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Why anatomically modern humans lack a pronounced 
supraorbital ridge while our Middle Pleistocene ances-
tors possessed one is an unresolved debate, with the focus 

on structural and mechanical rather than social signalling roles. The 
spatial hypothesis considers browridges to be “only a reflection of 
the spatial relationship between two functionally unrelated cephalic 
components, the orbit and the brain case”1 (p. 281). Additionally, 
brain and basicranial morphology2–4 and the orientation of the 
face relative to the cranial vault influence browridge morphology5. 
Browridges also scale allometrically, with individuals of bigger 
species growing proportionally bigger ones6,7. However, basicra-
nial morphology, facial hafting8 and facial size differ little between 
Kabwe 1 (Homo heidelbergensis, dated from 125–300 kyr bp9) and 
Neanderthals and so do not explain why the comparably large faces 
of near relatives such as Neanderthals do not manifest equally mas-
sive browridges. In contrast, the differences between these archaic 
members of our genus and modern humans in brow morphology 
may well relate to gracilization, our reduced facial size and its allo-
metric consequences.

Importantly, the cranial gracilization that humans under-
went has also been associated with prosociality10,11. Selection for 
increased sociality and tolerance has been argued to be associated 
with evolutionary changes in cranial form (that is, the reduction of 
browridge and upper facial size) via changes in hormonal reactivity 
that have pleiotropic effects on skeletal form, physiology and behav-
iour, termed ‘self-domestication’10,11 (sensu ref. 12). This hypothesis 
finds support from several studies of non-human mammals (dogs 
versus wolves, selected versus non-selected foxes, and bonobos ver-
sus chimpanzees) that have been able to demonstrate that domes-
tication and increased social tolerance trigger a set of changes that 
include physiological, morphological and behavioural variables (for 
a review, see ref. 11).

This association between cranial gracilization, prosociality and 
self-domestication has also been hypothesized for bonobos who, 

relative to chimpanzees, present a gracile cranium13 with smaller 
browridges14 and prosocial behaviour, and are hypothesized as 
self-domesticated11,12. Thus, this suggests a selective trade-off 
between expressing dynamic affiliative signals and permanent 
competitive signals that affects the shape and size of the cranium 
in general and the browridge in particular. More affiliative-based 
social relationships in bonobos, with frequent consolation15, are 
associated with both a reduced browridge and greater attention to 
the eye area in social communication16 than in common chimpan-
zees. Despite this association, it should be noted that bonobos are 
significantly smaller than chimpanzees13 and that, as predicted by 
the allometric hypothesis6, browridges are expected to be propor-
tionally smaller.

For modern humans, gracilization and reduction of the facial 
skeleton result in significant changes to the supraorbital region, 
rendering the contour between the orbits and forehead more ver-
tical and smooth. For the frontalis belly of the occipito-frontalis, 
there are particular consequences. We note that its vector of action 
changes to be more vertical and this means the eyebrows have the 
potential to move vertically over a relatively larger area, and to be 
more readily observed and more mobile (Supplementary Fig. 1).

Alternatively, the mechanical hypothesis explains larger brows 
in terms of resistance to masticatory loadings. While not neces-
sarily opposed to the spatial hypothesis, it posits that mechanical 
loadings experienced by the skull during biting and food pre-pro-
cessing17–21 impact decisively on the morphology of browridges21. 
Studies focusing on fossil hominins22, extant humans21,23,24 and 
other extant non-human primates25–27 support this hypothesis, 
while it has been challenged by studies of non-human primates 
that failed to record elevated strains in the browridge during mas-
ticatory system loading25–27.

In addition to the above, other hypotheses have been proposed 
to explain large browridges. These include protection from blows 
to the head28,29, protection of the eyes in aquatic environments30, 
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provision of sunshade31 and prevention of hair from obscur-
ing vision32, but have not been strongly supported by evidence 
and so are not widely held as feasible. Another factor that could 
explain the morphology of the browridge of Kabwe 1 is its mas-
sive frontal sinus. However, the sinus appears to have no critical 
mechanical function during biting33,34 and grows and develops 
secondarily to the browridge35.

Thus, after several decades of research, conflicting views still 
exist with regard to the mechanisms that give rise to large or small 
browridges and their function. Hypotheses that link the develop-
ment of modern human browridge morphology to changes in soci-
ality have tended to be set aside in favour of mechanical and spatial 
ones, aiming to explain large browridges rather than the causes and 
consequences of small ones.

