1993).  

 

1.2.1.2.3. Mass spectrometer performance verification 

The satisfactory performance of the mass spectrometer depends on its calibration 

and proper functioning of the instrument system such as electronics and vacuum 

systems, among others. Normally, an MS instrument has built-in options for checking 

the overall condition of the instrumental system.  

The mass spectrometer provides accurate measurement only if the m/z axis is 

properly calibrated. The calibration is performed using automated procedures often 

included in the instrument software. During the calibration procedure, a mixture of a 

MS calibrants (well-characterized reference compounds) are introduced in the ion 

source of the mass spectrometer, ionized and monitored their spectrum. The calibration 

of the m/z axis can be performed by comparing the theoretical and the experimental 

spectrum of the reference compound.  

A calibration standard mass must have the following characteristics: (a) it 

should yield a sufficient number of regularly spaced abundant ions across the entire 

mass scan range; and (b) it should be chemically inert (Dass, 2007). There are several 

compounds that were proposed to be used as calibration standards in electrospray LC-

MS. The proposed calibrants include (a) cesium iodide or cesium carbonate cluster ions, 

(b) poly(ethylene glycol) (PEG) and poly(propropylene glycol) (PPG), (c) proteins such 

as the peptide MRFA and myoglobin, (d) Ultramark 1621, a mixture of fluorinated 

phosphazenes, (e) water cluster ions and (f) sodium trifluoroacetate cluster ions 

(Niessen, 2006).  
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1.2.1.2.4. System Suitability Test 

The system suitability test for a method is based on the concept that the 

equipment, electronics, analytical operations and samples to be analyzed constitute an 

integral system that can be evaluated as such (ICH, 2005). The parameters necessary to 

be established for system suitability test will depend on the particular method being 

tested. The parameters and the criteria must be carefully chosen so as to provide 

unbiased results. System suitability tests are usually done at the start of the analysis but 

depending on the length of the run or the importance of the sample results, system 

suitability test may also be performed during and following the analysis (Wells and 

Dantus, 2005). 

1.2.1.2.5. Analytical method performance characteristic determination 

A newly developed analytical method must at least provide some analytical 

figures of merit or performance characteristics for future reference to other analysts that 

will adopt the method in the future (Krull and Swartz, 1999). 

The typical method characteristics that need to be evaluated are: 

selectivity/specificity, accuracy, precision (repeatability, intermediate precision), limit 

of detection (LOD) or detection limit, limit of quantification (LOQ) or quantification 

limit, and linearity and linear range. These definitions are in accordance with the ICH 

Harmonized Tripartite Guideline for the Validation of Analytical Procedures (2005):  

a) Specificity – the ability of to assess unequivocally the analyte in the presence 

of other components which may be expected to be present.  

b) Accuracy – expresses the closeness of agreement between the value which is 

accepted either as a conventional true value or an accepted reference value 

and the value found. 

c) Precision – expresses the closeness of agreement (degree of scatter) between 

a series of measurements obtained from multiple sampling of the same 

homogeneous sample under the prescribed conditions. Precision may be 

considered at three levels: repeatability, intermediate precision and 

reproducibility. 



   INTRODUCTION 

 

15 

 

d) Limit of detection – the lowest amount of analyte in a sample which can be 

detected but not necessarily quantitated as an exact value. 

e) Limit of quantification – the lowest amount of analyte in a sample which can 

be quantitatively determined with suitable precision and accuracy. 

f) Linearity – the ability (within a given range) to obtain test results which are 

directly proportional to the concentration (amount) of analyte in the sample. 

g) Linear range – the interval between the upper and lower concentration 

(amounts) of analyte in the sample (including these concentrations) for 

which it has been demonstrated that the analytical procedure has a suitable 

level of precision, accuracy and linearity. 

The method´s performance characteristics should be based on the intended use 

of the method and the requirements may need to be assessed depending upon the nature 

of the method and test specifications.  

 

1.3. Documentation in laboratory practice  

Documentation is a critical part of a quality assurance system. Laboratories 

should maintain and control documents related to sampling procedures, calibration 

procedures, analytical and test methods, data collection and reporting procedures, 

auditing procedures and checklists, sample handling and storage procedures, 

computation and data validation procedures, quality assurance manuals, quality plans, 

sampling data sheets and specifications (Ratliff, 2003).  

Standards and regulations require that the laboratory should have written, clear 

and detailed procedures for all the activities that are performed in the laboratory. A 

standard operating procedure (SOP) describes the set of instructions a technician or an 

analyst follows when carrying out an analysis or a process (Kenkel, 2000). SOP forms 

part of the hierarchy of quality documentation. Several advantages can be cited for 

having a readily accessible, user-friendly, agreed set of SOPs: they provide evidence 

that all procedures are in place; they reflect the laboratory´s commitment to quality 
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standards; they ensure standardization of procedures; they reduce variability and errors; 

they provide an invaluable platform for staff training and support (Carson and Dent, 

2007). 
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2. EXPERIMENTAL  

These were the standards, the reagents and the instrumentation used for carrying out 

the different verification processes. 

 

2. 1. Chemicals and Instrumentation 

2.1.1. Standards and Reagents 

HPLC performance verification 

 Caffeine, Merck 

Column verification 

 Uracil, 98%, Merck 

 Acetophenone, 99%, Sigma, USA 

 Toluene, GC grade, Merck 

LCQ MS calibration 

 Caffeine, Sigma 

 MRFA (L-methionyl-arginyl-phenylalanyl-alanine acetate·H2O), 

Sigma  

 Ultramark 1621, Sigma 

HPLC-MS analysis  

 1-naphthylacetamide PESTANAL
®
, 99%, Sigma-Aldrich 

 1-naphthoxyacetic acid, 98%, Aldrich 

 2-naphthoxyacetic acid PESTANAL
®
, 98%, Sigma-Aldrich 

HPLC performance verification 

 Water , LC-MS grade, Fluka Sigma Aldrich 

 Methanol, LC-MS grade, Fluka Sigma Aldrich 

 Acetonitrile, LC-MS grade, Fluka Sigma Aldrich 

 Acetone, GC grade, Merck 

Column verification 

 Water, LC-MS grade, Fluka Sigma Aldrich 

 Acetonitrile, LC-MS grade, Fluka Sigma Aldrich 

LCQ MS calibration 

 Water, LC-MS grade, Fluka Sigma Aldrich 
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 Methanol, LC-MS grade, Fluka Sigma Aldrich 

 Acetonitrile, LC-MS grade, Fluka Sigma Aldrich 

HPLC-MS analysis  

 Methanol, LC-MS grade, Fluka Sigma Aldrich 

 Water, LC-MS grade, Fluka Sigma Aldrich 

for mobile phase preparation 

 Glacial acetic acid, analytical grade, Merck 

 

2.1.2. Instrumentation 

2.1.2.1. Liquid chromatography 

 Dionex HPLC system (Dionex Softron GmbH, Germany) which 

consists of 

- SOR-100A-6 solvent rack  

- P680 A DGP-6 high-precision gradient pump with 3 solvent 

channels each for the left and right pump 

- ASI-100 automated sample injector 

- TCC-100 thermostatted column compartment 

- UVD 170U UV-Vis diode array detector  

- Chromeleon 6.70 chromatography management software 

 

 Accela HPLC system (Thermo Electron San Jose, USA) which 

consists of  

- quarternary pump with vacuum degasser 

- autosampler which also includes the column oven tray 

compartment heater/cooler 

- PDA detector 

- Xcalibur data system 

 

 Ascentis
®
 Express RP-Amide, 10cm x 2.1 mm, 2.7 μm (Supelco) 

 

 LiChrospher 100 RP-18 (5µm) HPLC cartridge, 125mm x 4mm 

(Agilent) 
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2.1.2.2. Mass spectrometry 

Finnigan LCQ quadrupole ion trap mass spectrometer (Thermo Electron San 

Jose, USA): 

 electrospray (ESI) and atmospheric pressure chemical ionization (APCI) 

sources 

 ion trap mass analyzer 

 Xcalibur® data system 

 

2.1.2.3. Other instruments 

 Analytical balance (Mettler Toledo AT261 Delta Range) 

 Calibrated digital thermometer with thermal probe (Testo 945), calibrated 

at 0 to 200°C by ENAC 

 

 

2.2. Experimental Procedure 

This section describes the different activities that were performed in order to 

accomplish the objectives of the study. The different procedures for the performance 

verification of the HPLC, the column, the mass spectrometer and the LC-MS are 

presented. 

2.2.1. HPLC performance verification  

The detailed procedure for the performance verification of the Dionex HPLC-UV-

Vis is described in the document Instructions for the Performance Verification of the 

Dionex HPLC System with UV/Vis Diode Array Detector (SOP/CECEM/EQP/02/01). 

The verification included the determination of the performance attributes of the 

different HPLC modules: pump, autosampler, column oven and detector.  

The verification of the Dionex HPLC-UV was performed using a LiChrospher 100 

RP-18 column, 125mm x 4mm, 5µm (Agilent) instead of a restriction capillary. The 

column oven temperature was set to 25°C, except in column oven verification. The 

column and the system were allowed to equilibrate for at least 15 minutes before 
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starting with data acquisition unless otherwise specified. After the test, the results were 

compared with the set acceptance criteria. 

2.2.1.1. Preparation of caffeine solutions 

 A stock solution of caffeine with a concentration of 1000 mg L
-1

 was prepared 

by weighing 10 mg of caffeine standard and dissolving it in 10 mL of water. This stock 

solution was used in the preparation of different concentrations (300, 220, 140, 75, 60, 

40, 10 and 5 µg mL
-1

) of caffeine standard in water. All the resulting solutions were 

weighed and their masses were recorded. 

