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Abstract

In [S.G. Samko, B.G. Vakulov, Weighted Sobolev theorem with variable exponent for spatial and spher-
ical potential operators, J. Math. Anal. Appl. 310 (2005) 229-246], Sobolev-type p(-) — ¢(-)-theorems
were proved for the Riesz potential operator 1% in the weighted Lebesgue generalized spaces L O®n, 0)
with the variable exponent p(x) and a two-parameter power weight fixed to an arbitrary finite point x( and
to infinity, under an additional condition relating the weight exponents at xq and at infinity. We show in this
note that those theorems are valid without this additional condition. Similar theorems for a spherical ana-
logue of the Riesz potential operator in the corresponding weighted spaces L” (S, p) on the unit sphere
S" in R"*! are also improved in the same way.
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1. Introduction

We consider the Riesz potential operator

I‘)‘f()—/| o) dy, O<a<n, (1.1)

|)’lOt

in the weighted Lebesgue generalized spaces LP) (R", p) with a variable exponent p(x) defined
by the norm

p(x)
||f||Lp<-)(Rn’p)=inf{k>0:/ <)<'f(")'> dx<1}, (1.2)
]Rn
where
PX) = Py (X)) = [x 70 (1 4 |x])7> 7. (1.3)

We refer to [3-6] for the basics of the spaces LP®) with variable exponent.
We assume that the exponent p(x) satisfies the standard conditions

l<p_<px)<py<oo, xeR, 1.4

A 1 "
. x=yl< 5, xyeR, (1.5)
D=
and also the following condition at infinity

lp(x) — p(»)] <

Aco 1 ;
[P = | < —F—, Ix—yI<5, x,yER, (1.6)
[x—yI

where py(x) = p(| ‘2) Conditions (1.5) and (1.6) taken together are equivalent to the following
global condition:

C n
lp(x) — p()| < (QWW) x,y eR" (1.7)
[x—y]
Let
1 _ 1 o

gx)  px)

The following statement was proved in [8].

Theorem 1.1. Under assumptions (1.4)—(1.6) and the condition

n
pyr<? (1.8)
o

the operator 1% is bounded from the space LP©)(R", py, ,..) into the space L4 (R™, puo o),
where
q(0) q(0)

=1 d oo = — Yso, 1.9
o=""gyr0 and proo =Ty (1.9)

otp(O)—n<yo<n[p(0)—1], ap(oo)—n<yoo<n[p(oo)—l], (1.10)
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and the exponents yy and vy~ are related to each other by the equality

6](0))/ LI(OO)y 261(00)
PO p(00) "™ p(oo)

[(n+ot)p(oo)—2n]. (1.11)

The goal of this note is to prove that Theorem 1.1 is valid without the additional condi-
tion (1.11). We consider also a similar statement for the spherical potential operators

/| O i xeS,. 0<a<n, (1.12)

— 0 |}’l o
in the corresponding weighted spaces L”)(S", p) on the unit sphere S” in R"*+1.
2. Preliminaries
We need the following theorem for bounded domains proved in [7].

Theorem 2.1. Let 2 be a bounded domain in R" and xo € 2 and let p(x) satisfy conditions
(1.4), (1.5) and (1.8) in S2. Then the following estimate

12 £1| Lo . —xg iy < CIF Lo (2.5 —x017) (2.1)
is valid, if
ap(xg) —n<y< n[p(xo) — 1] 2.2)
and
i e

3. The case of the spatial potential operator
We prove the following theorem.

Theorem A. Under assumptions (1.4)—(1.6) and (1.8), the operator [* is bounded from the space
LPO(R", Pyo,ys0) INto the space LIO(R", Puo.iie0)» Where

_40 90)
Ho = 20) v and peo = (OO) (3.1
if
ozp(O)—n<yo<n[p(0)—1], ap(oco) —n <yoo<n[p(oo)— 1]. (3.2)

Proof. Let || fllzr0@n ) < 1. To estimate the integral S Pro.sioe I f(x)[9™) dx, we split
it, as in [8], in the following way:

/ Pronsioe T F |1 dx < e(Apy + Ay + Ay +A_),
Rn

where
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s / o / F)dy
X — ya

q(x)

|x]<1 |yl<1
q(x)
Ao f o f FO)dy
=yl
|x]<1 |y|>1
and
(x)
fyady |1
— Moo
lx|>1 lyl<l
(x)
fydy |
— Moo
lx|>1 [yl>1

The boundedness of the terms A1 and A__ was shown in [8] without condition (1.11). So we
only have to treat the terms A _ and A_.