While there is strong support for a spatial explanation of larger 
browridges in archaic versus modern humans in that facial reduc-
tion reduces the need for large brows to accommodate the orbito-
frontal junction, this does not explain why the browridge of Kabwe 
1 is much larger than that of Neanderthals despite a generally simi-
lar facial size. This may be for mechanical reasons, as noted above, 
or it may be for other reasons such as social communication.

If it can be shown that the browridge of Kabwe 1 is much larger 
than spatial requirements demand and has no mechanical function, 
explanations of its size in terms of social communication become 
more tenable and the consequences of interactions of small brows in 
modern humans with sociality, display and social communication 
become a focus of interest.

One of the reasons that spatial and mechanical explanations of 
large brows in archaic humans have not been falsified is because 
of the impossibility of carrying out in vivo experimental manipu-
lations. However, recent advances in virtual functional simulation 
offer a way forward36–38. Through virtual modelling and manipula-
tion of the Kabwe 1 cranium, we show that the browridge is much 
larger than the minimum size required to accommodate the dis-
junction between the orbits and frontal bone. Thus, spatial require-
ments do not fully explain the browridge of this specimen.

Improved craniofacial resistance to masticatory loads, as a con-
sequence of the larger-than-needed browridge, was also assessed 
using finite-element analysis. This allowed us to virtually manip-
ulate the morphology of the browridge while simulating mastica-
tory system loadings to assess the impact of variations in form on 
functional performance. Thus, the skull of Kabwe 1 was virtually 
reconstructed to restore its original morphology39 and two addi-
tional versions of the model were created in which the form of the 
browridge was progressively reduced to the minimum required to 
bridge the gap between the face and neurocranium (simulating the 
spatial hypothesis1). Finite-element models were then created and 
loaded to simulate biting to assess the impact of different browridge 
morphologies on the biomechanical performance of the facial skel-
eton of Kabwe 1. This specimen was used in this study because it 
presents an extremely well-developed—indeed iconic—browridge.

Our findings show that the browridge of Kabwe 1 is larger than 
needed to fulfil spatial requirements in accommodating the orbito-
frontal junction and that it has no marked role in resisting mastica-
tory loading. As such, sociality and social communication must be 
considered in relation to both the larger-than-needed browridge of 
Kabwe 1 and the reduced browridges and more vertical forehead of 
modern humans.

Results
The browridge can be much reduced in size, but not eliminated, 
without creating any significant disjunction between the orbits 
and the frontal bone (Fig. 1). Thus, while the spatial relationship 
between the orbits and frontal bone1,2 partly explains the large 
browridge of Kabwe 1, it appears to greatly exceed what would be 
required to simply bridge the gap (spatial model).

Furthermore, when models with reduced browridges are com-
pared with the original browridge there are no marked intra-bite 
differences in strain magnitudes and orientations, whereas inter-
bite comparisons show clear differences in strain magnitudes and 
orientations (Figs. 2 and 3). Visual examination of strains experi-
enced by the cranium indicates a slight increase in the strain mag-
nitudes experienced by the lateral margins of the ridges and over 
the frontal bone with decreasing browridge size. This increase in 
strain magnitudes is most marked over the post-orbital sulcus of the 
model with the smallest browridge (Fig. 2). It is unknown whether 
this would be sufficient for biomechanical bone adaptation to occur, 
as predicted by the mechanostat model40. Thus, it is possible that to 
some extent the growth and development of the browridge may be 
mechanically driven. However, the increases in strain magnitudes 
resulting from progressive reduction of the browridge are slight and 
thus unlikely to fully explain the massive browridge of Kabwe 1.

When considering strains experienced by the face under the 
same bite, only very small differences were found between models 
(Fig. 4). The geometric morphometric analysis of changes in size and 
shape shows that loaded models cluster tightly by bite rather than 
browridge morphology (Fig. 5). Thus, the vectors of deformation 
(changes in size and shape) connecting the unloaded and loaded 
models reflect almost identical modes and magnitudes of deforma-
tion in the same bite, irrespective of browridge morphology.