2.2.1.2.  Performance verification of the pump 

 The performance verification of the pump of the HPLC was done through the 

determination of flow rate accuracy, flow rate precision, and gradient accuracy. 

2.2.1.2.1. Determination of flow rate accuracy 

 The flow rate accuracy was determined by measuring the time elapsed to fill a 

10 mL flask with water flowing from a solvent channel at a rate of 1 mL/min. The flow 

rate was calculated using the formula below: 

(min) fill  totime

(mL)flask  of volume
  

min

mL
 rate flow 








 

The measurement was done in triplicate and then the average flow rate was compared 

with the set flow rate.  

2.2.1.2.2. Determination of flow rate precision 

The mobile phase (85:15 (v/v) water:acetonitrile) was set at a flow rate of 1 

mL/min. The acquisition time was 6 minutes and the response of the UV detector was 

monitored at 272 nm. The flow rate precision was determined by repeated injections (10 

times) of 5 µL of a 140 µg mL
-1

 caffeine standard solution. The retention time of 

caffeine was obtained after each injection. The %RSD of the retention time was used to 

evaluate the flow rate precision. 

 

Equation 2.1 
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2.2.1.2.3.  Determination of gradient accuracy 

This determination was necessary to be performed for all the channels of the 

pump, using two channels for each determination. One channel was filled with mobile 

phase A (99.5:0.5 (v/v) methanol:acetone) while another channel was filled with mobile 

phase B (methanol). The flow rate was set to 1 mL/min and UV detection at 265 nm. 

The program for gradient accuracy testing is shown in Table 2.1. By performing a blank 

run, a chromatogram was obtained showing the absorbance change (expressed as 

height) as gradient changes from 100%B to 100%A and then back to 100%B. The 

gradient accuracy was calculated from the relative heights (expressed as %Height ratio) 

of %A (in each step gradient) to 100%A. The calculated %Height ratio was compared 

with the set value for %A.

  

 

 

Table 2.1. Program for gradient accuracy testing. 

Time (min) % Mobile phase A % Mobile phase B 

0 0 100 

3 0 100 

6 100 0 

9 100 0 

9.2 80 20 

12 80 20 

12.2 60 40 

15 60 40 

15.2 40 60 

18 60 40 

18.2 80 20 

21 80 20 

21.2 100 0 

25 100 0 

 

 

2.2.1.3. Performance verification of the autosampler 

The performance of the autosampler was verified by determination of injection 

volume precision, injection volume linearity and carryover.  

 

Equation 2.2 
100%A ofHeight 

%A ofHeight 
  ratio%Height 
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2.2.1.3.1. Determination of injection volume precision 

The mobile phase (85:15 (v/v) water:acetonitrile) was set at a flow rate of 1 

mL/min. The acquisition time was 6 minutes and the response of the UV detector was 

monitored at 272 nm. The injection volume precision was determined by repeated 

injections (10 times) of 5 µL of a 140 µg mL
-1

 caffeine standard. The peak area of 

caffeine was obtained after each injection. The %RSD of peak area was used to evaluate 

the flow rate precision. 

2.2.1.3.2. Determination of injection volume linearity 

The mobile phase (85:15 (v/v) water:acetonitrile) was set at a flow rate of 1 

mL/min. The acquisition time was 6 minutes and the response of the UV detector was 

monitored at 272 nm. The injection volume linearity was determined by injecting 5, 10, 

20, 40 and 80 μL of a 10 µg mL
-1

 caffeine standard. The peak area of caffeine was 

obtained after each injection. A linearity plot (peak area vs. injection volume) was 

constructed and the linear regression coefficient (r) was obtained. The ratio between the 

peak area and the volume injected was calculated and the %RSD of the peak 

area/injection volume was also determined.  

2.2.1.3.3. Determination of carryover 

The mobile phase (85:15 (v/v) water:acetonitrile) was set at a flow rate of 1 

mL/min. The acquisition time was 6 minutes and the response of the UV detector was 

monitored at 272 nm. The carryover was determined by injecting 5 μL of a 75 µg mL
-1

 

caffeine standard. Immediately after running the standard, a 5 μL mobile phase was 

injected. The measurement was done in triplicate. The peak area of caffeine was 

determined in the standard and blank injections. The %carryover was calculated as 

follows: 

 

 

 

 

Equation 2.3 x100
standardin  caffeine of areapeak 

blankin  caffeine of areapeak 
  %Carryover
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2.2.1.4. Performance verification of the column oven 

 The column oven performance verification was done by determining the 

column oven accuracy, column oven temperature precision and column oven 

temperature stability. Instead of the column, an LC zero dead volume union was used to 

connect the column inlet and outlet tubings. The flow rate for water was set at 0.1 

mL/min. A calibrated digital thermal probe (Testo 945) was used to measure the 

temperature inside the column oven.  The measured temperatures were corrected using 

the correction factors cited in the thermometer´s calibration certificate. 

2.2.1.4.1. Determination of column oven temperature accuracy 

The column temperature was set to 20ºC. After the set temperature was reached, 

the temperature was recorded every three minutes. Three temperature readings were 

obtained. The difference between the corrected temperature and the set temperature was 

calculated. The same procedure was done at the set temperatures of 40ºC and 60ºC. 

2.2.1.4.2.  Determination of column oven temperature precision 

 The column temperature was set to 40ºC. After the set temperature was 

reached, the temperature was recorded. The temperature was decreased by setting to 35 

ºC. The temperature was then again set to 40ºC and the temperature was recorded after 

the set temperature was reached. This procedure was done once more to obtain triplicate 

readings. The maximum difference between the 3 temperature readings was calculated.  

2.2.1.4.3.  Determination of column oven temperature stability 

 The column temperature was set to 40ºC. After the set temperature was 

reached, temperature measurement was started. Temperature readings were obtained 

every 4 minutes and for a period of 1 hour. A temperature stability plot was made 

between the temperature readings and time. 

2.2.1.5. Performance verification of the detector 

 The performance verification of the detector was conducted by determining 

the linearity of detector response and the noise and drift. 
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2.2.1.5.1. Determination of the linearity of detector response 

The mobile phase (85:15 (v/v) water:acetonitrile) was set at a flow rate of 1 

mL/min. The acquisition time was 6 minutes and the response of the UV detector was 

monitored at 272 nm. The linearity of detector response was determined by injecting 5 

μL each of 10, 60, 140, 220 and 300 µg mL
-1

 caffeine standards. The peak area of 

caffeine was obtained after each injection. A linearity plot (peak area vs. injection 

concentration) was constructed and the linear regression coefficient was obtained. The 

ratio between the peak area and the concentration was calculated and the %RSD of the 

peak area/concentration was also determined.  

2.2.1.5.2. Determination of noise and drift 

 This determination was necessary to be performed for all the channels of the 

pump, using two channels for each determination. To determine the noise and drift, one 

channel was filled with water and the other channel was filled with methanol. The flow 

rate of the mobile phase (50:50 (v/v) methanol:water) was set to 1 mL/min. The UV 

detector was turned on and the system was stabilized for at least one hour before 

starting the data acquisition. The acquisition time was 20 min., and the response of the 

UV detector was monitored at 254 nm. A blank injection was performed in order to 

obtain the baseline plot. The baseline plot was divided into 20 segments and the noise 

and drift was calculated in each segment. The noise and drift was calculated using the 

Chromeleon software. The noise corresponds to the distance between two parallel lines 

through the measured minimum and maximum values and the regression line. The drift 

was estimated as the slope of the regression line. 

 

2.2.2. Column Performance verification 

The performance of the Ascentis
®
 Express RP-Amide column (10cm x 2.1 mm, 

2.7 μm, Supelco) was evaluated using two HPLC instruments: Accela HPLC-UV and 

Dionex-HPLC UV/Vis. The procedure of the test is described in the document entitled 

Instructions For Verification Of Column Performance (Ascentis Express
®

 RP-amide, 10 

cm x 2.1 mm x 2.7 µm, Supelco) (SOP/CECEM/EQP/07/01).  
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2.2.2.1. Preparation of test solution 

 The stock solutions of uracil (1mg mL
-1

), acetophenone (1mg mL
-1

) and toluene 

(10 mg mL
-1

) were prepared as follows: weighing 5 mg of uracil and dissolving in 5 mL 

of 50:50 (v/v) acetonitrile:water solution; taking 5µL of acetophenone and mixing with 

5 mL of 50:50 (v:v) acetonitrile:water solution; taking 58 µL of toluene and mix with 5 

mL of 50:50 (v:v) acetonitrile:water solution. The test solution was prepared by taking 

aliquots of 20 µL of 1 mg mL
-1

uracil, 30 µL of 1mg mL
-1

of acetophenone, 240 µL of 10 

mg mL
-1 

toluene and mixing with 710 µL of 50:50 (v:v) acetonitrile:water in a glass 

vial.  

2.2.2.2. HPLC run 

These were the chromatographic conditions used: mobile phase: 50:50 

acetonitrile:water; flow rate: 0.5 mL/min; injection volume: 1 µL; acquisition time: 4 

min; temperature: 25°C; UV detection: 254 nm. 

The HPLC column was installed in the HPLC instrument and was allowed to 

equilibrate with the mobile phase for at least 15 minutes. The test compound was 

injected and after the chromatographic run the retention times of the eluted peaks were 

compared with the retention times indicated in the test chromatogram from the vendor. 

The number of plates (N), tailing factor (Tf) and capacity factor (k´) for the last peak 

(toluene) were calculated using Equations 2.4, 2.5 and 2.6, respectively. The calculated 

values were compared with the vendor´s specifications.  