1°. The term A_.. We split A__ as

A_+ = Al + A27
where
d q(x)
Al — |x|uoo M dx
=y
I<|x|<2 lyl<l
and
d q(x)
A= [ g fdy dx.
lx — "=
[x|>2 lyl<l
The term
d q(x) d q(x)
A <cC [0 / | f(y)via dx < C / [0 f | f(y)vﬁa I
xX—y X=Yy
1<|x|<2 lyl<1 [x|<2 Iyl<2

is covered by Theorem 2.1. For the term A, we have

x|
lx =yl = x| =yl = >
Therefore,
q(x)
Ay <C / |x|Moo+(an)Q(x)( / |f(y)|dy> dx.
[x[>2 lyl<1

It follows from condition (1.6) (see also (1.7)) that

C
|p(x) — p(oo)| < k22,

x|’
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and then the same is valid for g (x), so that

q(x)
<C / |x|uoo+(an)q(oo)< / |f(y)|dy) dx.

lx[>2 lyl<1

Observe that

/ |fFD|dy <CUf N pror g, p)- (3.3)
lyl<1

1
Indeed, denote g(y) = [p(y)]” P07 ; by the Holder inequality for variable L” (')—spaces we get

[ f )| dy = / sM[eM]P | £ ()] dy

lyl<1 lyl<l
1
<kliglrolle? oo =klgl ol Lo - (3.4)
To arrive at (3.3), we have to show that || g||, /) < 0o. Under condition (1.4) one has
lell o <00 = [ Jso|"ay<oc. (3.5)
lyl<1

As is easily seen, the last integral is finite since Yy < n[p(0) — 1]. Therefore, from (3.4) there
follows (3.3).
Then A> < C < oo if we take into account that (i 4 (o —1)g(00) < —n under the condition

Yoo < n[p(c0) —1].
29, The term A, _ is estimated similarly to A__: we split A,_ as

Ap_ = A3+ Ay,

where
d q(x)
Ay = Lo fdy dx
lx —y|"=«
[x]<1 1<|y|<2
and
d q(x)
As= [ g [ LD T
|x =y«
[x]<1 |y]>2

The term Aj is covered by Theorem 2.1 similarly to the term A in 1°. For the term A4, we have
Ix =yl =1yl —Ix| = lll. Then

' / SOy | _ .
|x_ |n—a =

ly|>2 [y[>2

/ If(y)ldy:C/ | foy)ldy

n—o n—a+4 -2
[¥] /, Iyl P09

L

where fo(y) = |y|P<°°>f(y) It is easﬂy seen that fo(y) € LPO(R"\ B(0, 2)), since [p(y)]70) x

f(y) € LPO®R") and [p(y)] p(y) ~y| ges) for |y| = 2 under the log-condition at infinity. Hence
by the Holder inequality and the same log-condition at infinity,
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‘/ fdy
|n o

ly1>2

_p— Yoo
< Cillfoll ooy @nso.2n 191777 | Lo @ 50,2)

a—n—-2X
< C”f”Lp(')(Rn!pyo.yoo) ” |y| p(eo) ||LP/(')(R”\B(0,2))

<Clye

_Yoo_
o | LY O(RMB(0,2))’ (3.6)

where the last norm is finite under the condition ap(00) — n < Y (use the argument given in
(3.5). O

Corollary 3.1. Let 0 < @ < n, p(x) satisfy conditions (1.4)—(1.6) and (1.8). Then the operator

o PC) (R qC)(rny L 1 a
1% is bounded from the space LP') (R") into the space L1\’ (R"), q(x) =20 ~ n.

The statement of the corollary was proved in [1,2] under a weaker than (1.6) version of the
log-condition at infinity.

4. The case of the spherical potential operator
4.1. The space LPV)(S", p)

We consider the weighted space L”)(S", PB..6,) With a variable exponent on the unit sphere
S" = {o € R"*!: |o| = 1}, defined by the norm
p(o)
do <1 },

N

@)
A

10 @ g, ) = {x - 0: / o —ale .o — b
gn

where pg, g, (0) = |0 — alfa .o —b|P» and a € S" and b € S" are arbitrary points on S”, a # b.
We assume that 0 < o < n and

1<p—<p(a)<p+<g, oes”, .1
A
|P(01) —P(UZ)| < 173, o1 €S", o eS". “4.2)
N o =al

The following theorem is valid.

Theorem B. Let the function p:S"™ — [1, 00) satisfy conditions (4.1) and (4.2). The spherical
potential operator K% is bounded from the space LP)(S", PBa.By) With pg, g, (0) =0 — alPa .
lo — b|P», where a € S* and b € S are arbitrary points on the unit sphere S", a # b, into the

space L1 (S", PBa.By) With py, v, (0) =|o —al" - |o — b|", where q(a) p(]a) — 2, and
ap(a) —n < Bq <np(a) —n, ap(b) —n < Bp <np(b) —n, (4.3)
q(a) q(b)
Vg = Bas =——Pb. (4.4)
@™ T 0

This theorem was proved in [8] under the additional assumption that the weight exponents S,
and g, are related to each other by the connection
q(a) q(b)

17 4.5
P(a)ﬁ P(b)ﬂ @
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Now Theorem B without this condition follows from Theorem A by means of the stereo-
graphic projection exactly in the same way as in [8, Section 5].

Corollary 4.1. Under assumptions (4.1) and (4.2), the spherical potential operator K% is

bounded from LPO (S") into L10)(S"), ﬁ = ﬁ -2,
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