Discussion
These results demonstrate that the browridge is significantly larger 
than required to simply bridge the gap between the orbits and the 
frontal bone. Furthermore, changing the morphology of the brow-
ridge does not impact in any substantial way the mode or magni-
tude of deformation experienced by the face during biting. As such, 
we falsify spatial1 and mechanical17–21 hypotheses as complete expla-
nations of the large browridge of this fossil. Rather, the findings sug-
gest that the browridge in Kabwe 1 probably had additional causes.

Relevant in this regard is ref. 41, which shows that facial bony 
structures such as the paranasal swellings in Mandrillus sphinx 
form due to factors that are neither spatial nor mechanical. Rather, 

1 cm

Model 1
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Fig. 1 | Models 1–3. Model 1 represents the original reconstruction of 
Kabwe 1. Model 2 represents the reconstruction of Kabwe 1 with a reduced 
browridge. Model 3 represents the reconstruction of Kabwe with a reduced 
browridge and a post-orbital sulcus.
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they reflect social behaviour and structure; these structures under-
lie the vibrant soft tissue colourings of the muzzle of male man-
drills, which bear an important function in social signalling and 
display42,43. Growth and development of the swellings in Mandrillus 
leucophaeus have been related to androgen production44. In 
humans, the browridge is a sexually dimorphic anatomical trait45 
that has been identified as relevant in the perception of an indi-
vidual by others46,47 and its growth and development have also been 
related to androgen production, along with general facial sexual 
dimorphism48. In this regard, we note that the vermiculate bone 
found over the browridge of Kabwe 1 presents macroscopic simi-
larities to the bone found in the paranasal swellings of Mandrillus 
species. Although vermiculate bone is less frequent in modern 
humans than other middle and late Pleistocene hominins28, it is 
more frequent in men than women49 and hence its formation is 
probably related to hormonal factors. It is therefore plausible that 
the morphology of the browridge of Kabwe 1 might also be related 
to factors such as sexually dimorphic display and social signalling. 
Like antlers, they are fixed and have been hypothesized to signal 
dominance or aggression9.

Facial reduction in Homo sapiens, which has been related to 
changes in brain and basicranial morphology2–4, as well as food 
pre-processing and biting mechanics17–21, is accompanied by 
gracilization of the brows, and the development of a more verti-
cal frontal bone. The upper facial morphological changes found 
in H. sapiens position the frontal bone more vertically, inevitably 
altering the mechanical functioning of the frontalis belly of the 
occipito-frontalis muscle, causing contraction to raise the supra-
orbital skin, whereas previously it would have pulled it more pos-
teriorly over the browridge and the low, more horizontal forehead 
(Supplementary Fig. 1). Having lost a large, low browridge, our 

ancestors gained the possibility of greater range, subtlety and vis-
ibility with regards to movement of the skin overlying the frontal 
bone, particularly affecting movements of the eyebrow. This sug-
gestion is consistent with ref. 50, which suggests that the absence of 
specific movements of the brows in chimpanzees compared with 
humans may relate to the presence of large browridges (see below). 
Effectively, these anatomical changes enhance the capacity of the 
frontalis muscle to move eyebrows over the frontal—a key com-
ponent of social signalling and non-verbal communication in our 
highly socially complex species.

Our mobile hairy eyebrows are crucial in subtle signalling behav-
iours. The eye region is known to develop increasing social signifi-
cance in a human evolutionary context51,52; however, the mobility of 
eyebrows specifically has received little attention. Mobile eyebrows 
without the constraints of a pronounced browridge allow subtle 
affiliative emotions to be expressed (Supplementary Table 3), such 
as the rapid ‘eyebrow flash’, lasting around one-sixth of a second, 
found cross-culturally as a sign of contact readiness and recogni-
tion53. In contrast, a slow eyebrow raise is a sign of surprise and, in 
particular, social indignation54. The facial expression of sympathy—
shown by pulling eyebrows up at the middle55—has the advantage 
of removing need for the direct contact used to express sympathy 
in chimpanzees56. Subtle dynamic movements of eyebrows are also 
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a key component of identifying trustworthiness57 as well as subtle 
indications of deception. Any constraints on muscle movements in 
the supraorbital region affect emotional expressions and, in turn, 
social relationships; for example, individuals who receive a cosmetic 
procedure (botox) that reduces muscle activity in the forehead (and 
so affects eyebrow movement) are less able to empathise with and 
identify other’s emotions58.