N was calculated from the following equation:  

  

where tR stands for the retention time and w0.5 for the peak width at half height 

The tailing factor (Tf) was calculated as: 

 

where W0.05 is the peak width at 5% height and f is the front half-width at 5% of the 

peak height. 

2

h

R

w

t
 5.545N 










 Equation 2.4 

2f

W
  T 0.05

f  Equation 2.5 
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The capacity factor or retention factor (k´) was calculated as  

 

where tR stands for the retention time and t0 for the retention time of the unretained 

compound or dead time. 

 

2.2.3. Mass spectrometer performance verification  

The procedure for this determination can be found on the document Instructions 

for Performance Verification of the LCQ MS (Finnigan) SOP/CECEM/EQP/05/01. The 

ion gauge pressure and the convectron gauge pressure were always checked before 

starting any MS analysis to ensure that the vacuum system is working properly. To 

demonstrate that the instrument´s major electronic systems were operating satisfactorily, 

the built-in option “Diagnostic Test” of the software was selected. With this test, the 

power supplies, API temperatures, lenses and RF were tested. The instrument displays a 

Pass/Fail result to indicate whether all parts are working properly or not.   

2.2.3.1. Mass spectrometer calibration  

 The mass spectrometer was calibrated by following the procedure described in the 

document that already exists in the laboratory entitled Instrucciones para la Calibracion 

y Tuning del Espectrómetro de Masas LCQ (Finnigan) (PNT 035100 APR/103).  

2.2.3.1.1. Preparation of the calibration solution 

The calibration solution was prepared from the stock solutions of caffeine (1mg 

mL
-1

), MRFA (5 nmol/μL) and Ultramark 1621 (0.1%). The caffeine stock solution was 

prepared by weighing 1 mg caffeine and dissolving it in 1 mL methanol; the MRFA 

stock solution by weighing 3.0 mg of L-methionyl-arginyl-phenylalanyl-alanine 

acetate·H2O (MRFA) and dissolving in 1 mL of 50:50 (v/) methanol:water solution; and 

Ultramark 1621 solution by dissolving 10µL of Ultramark 1621 in 10 mL of 

acetonitrile. A 5 mL calibration solution was prepared by pipetting the following into a 

clean, dry vial: 100 µL caffeine stock solution, 5 µL MRFA stock solution, 2.5 mL 

Equation 2.6 
0

0 R´

t

tt
k



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Ultramark 1621 stock solution, 50 µL glacial acetic acid, and 2.34 mL 50:50 (v/v) 

methanol: water  solution.  

2.2.3.1.2. Instrument Setup 

The fused silica capillary used for calibration was connected in the ESI probe 

before the probe assembly was installed in the detector. The ESI probe was configured 

to work at low flow rate infusion. The syringe was filled with the calibration solution 

and was connected directly to the grounded fitting of the probe assembly.  

2.2.3.1.2. Calibration 

 The instrument was set to the ESI positive mode and the calibration solution was 

infused at a flow rate of 3μL/min. The ESI source parameters were set to the following 

values: Sheath gas flow rate: 40; Aux. Gas flow rate: 0; Spray voltage: 4.00; Capillary 

temperature: 275; Capillary voltage: 3.00; Tube lens offset: 30.00. The Define scan 

parameters used were: Scan mode: MS; Scan type: Full; MS
n
 power: 1; Number of 

Microscans: 2; Maximum inject time: 200; Input Method: From Mass 150 to 2000; 

Source Fragmentation: Off.  

 The ESI operation was first tested by observing the singly-charged positive ions 

for caffeine, MRFA, and Ultramark 1621. Before calibration was done, the instrument 

response was optimized by automatic tuning (via the instrument´s Tune program) using 

the caffeine peak of m/z 195. Afterwards, the automatic calibration was begun by 

selecting the instrument´s Calibrate option. Once the calibration has finished, a 

calibration report was displayed showing the success/fail result of the calibration. After 

calibration, the fused silica capillary was removed from the ESI probe and was replaced 

with a new capillary. The detector was flushed with acetonitrile for cleaning.  

 

2.2.4. LC-MS performance verification 

The proper functioning of the LC-MS was verified by using a method that was 

developed in the CECEM laboratory. The method involves the LC-MS/MS analysis of 

naphthylacetics (1-naphthoxyacetic acid, 2-naphthoxyacetic acid and 1-
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naphthylacetamide). For the purpose of this investigation, it was only necessary to 

determine the possible conditions in which this method can be adopted in the Finnigan 

LCQ MS and determine some quality parameters such as limit of detection, limit of 

quantification, linearity and precision, which can serve as a reference for verifying the 

performance of the whole LC-MS system in the future.  The procedure for the LC-MS 

verification can be found in the document entitled Performance Verification of an LC-

MS System (SOP/CECEM/EQP/08/01) found in the Appendix. 

2.2.4.1. Tuning with the analytes  

Before starting with any LC-MS determination, the response on the MS detector 

has to be optimized by tuning the tube lens with 1-naphthylacetamide (5 µg mL
-1

) and 

1-naphthoxyacetic acid (5 µg mL
-1

) using a 50:50 (v/v) methanol:2mM acetic acid 

solution as mobile phase. The standard solution of the analyte was introduced by 

infusion using the syringe pump. The scan parameters used were as follows: Scan mode: 

MS; Scan type: Full; MS
n
 power: 1; Number of Microscans: 3; Maximum inject time: 

100; Input Method: From Mass 50 to 300; Source Fragmentation: Off. The tuning 

process was done by using the Tune program of the instrument software. Semi-

automatic tune was done for the other MS parameters (capillary voltage and tube lens 

offset voltage).  

2.2.4.2. Establishment of the chromatographic and MS detection conditions 

2.2.4.2.1. Liquid chromatographic conditions 

From the original method, the same gradient elution program was employed but 

the flow rate was decreased to 300 μL/min due to the limitations imposed by the HPLC-

MS instrument. The mobile phase A (2mM acetic acid) was prepared by adding 115 μL 

of glacial acetic acid to 1L of water. Mobile phase B is methanol and hence preparation 

was not necessary. The mobile phase composition is shown in Table 2.2. Finally, these 

were the conditions that were established to be adequate in performing the analysis: 

Column: Ascentis Express RP-Amide, 10 cm x 2.1 mm, 2.7µm 

Mobile Phase: 2 mM acetic Acid: Methanol 

Flow rate: 0.300 mL/min 

Column Temperature: 50°C 

Injection volume: 5 µL 
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Table 2.2. Gradient elution program. 

Time, min %Acetic acid  %Methanol 

0 70 30 

2 70 30 

4 55 45 

5 55 45 

8.4 30 70 

11.8 30 70 

12.6 70 30 

16.6 70 30 

 

2.2.4.2.2. MS conditions 

The MS/MS detection settings were established in terms of the ESI source 

parameters, isolation width, normalized collision energy, activation Q and activation 

time. The optimum parameters were chosen such that the mass chromatogram shows the 

maximum product ion intensities for a selected precursor ion.  Table 2.3 summarizes the 

optimal values of the MS parameters for this determination.  

Table 2.3. MS detection parameters. 

Parameters 1-Naphthylacetamide 1-Naphthoxyacetic 

acid 

2-Naphthoxyacetic 

acid 

ESI mode positive negative negative 

ESI Source parameters    

Sheath gas (arb) 70 53 53 

Auxiliary gas (arb) 40 48 48 

Spray voltage (kV) 4 4 4 

Capillary Temperature (°C) 250 250 250 

Capillary voltage (V) 9 -17 -17 

Tube lens offset (V) -15 15 15 

Precursor (m/z) 186.1 201.1 201.1 

Product ion for quantitation (m/z) 141 143 143 

Product ion for confirmation (m/z) 169 157 157 

Isolation width (m/z) 1.5 1.5 1.5 

Normalized collision energy 

(%NCE) 

25 29 28.5 

Activation Q 0.40 0.40 0.40 

Activation time (msec) 0.30 0.30 0.30 

*arb = arbitrary units 
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2.2.4.3. Determination of quality parameters 

The following quality parameters were evaluated for the determination of 1-

naphthylacetamide, 1-naphthoxyacetic acid and 2-naphthoxyacetic acid by HPLC-

MS/MS: limit of detection, limit of quantitation, linearity and precision (repeatability). 

These analytes were detected using the Finnigan LCQ MS analyzer equipped with an 

electrospray ion source operated in the positive mode (for 1-NAD detection) and 

negative mode (for 1-NOA and 2-NOA detection).  

2.2.4.3.1. Preparation of standard solutions 

A 1,000 µg mL
-1

 stock solution of each of the analytes was prepared from the 

following solid standards: 1-naphthoxyacetic acid, 98% purity; 2-naphthoxyacetic acid, 

98% purity; 1-naphthylacetamide, 99% purity. A 5.00 mg solid standard was weighed 

and dissolved in 5 mL of methanol. 

An intermediate standard (10 µg mL
-1

) was made by pipetting 30 µL of 1,000 µg 

mL
-1

 1-NOA, 30 µL of 1,000 µg mL
-1

 2-NOA and 30 µL of 1,000 µg mL
-1

 1-NAD and 

mixing with 3.910 mL of methanol. From this 10 ppm intermediate standard, working 

calibration standard solutions between 0.1 and 1 µg mL
-1

 was used for linearity, 

precision and recovery determinations. Another intermediate standard of 0.200 µg mL
-1

 

concentration was prepared from 10 µg mL
-1

 standard. The 0.200 µg mL
-1

 standard was 

used for the preparation of standards (2.5 ng mL
-1

 to 50 ng mL
-1

) used in LOD 

determination. The mass of the aliquot taken and mass of the final solution were 

recorded and used for the calculation of the final concentration.  