Compared with our own species, our nearest living relatives, 
chimpanzees, show minimal differences in underlying facial mus-
culature59; however, differences in facial morphology, pigmentation 
and other superficial characteristics impact on the range and sub-

tlety of their emotional expressions50,60. As in humans, chimpanzees 
express emotions through the stretching of skin across prominent 
browridges, but lack the subtleties in eyebrow movement and sig-
nalling that modern humans display. This is apparent through the 
inability of chimpanzees to move the inner and outer brows inde-
pendently (activated by the medial and lateral parts of the frontalis 
muscle, respectively) and to present the ‘brow lower’ action (acti-
vated by the corrugator, depressor supercilli and procerus muscles, 
and significant in identifying sadness and anger in humans)50,60. 
The absence of these movements has been associated with the 
presence of a large browridge, which precludes marked saliency 
of these movements and thus of signalling function to conspecif-
ics50. Similarly, other non-human primates, such as macaques61, gib-
bons62 and orangutans63, are also unable to move their inner and 
outer brows independently and display brow-lowering (excluding 
orangutans, which are able to perform brow-lowering). Moreover, 
human eyebrows overlie a vertically flatter brow and hairless fore-
head, hence increasing eyebrow visibility and signalling60.

The relative selective trade-offs between a pronounced brow-
ridge (a permanent social signal) and capacities to dynamically 
express affiliative prosocial emotions through highly mobile eye-
brows are complex. Moreover, competitive and collaborative strat-
egies typically exist together and vary dynamically through time 
and space64. Even in modern hunter-gatherers, more competitive 
and collaborative individuals tend to spatially locate together65. We 
should thus expect a long period of differing facial forms, reflecting 
differing social strategies, both within and between groups before 
the selective advantages of expressing complex prosocial emotions 
become stable. This pattern seems typical of archaic humans, with 
substantial variability in the definition of browridges among early 
modern humans at Jebel Irhoud, for example66.

Methods
The Kabwe 1 cranium reconstruction39 was based on a computed tomography scan 
provided by the Natural History Museum, London (courtesy of R. Kruszynski). 
After reconstruction, two additional models were created in which the morphology 
of the browridge was the only anatomical region modified. The models were then 
directly converted into voxel-based finite-element models and used to simulate three 
different bites (the left central incisor, left second premolar and left second molar) to 
assess the biomechanical performance of the facial skeleton during these bites.

Skull reconstruction and model creation. A complete description of the 
reconstruction of Kabwe 1 is presented in ref. 39. Briefly, automated, semi-
automated and manual segmentation of the cranium was performed using Avizo 
(version 7.0). Manual segmentation was required to remove sedimentary matrix 
present in the maxillary and sphenoidal sinuses. When possible, reconstruction of 
missing parts was performed by mirroring preserved contralateral elements and 
warping them to the existing structures. When small gaps were present, Geomagic 
(Studio 2011) was used to fill them using the surface of surrounding structures as 
the reference for interpolation. Portions of a computed tomography reconstruction 
of a cadaveric H. sapiens skull were used to reconstruct part of the occipital and 
missing tooth crowns for which there were no preserved antimeres.

Once the reconstruction was complete (model 1), the frontal sinuses were 
infilled to allow later excavation of this region to produce variant morphologies. 
Analysis of the impact of infilling the sinus in model 1 showed that the 
surface strains over the browridge and elsewhere in the cranium did not differ 
significantly between the models with hollow and filled frontal sinuses34.  
The morphology of the browridge was manipulated using Geomagic by 
decreasing its size (model 2) and creating a post-orbital sulcus in model 3  
(Fig. 1). Voxel-based finite-element models were then generated by direct 
conversion using bespoke software.

Constraints. Identical constraints were applied to all models using the finite-
element analysis software tool VoxFE67. The models were constrained at the 
temporomandibular joints (laterally, superoinferiorly and anteroposteriorly) and 
a third constraint was applied at the simulated bite point (superoinferiorly) in 
each of the biting simulations (left central incisor, left second premolar and left 
second molar).