2.2.4.3.2. Identification of the analytes 

The analytes were identified by injecting individual standard solutions of each 

analyte at 0.5 µg mL
-1

. From the resulting chromatogram, the retention times were 

noted and the mass tandem spectrum was examined for confirming the presence of the 

precursor and product ions.  
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2.2.4.3.3. Determination of limit of detection (LOD) and limit of quantitation (LOQ)  

The instrument LOD was determined by preparing dilute standard solutions 

from a 0.200 µg mL
-1

 standard containing a mixture of 1-naphthoxyacetic acid, 2-

naphthoxyacetic acid and 1-naphthylacetamide. The LOD and LOQ were estimated 

based on the signal-to-noise ratio (S/N) measurement. The dilute standard solutions 

were subjected into the LC-MS run, and the chromatogram obtained was inspected for 

the S/N ratio. LOD was estimated as the standard concentration (ng mL
-1

) which gave a 

S/N ratio around 3. Finally, the LOD was expressed as the amount (ng) of analyte 

injected by the expression:  

LOD (ng) = Concentration (ng/µL) * volume (µL) injected  

The LOQ was estimated from the LOD data. LOQ (S/N ≈ 10) was derived from 

the expression: 

LOQ = LOD * 3.3 

2.2.4.3.4. Determination of linearity 

The linearity was determined by preparing standard solutions containing the 

three analytes from a concentration similar to the LOQ until around 1 µg mL
-1

. The 

standards were injected starting from the lowest to the highest concentration. At the end, 

the peak areas were determined by manual integration on the Xcalibur software. A plot 

of peak area vs. concentration was made and the linear regression parameters were 

obtained. The linearity was evaluated in terms of the regression coefficient (r).  

2.2.4.3.5. Determination of precision (repeatability) and relative error 

The instrument precision was determined by performing 6 injections of a 

standard solution containing the analyte at a middle concentration level.  The retention 

times and peak areas (manually integrated) were obtained from each run. The injection 

precision was evaluated in terms of the %RSD of the retention time and peak area. The 

precision was also evaluated in terms of the %RSD of the calculated concentration 

when the standard is quantified as unknown sample using the linear calibration curve. 

Equation 2.8 

Equation 2.7 
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Moreover, the error associated on the quantification was estimated by the %Relative 

error, which was calculated as follows:  

 

 

 

 

 

 

 

 

Equation 2.9 100x 
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3. RESULTS AND DISCUSSION  

 Quality control is an important aspect of an analytical laboratory. Quality control 

measures must be designed and followed because they provide a mechanism in 

achieving reliable data. For a typical LC-MS determination, these are some of the 

measures necessary for obtaining quality results:  (1) performance verification of HPLC, 

(2) performance verification of column, (3) performance verification of the MS system, 

(4) performance verification of the LC-MS system, and (d) documentation of the 

procedures necessary for carrying out these tasks.   

After carrying out the different activities mentioned above, the corresponding 

documents were generated. The list of documents with the codification is shown in 

Table 3.1. All of the documents can be found in the Appendix section. 

Table 3.1. Summary of the generated documents. 

TITLE CODE 

Instructions for the Operation of Dionex HPLC System with UV-

Vis Diode Array Detector 

SOP/CECEM/EQP/01/01 

Instructions for the Performance Verification of the Dionex HPLC 

System with UV-Vis Diode Array Detector 

SOP/CECEM/EQP/02/01 

Instructions for the Maintenance of the Dionex HPLC System with 

UV-Vis Diode Array Detector 

SOP/CECEM/EQP/03/01 

Instructions for the Operation of the LCQ MS (Finnigan) in ESI 

mode 

SOP/CECEM/EQP/04/01 

Instructions for Performance Verification of the LCQ MS 

(Finnigan) 

SOP/CECEM/EQP/05/01 

Instructions for the Maintenance of the LCQ MS (Finnigan) SOP/CECEM/EQP/06/01 

Instructions for Verification of Column Performance (Ascentis 

Express
®
 RP-amide, 10 cm x 2.1 mm x 2.7 µm, Supelco) 

SOP/CECEM/EQP/07/01 

Performance Verification of an LC-MS System SOP/CECEM/EQP/08/01 

 

3.1. Performance Verification of the Dionex HPLC-UV 

The performance characteristics of the different HPLC modules were verified by 

determination of the different parameters listed in Table 3.2.  In order to carry out these 

processes and set the acceptance criteria, the operational qualification (OQ) procedures 

performed by the instrument vendor were consulted along with the proposal from some 

existing guidelines. Some modifications were made in order to accommodate the current 

conditions and demands for a given parameter. Caffeine has a well-characterized UV 
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absorption profile and hence was used for most of the verification activities. The 

column temperature was set to 25°C except during verification of the column oven.  

Table 3.2. HPLC performance verification parameters and acceptance criteria. 

Module Performance Attributes Acceptance Criteria Frequency 

Pump 

Flow rate accuracy ±2% of the set flow rate 6 months 

Flow rate precision < 1% RSD  6 months 

Gradient accuracy ±1% of the step gradient composition 6 months 

Injector 

Injection precision <1% RSD 6 months 

Injection volume linearity 

r ≥ 0.999 

%RSD (peak area/injection volume ratio) 

≤5% 

12 months 

Injection carryover <1.5% 6 months 

Column oven 

Thermostatting accuracy 
±3ºC maximum deviation from the set 

temperature 
6 months 

Thermostatting precision ±0.5ºC maximum difference 6 months 

Temperature stability ±2ºC maximum difference 6 months 

Detector 

Linearity of detector 

response 

r ≥ 0.999 

%RSD (response ratio) ≤5% 
12 months 

Noise and drift 

 

Noise: 0.200 mAU 

Drift: 0.800 mAU/h 
months 

 

3.1.1. Verification of the pump 

3.1.1.1. Determination of the flow rate accuracy 

Pump is an essential component of an HPLC system that ensures an accurate and 

consistent flow of the mobile phase in order to have an efficient interaction between the 

stationary phase and the analyte. The flow rate of the mobile phase affects the time the 

analyte spends in the stationary phase and hence affects the time and degree of 

separation of the components in a given sample. 

 The flow rate accuracy was determined by setting the flow rate of water to 1 

mL/min and measuring the time it took to fill a 10-mL volumetric flask. Three replicate 

analyses were done and the results are shown in Table 3.3. The average flow rate was 

1.00 mL/min. Since the acceptance criteria set for the flow rate accuracy was 1.00 ± 

0.02 mL/min, the results are acceptable.  
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Table 3. 3. Pump flow rate accuracy results. 

Replicate Time (min:sec:csec) Flow rate (mL/min) 

1 10:00:12 1.00 

2 10:01:47 1.00 

3 09:58:40 1.00 

Average 1.00 

 

3.1.1.2. Determination of the flow rate precision  

The precision of the flow rate was determined by ten injections of 149 µg g
-1

 

caffeine standard. The precision is expressed in terms of the % RSD of the retention 

times.  The results are shown in Table 3.4.  The calculated %RSD was 0.25%, so the 

system passed the set acceptance criteria (<1%RSD).  

Table 3.4. Flow rate precision as determined by variability of the retention times of 

caffeine standard. 

Replicate Retention time (min) 

1 3.410 

2 3.427 

3 3.432 

4 3.434 

5 3.437 

6 3.429 

7 3.429 

8 3.422 

9 3.417 

10 3.419 

Average 3.426 

Standard deviation 0.0084 

%RSD 0.25 

 

3.1.1.3. Determination of the gradient accuracy 

The Dionex HPLC-UV/Vis instrument is designed with left and right pumps, 

with each pump having three solvent channels. The gradient accuracy test is performed 

in all the solvent channels. As an example, the result of the gradient accuracy test for the 

two solvent channels of the left pump is mentioned here. 

Gradient accuracy was evaluated by filling the solvent channel C with pure 

methanol and solvent channel A with 99.5: 0.05 (v/v) acetone:methanol solution. 

Decreasing the amount of acetone (a UV-active tracer) in the mobile phase leads to a 

decrease in UV absorption which enabled the accuracy of the gradient mixer to be 
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determined. In order to say that the pump is able to deliver the accurate solvent 

composition, there should be a proportional decrease in the peak height relative to the 

decrease in the acetone composition. The chromatogram for the gradient test is shown in 

Figure 3.1 with the corresponding gradient accuracy results on Table 3.5. All of the 

calculated % Height ratios are within the specified acceptance criteria (±1%).  

Based on the results obtained here and from previous determinations such as 

flow rate accuracy and precision, it can be said that the pump is working properly under 

the set performance criteria.  

 

 

 

 

 

 

 

 

 

Figure 3.1. Gradient accuracy measurement. 

 

Table 3.5. Measurement of the absorbance of acetone at varying mobile phase 

composition. 

Step Expected %A Observed Height (mAU) %Height Ratio Deviation (%) Result 

(Pass/Fail) 

1 100 861.203 100.00 0.00  

2 80 691.216 80.26 0.26 Pass 

3 60 516.472 59.97 0.03 Pass 

4 40 342.908 39.82 0.18 Pass 

5 20 169.151 19.64 0.36 Pass 
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3.1.2. Verification of the autosampler 

3.1.2.1. Determination of the injection volume precision  

The proper functioning of the autosampler is necessary since any error during 

autosampling will propagate through the separation, detection and quantitation and in 

the end will affect the final results. The ability of the injector to deliver the same 

amount of sample at the same speed and with the same mechanical motions during 

repeated injections is very crucial to the precision and accuracy of results obtained 

especially by external standard calibration. Many analysts prefer to use autosamplers 

than manual injection in order to obtain better repeatability (Hinshaw, 2000).  

The injection repeatability was determined by performing 10 injections of a 140 

µg g
-1

 caffeine solution. The precision was evaluated in terms of the %RSD of the peak 

areas. The results are shown in Table 3.6. The %RSD obtained was 0.16% which is less 

than the set acceptance criteria (%RSD <1%). Hence, it can be said that the autosampler 

is able to provide precise results. 

Table 3.6. Injection volume precision as determined by variability of the peak areas of 

caffeine standard. 

Replicate Peak Area 

1 28.4703 

2 28.3785 

3 28.3884 

4 28.5241 

5 28.3924 

6 28.3834 

7 28.2253 

8 28.3795 

9 28.4772 

10 28.8514 

Average 28.4471 

Standard deviation 0.16 

%RSD 0.57 

 

3.1.2.2. Determination of the injection volume linearity 

Linearity is important for methods requiring variable injection volumes. The 

uniformity of sample loop and the ability of the metering device to draw various 

amounts of sample in proper proportion will affect the linearity of the injection volume. 
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The linearity of the injection volume was demonstrated by injecting 5, 10, 20, 40 and 80 

μL of a 16 µg g
-1

 caffeine solution. The peak area was determined after each injection 

and a calibration plot was prepared. The linear regression parameters were also 

obtained. The results are shown in Table 3.7 and the corresponding linearity plot is 

shown in Figure 3.2. The coefficient linear regression coefficient (r) is considered a 

suitable parameter for demonstrating the linearity over an appropriate linear range 

(Lam, 2004). Aside from this, the %RSD of the peak area/injection volume ratio was 

obtained as an aid for linearity evaluation. The regression coefficient was 0.9999 and 

%RSD (peak area/injection volume ratio) was 0.96%. With these results, the acceptance 

criteria (r ≥ 0.999; ≤5% %RSD for peak area/injection volume ratio) were met. 

Table 3.7. Linear response of the injection volume. 

Injection volume, µL Peak Area Peak Area/Injection Volume  Ratio 

5 3.0095 0.6019 

10 5.9291 0.5929 

20 12.0447 0.6022 

40 24.1573 0.6039 

80 48.7095 0.6089 

 

 

 

 

 

 

Figure 3.2. Linearity of the injection volume. 

 

Table 3.8. Linear regression parameters for the injection volume. 

 
Linear regression equation 0.60993x – 0.13774 

R
2
 0.9999 

r 0.9999 

%RSD (peak area/injection volume ratio) 0.96 
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3.1.2.3. Determination of carryover 

The appearance of a peak in a blank injection after the injection of samples or 

standards with a high concentration (carryover) usually originates in the autosampler. 

Carryover can be a problem when analyzing a wide range of concentration as this could 

affect the accurate quantitation of the subsequent sample especially when working at 

low concentration levels (Dolan, 2001). The carryover was evaluated by performing a 

mobile phase injection after the injection of a 85 µg g
-1

 caffeine standard solution. The 

carryover was calculated from the peak area of caffeine in the standard and blank 

injections. An average carryover of 1.01% was obtained (See Table 3.8 for the results 

and Figure 3.3 for the sample chromatogram), which is within the set acceptance criteria 

of <1.5%. Carryover is method specific hence, for real applications, it may be necessary 

to determine the carryover using the specific method for a given analyte. 

Table 3.9. Carryover determination. 

 

Replicate    Retention time (min) Peak area %Carryover 

1 Standard 3.480 18.5107 1.16 

Blank 3.524 0.2155 

2 Standard 3.495 18.2656 0.61 

 Blank 3.506 0.1116 

3 Standard 3.507 18.6969 1.25 

 Blank 3.567 0.2328 

Average 1.01 

 

 

 

 

 

Figure 3.3. Sample chromatogram for the carryover determination. 

Carryover usually results from one or two phenomena in the autosampler: (1) 

improper plumbing of the autosampler which creates reservoir in the system such that 

there is presence of small, unswept volumes after injection, and (2) sample adsorption to 

the tubing or other surfaces in the injection valve or autosampler. To avoid unswept 

3.00 3.05 3.10 3.15 3.20 3.25 3.30 3.35 3.40 3.45 3.50 3.55 3.60 3.65 3.70 3.75 3.80 3.85 3.90 3.95 4.00

-0.8

1.3

2.5

3.8

5.0

6.3

7.5

8.8

10.0

11.3

12.5

13.8

15.0

1 - verification #35 [modified by CECEM] blank 1 UV_VIS_1

2 - verification #34 carryover 1 UV_VIS_1
mAU

min

2

1

1 - 3.524

WVL:272 nm

standard 

 

blank 



RESULTS AND DISCUSSION 

 

40 

 

volumes in the system, the connections must be fitted properly and the drain lines must 

be clear so that the waste sample does not back up into the injection flow path. Sample 

adsorption in the autosampler can be avoided by a combination of increased flushing 

with the use of wash solvents sufficiently strong to displace the sample (Yuang, 

et.al.,1999). 

 

3.1.3. Verification of the column oven  

3.1.3.1. Determination of the column oven accuracy  

Temperature is an important factor affecting column separations since it affects 

the retention time, capacity factor, resolution, selectivity and other variables.  The 

determination of column oven temperature accuracy is important for comparability of 

results when transferring methods between systems (Bedsun and Rudd, 1999). The 

column oven accuracy was evaluated at three temperature settings: 20, 40 and 60°C. A 

calibrated digital thermal probe (Testo 945) was placed inside the column oven to 

measure the real temperature. The measured temperatures were corrected by using the 

correction factors provided in the calibration certificate of the thermometer. The 

corrected temperature readings were compared with the set temperature. The acceptance 

limit was set at ±3°C. The results are acceptable as shown in Table 3.10.  

Table 3.10. Column oven accuracy results.  

Set 

Temperature 

(°C) 

Measured Temperature 

(°C) 

Corrected 

Temperature (°C) 

Deviation 

(°C) 
Result (PASS/FAIL) 

20 

Reading 1 21.1 21.1 1.1 Pass 

Reading 2 21.1 21.1 1.1 Pass 

Reading 3 21.2 21.2 1.2 Pass 

40 

Reading 1 42.2 42.2 2.2 Pass 

Reading 2 42.2 42.2 2.2 Pass 

Reading 3 42.2 42.2 2.2 Pass 

60 

Reading 1 63.1 62.8 2.8 Pass 

Reading 2 63.2 62.9 2.9 Pass 

Reading 3 63.2 62.9 2.9 Pass 

Maximum deviation (°C) 2.9 Pass 
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3.1.3.2. Determination of the column oven precision 

The precision of the column oven is important for the repeatability of the 

retention times and peak area/peak height. The column oven precision was determined 

by setting and resetting the temperature at 40°C. The calibrated thermal probe was used 

to measure the real temperature inside the column oven. The results are shown in Table 

3.11. The observed maximum difference between the three replicates was 0.5 ºC and 

this is still within the acceptance limit of ±0.5ºC.  

Table 3.11. Column oven precision results. 

Set Temperature (°C) Measured Temperature (°C) 

40 

Reading 1 41.7 

Reading 2 42.2 

Reading 3 42.0 

Observed maximum difference (°C) 0.5 

 

3.1.3.3. Determination of the column oven temperature stability 

Using a column oven is a convenient way of controlling and maintaining a 

steady column temperature. The temperature inside the column oven should remain 

constant during the long period of analysis. The stability of the column oven 

temperature was determined over a 1 hour period by measuring the temperature inside 

the oven using the calibrated thermal probe. Within this 1 hour period, temperature 

readings were taken every 4 minutes. Table 3.11 shows the results obtained on the 

determination of the oven temperature stability. The corresponding stability plot is 

shown in Figure 3.4. The maximum difference between the temperature readings was 

determined to be 0.4°C. This is within the set acceptance criteria of ±2ºC maximum 

difference. 
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 Table 3.12. Column oven temperature stability for a period of 1 hour. 

 
Reading Measured Temperature (°C) Reading Measured Temperature (°C) 

1 42.1 9 41.9 

2 41.8 10 41.8 

3 41.8 11 41.7 

4 41.9 12 41.8 

5 41.8 13 41.8 

6 41.8 14 41.8 

7 41.8 15 41.8 

8 41.8   

    

Minimum Temperature (°C) 41.7 Maximum Temperature (°C) 42.1 

Maximum difference(°C) 0.4 

 

 

 

 

 

 

 

Figure 3.4. Column oven temperature stability over a 1 hour period. 

3.1.4. Verification of the UV detector 

3.1.4.1. Determination of the linearity of detector response 

The detector must show a linear response with the change in the concentration of 

the analyte in order to obtain accurate results.  The linearity of the detector response was 

evaluated by determining the peak area after the injection of different concentrations of 

caffeine standard solutions (16, 85, 149, 299 and 360 µg g
-1

). A calibration plot of peak 

area vs. concentration was made and the linear regression parameters were calculated. 

The results are shown in Table 3.13 and the corresponding linearity plot is given in 

Figure 3.5. The regression coefficient was 0.99997 and %RSD (peak area/concentration 

ratio) was 1.01% (See Table 3.14). These results satisfy the acceptance criteria (r ≥ 

0.999; %RSD (peak area/concentration ratio) ≤5%). 
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Table 3.13. Determination of the linearity of UV-Vis detector response. 

 
Concentration, µg g

-1
 Peak Area Peak Area/Concentration Ratio 

16 3.0551 0.1905 

85 16.0682 0.1886 

149 28.1894 0.1897 

299 55.6042 0.1860 

360 67.1695 0.1867 

 

 

Figure 3.5. Linearity plot for the detector response. 