Material properties. Following previous sensitivity studies that showed only local 
effects of differentiating the material properties of teeth and the surrounding 
bone, these were assigned the same material properties in all the models used 
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in this study. Furthermore, sensitivity analyses that assessed the effect of model 
simplifications in a human cadaveric cranium68, a cranium of Macaca fascicularis69 
and a varanoid lizard mandible70 show that infilling of trabecular bone stiffens the 
skull and so reduces strain magnitudes, but that the distribution of regions of high 
and low strain as well as global modes (rather than magnitudes) of deformation 
are not much affected. Allocating teeth the same material properties as bone has 
the effect of locally reducing strain gradients in the alveolar region, with little 
effect elsewhere. This is relevant to the present study because trabecular bone is 
neither well enough preserved nor imaged at sufficient resolution to accurately 
represent it in a finite-element model, and the dentition was incomplete and 
required reconstruction. As such, in all models, trabecular bone and teeth were not 
separately represented and were allocated the same material properties as cortical 
bone. Based on previous sensitivity analyses, we expect this to have little impact on 
the mode of deformation of the loaded cranium, but to reduce the degree to  
which it deforms.

Cortical bone, trabecular bone and the teeth were allocated isotropic 
properties, with a Young’s modulus of 17 Gpa and a Poisson’s ratio of 0.3. The 
modulus of elasticity was derived from nanoindentation studies of cortical bone in 
a cadaveric H. sapiens skull68. The resulting value of 17 Gpa is within the range of 
values found in previous studies71,72.

Muscle loads. Loads were applied to the model to represent the actions of six 
muscles active during biting: the right and left temporalis, right and left masseter, 
and right and left medial pterygoid. Absence of the mandible precluded direct 
estimation of the direction of muscle force vectors and estimation using bony proxies 
of anatomical cross-sectional areas (and so maximum forces) of muscles that attach 
to the mandible (masseter and medial pterygoid). However, given that three versions 
of the same model with identical loads and constraints were compared, it matters 
little that the applied muscle force vectors approximated rather than replicated 
physiological loadings. Of significantly more importance was the fact that these 
forces were identical between models and so did not, themselves, produce differences 
in strains (modes of deformation) between models. As such, the maximum estimated 
muscle forces estimated from a H. sapiens cadaveric head were applied identically to 
each model68 (Supplementary Table 1). The directions of muscle force vectors were 
estimated by scaling a Homo neanderthalensis mandible (the Tabun 1 specimen) 
to the Kabwe 1 skull. These directions were applied to all models and simulations. 
While this mandible is not from the same fossil, it provides a reasonable estimate of 
muscle vectors. The impact of error in the estimation of the orientation of the muscle 
vectors was assessed in a sensitivity analysis in which muscle vectors were varied 
through 5° anteroposteriorly and mediolaterally. The results showed that regions of 
high and low strain varied very little in location (Supplementary Fig. 3) while the 
average magnitude of strains varied from ~2% in mediolateral manipulation to ~5% 
in anteroposterior changes (Supplementary Table 4).

Model solution and analysis. Finite-element models 1–3 were solved using 
VoxFE67. The resulting deformations of the finite-element models were 
compared through (1) visual assessment of strain magnitudes and directions of 
maximum (ε​1) and minimum (ε​3) principal strains, (2) plotting of ε​1 and ε​3 at 
30 nodes (points) located in the facial skeleton that were common to all models 
(Supplementary Fig. 2) and (3) analysis of changes in the size and shape between 
loaded and unloaded models of a configuration of 33 landmarks (points) from 
the whole cranium (Supplementary Fig. 3 and Supplementary Table 2). The size 
and shape analysis employed geometric morphometrics to compare changes in 
size and shape between the unloaded and loaded models. This consisted of an 
initial registration step comprising scaling to unit size followed by translation of 
landmark configurations to their centroids, with subsequent rotation to minimize 
the sum of squared distances between each scaled, translated configuration and 
the mean configuration. This was followed by rescaling of each configuration to 
its original centroid size and a principal components analysis of the resulting size 
and shape coordinates73,74. This analysis led to a quantitative comparison of global 
model deformations (changes in size and shape) in terms of the directions (modes) 
and magnitudes (degree or extent) of deformation arising from loading.

Reporting Summary. Further information on experimental design is available in 
the Nature Research Reporting Summary linked to this article.

Data availability. The data that support the findings of this study are available 
from the authors but restrictions apply to the availability of these data, which were 
used under license from the Natural History Museum (London) for the current 
study, and so are not publicly available. Data are, however, available from the 
authors upon reasonable request and with permission from the Centre for Human 
Evolution Studies at the Natural History Museum.
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