Table 3.14. Linear regression parameters for the detector response. 

 
Linear regression equation 0.18594x + 0.23099 

R
2
 0.99994 

r 0.99997 

%RSD (peak area/concentration ratio) 1.01 

 

3.1.4.2. Determination of the noise and drift of the UV detector 

The noise and drift of the UV detector is influenced by a lot of factors. Some of 

the causes of a noisy baseline include a low energy of the UV lamp, dirty flow cell, air 

bubble in the detector cell, pump not working properly and electrical signals from the 

environment.   Baseline drift, on the other hand, may be due to electronics or from the 

strong pressure fluctuations of the pump which can be due to damaged pump valves 

and/or worn seals or a clogged pump inlet filter (Meyer, 2004). Baseline noise can be a 

limiting factor in the determination of trace components in a sample. Significant drift, 

on the other hand can affect proper peak integration. Changes in the baseline noise and 

drift over time should be monitored and evaluated.  
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The noise and drift were evaluated under dynamic conditions by measuring the 

detector signal over a 20-minute period as a steady flow of 50:50 (v/v) methanol:water 

passed through the system. Before the actual determination, the detector was turned on 

and the system was allowed to stabilize for at least an hour. The baseline plot obtained 

over the 20-minute period is shown in Figure 3.6. The baseline was divided into 20 

segments (1 minute each segment) and in each segment, noise and drift were determined 

to yield the values shown in Table 3.15. The Chromeleon software was used in 

calculating these values. The average noise was 0.146 mAU and the drift was 0.212 

mAU/h. Both of these results are acceptable according to the set acceptance criteria of 

0.200 mAU for noise and 0.800 mAU/h for drift. 

 

  

 

 

 

Figure 3.6. Baseline plot for the noise and drift determination. 

 

The performance verification of the Dionex-UV was successfully done and 

the results are consistent with the set acceptance criteria. The standard operating 

procedures necessary to carry out these tasks were prepared as well as the forms where 

to put the acquisition data and results. These were all included in the Appendix. 
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Table 3.15. Noise and drift determination. 
Segment Noise (mAU) Drift (mAU/h) 

1 0.191 0.145 

2 0.132 0.163 

3 0.154 0.123 

4 0.101 0.273 

5 0.181 0.223 

6 0.137 0.108 

7 0.164 0.238 

8 0.145 0.204 

9 0.169 0.237 

10 0.200 0.218 

11 0.112 0.211 

12 0.151 0.153 

13 0.191 0.305 

14 0.138 0.165 

15 0.094 0.252 

16 0.107 0.291 

17 0.113 0.249 

18 0.136 0.232 

19 0.161 0.247 

20 0.143 0.205 

Average 0.146 0.212 

 

3.2. Column Performance Verification 

A newly bought column needs to be verified to assure that the specifications set by 

the vendor are met when the column is used in the laboratory. The performance of the 

Ascentis Express Amide column (10 cm x 2.1 mm, 2.7 µm, Supelco) was evaluated by 

following the conditions specified in the column test performed by the vendor. 

However, in the test provided, some important parameters were not defined such as the 

injection volume and the detection method used. When the performance test was 

adopted in the laboratory, it was necessary to set the given parameters and to specify the 

injection volume and method of detection used in order to carry out the test.  The 

information obtained after column verification is needed for method development and 

for subsequent routine use. 

The performance of the new column was evaluated by injecting a prepared test 

solution containing three of the four test compounds due to the unavailability of 4-Cl-

nitrobenzene. The test was performed on two HPLC instruments found in the 

laboratory, the Accela and the Dionex-UV. The experimental results were compared 
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with the vendor´s specifications and an acceptance limit (for N) was set in order to have 

a basis for assessing the result as being acceptable or not.  

The test chromatograms are shown in Figure 3.7 and the values for the different 

performance parameters are shown in Table 3.16. The experimentally obtained 

chromatogram was examined in terms of the retention times of the three compounds and 

the performance parameters for the more retained peak which was toluene. The 

retention time for uracil, which is an indicator of the column dead volume, differs in 

each instrument due to their configuration. No significant differences can be observed 

between the retention times obtained for acetophenone and toluene. The results for the 

tailing factor and capacity factor were acceptable. 

Table 3.16. Vendor´s specification and column verification results. 

 

Parameter 
Vendor’s 

specifications 

Results 

LC - Accela LC-Dionex 

Retention times (min)    

Uracil (t0) 0.34 0.39 0.563 

Acetophenone 0.74 0.81 0.928 

Toluene 1.68 1.83 1.795 

Performance results for 

toluene peak 
   

Plates (N) 15,000  12,198 2,721 

USP Tailing factor 1.25 1.06 1.28 

Capacity factor (k´) 3.92 3.69 2.19 

 

The obtained values for the number of plates were below the vendor´s 

specifications. In the Accela instrument, the number of plates is about 81% of the 

minimum number of plates specified by the vendor, whereas, for the Dionex, the 

number of plates is about 18% of the minimum plates. The differences in the results can 

be attributed to the differences in instrument configuration between these systems.  

In order to say that the column passed the performance test, the laboratory must set 

acceptance limits which are deemed practical for each instrument. It was suggested by 

Snyder, et.al. (1997) that if the determined N value for a new column is significantly 

lower, such that N < 80% of the claimed value, then it is necessary first to determine 

whether there is a possibility of instrumental problems otherwise the column should be 

returned to the vendor for replacement or refund.  The experimentally determined N 
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values are normally lower than 100% of the specified N value and this can be attributed 

to the differences in the instrument used and the related extra-column problems in the 

system.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7. Test chromatograms from (1) vendor (2) Accela (3) Dionex-UV showing the 

elution of the test compounds: (a) uracil, (b) acetophenone and (c) toluene. 

 

(1) 

(2) 

(3) 
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If we set that the N must be higher than 80% for new columns then the N result 

obtained using the Accela instrument are acceptable but not the results obtained with the 

Dionex system.  The low N value for the Dionex instrument can be explained by the 

wider bandwidth observed for the toluene peak and the higher dead time obtained. The 

column is not just one factor that contributes to band broadening. Band broadening can 

also occur in the other parts of the HPLC system such as the injector/autosampler, 

connecting lines between the column and autosampler or detector, detector flow cell, 

etc. The existence of extra column band broadening leads to a lower N. The differences 

in the results obtained for these two instruments show that when we have to perform a 

column verification test, it is necessary that the instrument is well-plumbed so that there 

is minimum extra column band broadening that can be contributed to the results. Even 

though the results for the N value obtained using the Dionex instrument was far below 

the minimum, the results were accepted since the problem is not with the column but 

due to the nature of the instrument. The results were then filed for reference in future 

verifications and the document Instructions for the Verification of Column Performance 

(Ascentis Express
®

 RP-Amide, 10 cm x 2.1 mm x 2.7 µm, Supelco) 

(SOP/CECEM/EQP/07/01) was prepared.   

To ensure that the column is under quality control, column verification using the 

same test compounds must be performed periodically and a systematic record of the 

results must be maintained in the laboratory. In cases where there is already an existing 

standard HPLC method which makes use of this column, the user may determine the N 

value for their particular sample compound. The N value for the sample compound may 

be less than the optimum N value measured for a small neutral solute such as toluene. 

The differences in the determined N values are to be expected since N is dependent on 

several experimental factors.  

A record of the column verification results will help the user to monitor the 

column performance and to anticipate when a column needs to be replaced. A column 

should be replaced whenever its performance falls down the expectations. For example, 

if the plate number decreases by 50% then a new column may be required. The type and 

number of samples injected contributes to column degradation hence it is suggested that 

a record is maintained regarding the use of the column. The best check in HPLC is 
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always the control chromatogram if there are deviations from previously defined results 

(Kromidas, 2000). 

 

3.3. Mass spectrometer maintenance, performance verification, calibration and 

tuning  

3.3.1. Mass spectrometer maintenance 

Before starting with MS analysis, it is important that the instrument is properly 

maintained, calibrated and running at maximum sensitivity. Maintenance to be done on 

the mass spectrometer is to change the oil of the rotary-vane pump/forepump and clean 

the API source, the procedures of which can be found in the maintenance document 

Instructions for the Maintenance of the LCQ MS (Finnigan) (SOP/CECEM/EQP/06/01). 

As recommended by the manufacturer, the pump oil must be changed every 3 months or 

when the oil is cloudy or dark-colored as seen from the oil viewing port window. In 

practice, this frequency can be set to twice a year, depending on the current conditions. 

Maintenance of the API source involves replacement or cleaning of the sample tube, 

clearing the bore of heated capillary, cleaning the probe components and cleaning the 

API stack. Replacement of the sample tube is necessary if the sample tube is broken or 

obstructed; the frequency of cleaning (using methanol) of the probe components and the 

API stack depends on the instrument use and the nature of samples being analyzed. 

The MS instrument is also maintained on a daily basis by purging the forepump 

and by flushing the sample transfer line, sample tube, spray shield, heated capillary and 

probe components by a 50:50 (v/v) methanol:water solution after the analysis. These are 

the responsibilities of the user of the instrument. The person responsible of the 

instrument and qualified laboratory personnel and serviceman perform the other 

maintenance activities on a regular basis.  

 

3.3.2. Mass spectrometer performance verification and calibration 

 Prior to the calibration of the mass spectrometer, the vacuum levels have to be 

monitored and recorded: the ion gauge pressure should be around 1 x 10
-5

 Torr and the 
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convectron gauge pressure should be around 1 Torr (typically around 0.8 Torr). The 

convectron gauge pressure indicates the pressure in the capillary-skimmer region of the 

vacuum manifold and foreline, which connects the turbomolecular pump and the 

forepump. The ion gauge pressure, on the other hand, indicates the pressure in the 

analyzer region of the vacuum manifold. Vacuum pressures above these values indicate 

air leak in the system and hence it is necessary to check the tightness of fittings or 

flanges and it might be necessary to tighten them. Pressures below these values indicate 

that the heated capillary is partially or totally blocked. 

To verify that the mass spectrometer is operating satisfactorily, the built-in 

option “diagnostic test” of the instrument has to be tested. This diagnostic test is used to 

check the major electronic circuits, voltage lenses, temperatures, gas flow rates, etc. 

within the instrument and indicate whether they pass or fail the tests. By performing this 

test, problems in the instrument can be located and corrected by replacing the faulty 

parts. Before running the LCQ diagnostic test, it is necessary to first tune the multipole 

frequency, ring electrode RF modulation and RF voltage frequency. The graphic results 

of the tuning processes which were performed are shown in Figure 3.8.  

The tuning process for the multipole frequency was successful since the 

minimum frequency function was between 2400 and 2550 kHZ (See Figure 3.8a). 

Likewise, the RF modulation tuning (See Figure 3.8b) was also successful due to the 

following reasons: (a) the standing wave ratio switch line was at 10V, (b) the detected 

RF voltage was a straight line that begun at the origin and intersected the standing wave 

ratio switch line near the highest mass line, and (c) the RF modulation was a curved line 

that begun at the origin and intersected the highest mass line at around 4V. However, if 

the RF voltage frequency tuning is found to be lying outside the frequency window (as 

shown in Figure 3.8c), it is necessary to do manual adjustment of the RF voltage 

frequency by turning the tuning stud (which can be accessed by opening the front door 

of the MS detector) until the frequency cursor lies within the frequency window as 

shown in Figure 3.8d. This manual adjustment can only be done by the person 

responsible for the instrument.  
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Figure 3.8. Graph view after the tuning process (a) multipole frequency, (b) RF 

modulation, (c) RF voltage frequency before manual adjustment and (d) RF 

voltage frequency after manual adjustment. 

 

 

After the successful tuning process, the LCQ diagnostic was run by performing 

the test on the power supplies, API and temperatures, lenses and RF. The PASS results 

are shown in Figure 3.9, demonstrating the satisfactory performance of the electronic 

systems. 
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Figure 3.9. Diagnostic test results for (a) power supplies, (b) API and temperatures, (c) 

lenses and (d) RF. 

3.3.3. Mass spectrometer calibration and tuning 

The calibration of the LCQ mass spectrometer has to be performed by following 

the procedure described in the document entitled Instrucciones para la Calibracion y 

Tuning del Espectrometro de Masas LCQ (Finnigan) (PNT 035100 APR/103). This is a 

document that is implemented in the laboratory. The automatic calibration procedure 

was performed in the ESI positive mode by direct infusion using a calibration solution 

which contains the following compounds: caffeine, MRFA and Ultramark 1621. With 

this calibration mixture, different lenses are tuned and the m/z axis is calibrated over a 

m/z range from 50 to 2000 Th. The calibration frequency is recommended every three 

months (Garofolo, 2004) since the ion trap is a stable mass analyzer. 

Before starting with the automatic calibration procedure, the ion source and the 

transmission has to be tuned with one of the calibrants (caffeine). This ensures that the 

ESI source spray is able to produce a stable spray of ions and an intense signal enough 

to calibrate the MS. Once the automatic tuning was started, the instrument performed all 

(a)                                                                      (b) 

(c)                                                                         (d) 
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the necessary processes and in the end, a calibration report is displayed and showed if 

the calibration is successful or not. A summary of the calibration report is shown in 

Table 3.17. The calibration report has to be printed and archived for reference. After 

calibration, it is also necessary to run again the diagnostic test in order to check for the 

proper operation of the mass spectrometer. Once the above mentioned tests are passed, 

it can be considered that the mass spectrometer is successfully calibrated and it is 

operating under control. 

Table 3.17. Summary of calibration. 

Item Result 

Multipole frequency calibration SUCCESSFUL 

Multiplier gain calibration SUCCESSFUL 

Normal scan calibration resolution SUCCESSFUL 

Normal scan mass calibration SUCCESSFUL 

AGC scan mass calibration SUCCESSFUL 

Zoom scan resolution calibration SUCCESSFUL 

Zoom scan mass calibration SUCCESSFUL 

Waveform/frequency calibration SUCCESSFUL 

Injection RF calibration SUCCESSFUL 

 

During the daily operations, it is not always necessary to repeat the full 

calibration procedure but instead, the mass spectrometer has to be tuned for the specific 

analytes to optimize the MS response. The signal is normally affected by the following 

parameters: heated capillary temperature, tube lens offset voltage, capillary voltage and 

sheath gas flow rate. The settings for these parameters are dependent on the solvent 

flow rate, the mobile phase composition and the analyte chemical characteristics hence 

fine tuning should be done at the beginning of the MS analysis. By performing the 

analysis in a properly calibrated instrument and by optimizing/tuning the MS with a 

standard solution containing the analyte, a significant improvement can be attained in 

terms of sensitivity. This is illustrated in Figure 3.10, wherein the calibration curves of 

1-naphthylacetamide are compared before and after MS instrument calibration.  
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Figure 3.10. Effect of MS instrument calibration on the response for 

1-naphthylacetamide. 

 

3.4. LC-MS/MS performance verification using the analysis of naphthylacetics  

During instrument performance verification, we are able to demonstrate that 

both instruments (LC and MS) are fit for a given purpose. However, when running a 

method using a hyphenated system (LC-MS) it is necessary to demonstrate its 

satisfactory performance. For this purpose, we use the analysis of naphthylacetics (1-

naphthylacetamide, 1-naphthoxyacetic acid and 2-naphthoxyacetic acid) by LC-

MS/MS. This is a previously established method in the CECEM laboratory. In order to 

demonstrate that the LC-MS/MS system is working properly, some quality parameters 

have to be determined such as limit of detection (LOD), limit of quantification (LOQ), 

linearity and precision (repeatability). 

The method used is based on the determination of these naphthylacetics by LC-

MS/MS. A gradient elution of methanol:water (2mM acetic acid) has been used for the 

separation of these compounds on an Ascentis
®
 Express RP amide column (10 cm x 2.1 

mm, 2.7 µm, Supelco) at a flow rate of 300 µL/min .  Electrospray ion source operated 

in the positive mode for 1-naphthylacetamide (1-NAD) and negative mode for 1-

naphthoxyacetic acid (1-NOA) and 2-naphthoxyacetic acid (2-NOA) was used to couple 

the LC system to the MS. The resulting chromatogram and spectrum is shown in Figure 
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3.11. The retention times for 1-NAD, 2-NOA and 1-NOA were 3.80, 8.31 and 9.07 

min., respectively.   

 

 

 

 

 

 

 

 

 

 

Figure 3.11. Individual chromatograms of (a) 1-naphthylacetamide, (b) 2-

naphthoxyacetic acid, and (c) 1-naphthoxyacetic acid  

 

3.4.1. Instrument LOD and LOQ determination 

The instrument LOD and LOQ were determined on the basis of signal-to-noise 

ratio (S/N) measurement in order to check the sensitivity. Several dilute concentrations 

(4 ng g
-1

 up to 101 ng g
-1

) of the standard solution containing the three compounds were 

prepared and subjected to the chromatographic run. The LOD was chosen as the analyte 

concentration giving S/N ≈ 3 at the quantitation m/z value. These concentration values 

correspond to 9.08 ng g
-1

, 9.49 ng g
-1

 and 70.4 ng g
-1

 for 1-NOA, 2-NOA and 1-NAD 

respectively. The LOD values expressed in terms of the amount (ng) injected are shown 

in Table 3.18.  

The LOQ values were likewise determined on the basis of the S/N ratio, such 

that the LOQ is equal to the amount of the analyte giving S/N≈ 10. These values were 

m/z 143 

m/z 157 

m/z 201 

m/z 143 

m/z 157 

m/z 201 

m/z 141 

m/z 169 

m/z 186 
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estimated from the LOD data. The LOQ values for 1-NOA, 2-NOA and 1-NAD were 

0.15, 0.16 and 1.16 ng, respectively. 

Table 3.18. LOD and LOQ values for, 1-NOA, 2-NOA and 1-NAD. 

 
Compound LOD (ng) LOQ (ng) 

1-naphthoxyacetic acid 0.045 0.15 

2-naphthoxyacetic acid 0.048 0.16 

1-naphthylacetamide 0.352 1.16 

 

 

3.4.2. Linearity 

To check the linearity on the concentration, working range solution between 39 

ng g
-1

 to 1.3 µg g
-1

 for 1-NOA, 37 ng g
-1

 to 1.3 µg g
-1

  for 2-NOA and 312 ng g
-1

 to 1 µg 

g
-1

 for 1-NAD have been prepared. The response (peak area) at each concentration level 

are shown in Table 3.19. The external standard calibration plots are shown in Figure 

3.12.  The linear regression equations were obtained by plotting the peak area against 

the concentration. The linear regression parameters are shown in Table 3.20.  A good 

linearity can be observed for these compounds over the concentration ranges. A 

correlation coefficient (r) better than 0.99 is required for the acceptability of the 

linearity of the calibration plot.  

 

Ideally, the linearity should be determined for several orders of magnitude until 

no linear response is observed. Nevertheless, to extend the calibration curve to very 

high concentration levels far from few ppm, possible contamination of the MS system 

can occur and cross contamination can be produced. For this reason, it is more practical 

to determine the linearity for a limited concentration range which is applicable to real 

samples. Then within this concentration range, the accuracy and precision of the method 

must be determined.  
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Table 3.19. Standard concentrations used for linearity determination. 
 

2-NOA 1-NOA 1-NAD 

Conc., µg g
-1

 Peak area Conc., µg g
-1

 Peak area Conc., µg g
-1

 Peak area 

39.0 197707 37.3 182049 312.4 5709200 

72.3 543274 69.2 392981 401.1 7204035 

194.8 1291807 186.4 1140930 477.9 7936439 

315.4 2509845 311.1 1746907 649.7 11790228 

631.3 5521786 612.8 4295429 1038.8 16766901 

887.8 7300464 847.3 6331372   

1,116.0 9218451 1,067.0 7240340   

1,313.0 11335562 1,282.0 9948370   

 

 

 

 

 

 

 

 

Figure 3.12.  Calibration curves of 1-naphthylacetamide, 1-naphthoxyacetic acid and  

2-naphthoxyacetic acid obtained by HPLC-MS/MS. 

 

Table 3.20. Linear regression parameters for the different compounds. 

 

Linear regression parameter 2-NOA 1-NOA 1-NAD 

slope 8619 7606 19249 

y-intercept -183529 -286586 -2688369 

R
2
 0.99810 0.99146 0.99679 

r 0.99905 0.99572 0.99839 
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3.4.3. Instrument Precision (Repeatability) 

To check the precision of the response in LC-MS/MS, replicated injections 

(n=6) of a standard solution (315.4 ng g
-1

 of 2-NOA, 311.1 ng g
-1

 of 1-NOA and 477.9 

ng g
-1

 of 1-NAD) have been performed. The precision was evaluated in terms of the 

%RSD of the retention time and peak area. As shown in Table 3.21, good precision can 

be observed relative to the retention times and peak areas of the three compounds. The 

%RSD for the retention times ranges from 0.35 to 1.77%. The %RSD of the peak areas 

ranges from 6.62 to 16.5%.  

With the obtained data, it was also possible to determine the precision and the 

error associated with quantification. By making use of the external standard calibration 

curve, the concentration corresponding to the peak area was calculated for each 

replicate injection. This concentration was used for the %relative error calculations. 

The results for precision for the three compounds are shown in Table 3.21, Table 3.22 

and Table 3.23.  

Laboratories typically achieve a level of precision of <10% and in some 

instances the precision may be up to 20% especially near the limit of quantitation. The 

observed variability in the results is due to the contribution from several factors such as 

the instrument used, the analytical procedure, the noise level and peak integration.  

From the %RSD values, it can be said that required precision was attained.  

 

Table 3.20. Repeatability expressed in terms of %RSD for the determination of 

 2-naphthoxyacetic acid. 

Replicate tR, min. Peak area Concentration, ppb 

1 8.38 2363108 295.5 

2 8.32 2262004 283.7 

3 8.31 2741692 339.4 

4 8.38 2776389 343.4 

5 8.35 2919322 360.0 

6 8.35 2865389 353.7 

Average 8.35 2654651 329.3 

Std dev 0.029 274236 31.8 

%RSD 0.35 10.3 9.7 
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Table 3.21. Repeatability expressed in terms of %RSD for the determination of  

1-naphthoxyacetic acid. 

Replicate tR, min. Peak area Concentration, ppb 

1 9.05 1456225 229.1 

2 8.98 1901898 287.7 

3 8.98 1980046 298.0 

4 9.04 1833270 278.7 

5 8.98 2146205 319.9 

6 8.98 2419074 355.7 

Average 9.00 1956120 294.9 

Std dev 0.034 322167 42.4 

%RSD 0.37 16.5 14.4 

 

Table 3.22. Repeatability expressed in terms of %RSD for the determination of  

1-naphthylacetamide. 

Replicate tR, min. Peak area Concentration, ppb 

1 4.23 7027976 504.8 

2 4.41 7560067 532.4 

3 4.2 8275681 569.6 

4 4.23 7818695 545.9 

5 4.25 8483147 580.4 

6 4.24 7812324 545.5 

average 4.26 7829648 546.4 

std dev 0.0754 518031 26.9 

%RSD 1.77 6.62 4.9 

 

The average %relative error obtained were 9.9%, 10.9% and 14.3% for 2-NOA, 

1-NOA and 1-NAD, respectively. The acceptance criterion for the %relative error is 

method-dependent and should be appropriate for the intended use of the method. In this 

case, it can be set to not more than 15%. With this regard, the results for the relative 

error were acceptable. The deviation of the obtained concentration from the theoretical 

concentration can be partly attributed to the calibration curve used in estimating the 

concentration from the peak areas. Moreover, manual integration of the peaks can also 

affect the accuracy of quantification. 

 The results obtained fulfilled the set acceptance criteria and we conclude that the 

LC-MS/MS is running under control.  
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3.5. Documentation 

Standard operating procedures (SOP) are essential part of quality system 

documentation. Although there were already existing procedures in the laboratory, most 

of these procedures were not formally stated and in order to achieve uniformity in 

carrying out specific tasks, SOP generation was necessary not only to provide evidence 

that the activities described above were carried out but also to serve as a reference for 

future use.   

Standard operating procedures (SOP) were established for the following: (a) 

operation, maintenance and verification of the Dionex HPLC-UV, (b) verification of the 

performance of an RP-amide column, (c) operation, maintenance and verification of the 

Finnigan LCQ MS, and (d) verification of the performance of the LC-MS system 

through an in-house method. Whenever an SOP is to be written or revised, the author 

who will do the task must be involved in the process. It is for this reason that the author 

has familiarized with the method, instrument and laboratory facilities which were able 

provide very useful input for writing the necessary documentation.  

 The documents were written following a standard format in order to have 

uniformity. The format included the following features: (a) title page which indicates 

the university logo, document code, descriptive title, validity date, replacement 

information, names and signatures of responsible laboratory personnel, (b) table of 

contents (if applicable), (c) statement of objective, (d) statement of scope, (e) 

definitions, (f) related procedures, (g) responsibilities,  (h) instructions and (i) 

bibliography.  

The documents were codified in the following format: Type of 

Document/Laboratory Acronym/Specificity/Document Number/Revision Number. This 

is only a proposed codification since the documents are just in its initial phase to 

becoming official documents. The Type of Document can refer to a standard operating 

procedure (SOP) or other types of documents which in the future will be generated. The 

Laboratory Acronym is used to indicate that these documents belong to the CECEM 

laboratory where these documents will be used.  The Specificity refers to whether it is 

for an equipment (EQP) or an analytical method (MET). The Document Number refers 
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to the number of the document generated in this study and the Revision Number refers 

to the version of the document which begins with 01 and continue as 02, 03, etc.  An 

example of a part of the title page with the codification is shown in Figure 3.13.  The 

form that is generated from a given SOP becomes a part of the document´s Annex. As 

an example, the title page generated from carrying out the performance verification of 

the HPLC is shown in Figure 3.14. It can be seen that the code in the performance 

verification form refers to the document code of the procedure (SOP) that was used to 

carry out the verification. All of the prepared documents are found in Appendix section 

as well as the external documents (test chromatogram result and calibration certificate 

for the digital thermometer used in performance verification of HPLC).  

 

 

 

 

 

   Figure 3.13. Part of the title page showing the document code for a standard operating 

procedure. 

 

 

 

 

 

 

Figure 3.14. Part of the title page of a form showing the code in reference to the SOP 

where this form is used.  

document code 

document code 
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4. CONCLUSION 

In this work, the standard procedures required for the control of an LC-MS 

system in a research laboratory have been developed. Since the LC-MS instrument is a 

coupled system composed of two main modules, a liquid chromatograph and a mass 

spectrometer, not only the control of the individual modules is necessary but the 

coupled system as well. For this reason, procedures for the LC, the MS and the LC-

MS/MS system have been written.   

 

The written documents have included standard procedures for the operation, 

verification and maintenance of the liquid chromatograph, the mass spectrometer and 

the coupled system (LC-MS). These documents have been applied in the research 

laboratory and they have guaranteed the right operation of the LC-MS system and have 

allowed the detection of failed components to be repaired or adjusted. These documents 

are part of the initial framework of the laboratory´s quality assurance system that in a 

near future would be implemented. 
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6. APPENDICES 

 

Documents 

 

 

Appendix Table 1. Document title and the proposed codification. 

TITLE CODE 

Instructions for the Operation of Dionex HPLC System with UV-

Vis Diode Array Detector 

SOP/CECEM/EQP/01/01 

Instructions for the Performance Verification of the Dionex HPLC 

System with UV-Vis Diode Array Detector 

SOP/CECEM/EQP/02/01 

Instructions for the Maintenance of the Dionex HPLC System with 

UV-Vis Diode Array Detector 

SOP/CECEM/EQP/03/01 

Instructions for the Operation of the LCQ MS (Finnigan) in ESI 

mode 

SOP/CECEM/EQP/04/01 

Instructions for Performance Verification of the LCQ MS 

(Finnigan) 

SOP/CECEM/EQP/05/01 

Instructions for the Maintenance of the LCQ MS (Finnigan) SOP/CECEM/EQP/06/01 

Instructions for Verification of Column Performance (Ascentis 

Express
®
 RP-amide, 10 cm x 2.1 mm x 2.7 µm, Supelco) 

SOP/CECEM/EQP/07/01 

Performance Verification of an LC-MS System SOP/CECEM/EQP/08/01 

 

 

 

 

 

 


