
J. Math. Anal. Appl. 353 (2009) 489–496
Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

Embeddings of variable Hajłasz–Sobolev spaces into Hölder spaces of
variable order ✩

Alexandre Almeida a,∗,1, Stefan Samko b

a Departamento de Matemática, Universidade de Aveiro, 3810-193 Aveiro, Portugal
b Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal

a r t i c l e i n f o a b s t r a c t

Article history:
Received 27 October 2008
Available online 25 December 2008
Submitted by P. Koskela

Keywords:
Hajłasz–Sobolev space
Hölder space
Sobolev embeddings
Variable exponent
Space of homogeneous type
Maximal functions

Pointwise estimates in variable exponent Sobolev spaces on quasi-metric measure spaces
are investigated. Based on such estimates, Sobolev embeddings into Hölder spaces with
variable order are obtained. This extends some known results to the variable exponent
setting.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

Lebesgue and Sobolev spaces with variable exponent have been intensively studied during the last decade. We only
mention the surveying papers [9,31,38], where many references may be found. In particular, embeddings of Sobolev spaces
started to be investigated since the beginning of the theory of these spaces, mainly those into Lebesgue spaces over Eu-
clidean domains (cf. [8,11,12]). In [13,22] corresponding generalizations were investigated within the frameworks of the
measure metric spaces. We also refer to [35], where the continuity of Sobolev functions was proved in the limiting case.

The case when the exponent is greater than the dimension of the Euclidean space R
n was less studied. The first attempt

to get Sobolev embeddings into Hölder classes of variable order was done in [10]. Later a capacity approach was used
in [21] to obtain embeddings into the space of continuous functions. Based on certain pointwise inequalities involving the
oscillation of Sobolev functions, the authors [2] proved embeddings into variable Hölder spaces on bounded domains with
Lipschitz boundary. More recently, Hölder quasicontinuity of Sobolev functions was studied in [25], including estimates for
the exceptional set in terms of capacities.

In this paper we derive more general results, namely we obtain embeddings of variable exponent Hajłasz–Sobolev spaces
into Hölder classes of variable order on a bounded (quasi-)metric measure space (X ,d,μ) with doubling condition. Our
approach is based on the estimation of Sobolev functions through maximal functions. We refer to papers [4,7,19,20,30],
where this way was used in the case of constant exponents.

The paper is organized as follows. After some preliminaries in Section 2 on variable spaces defined on spaces of homo-
geneous type, in Section 3 we extend some known estimates of the oscillation of Sobolev functions to the variable exponent
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setting. The embeddings of variable Hajłasz–Sobolev spaces into Hölder spaces of variable order on metric measure spaces
are proved in Section 4. Sobolev embeddings of higher smoothness are also proved in the Euclidean case.

2. Preliminaries

Everywhere below X = (X ,d,μ) is a quasi-metric measure space. For any positive μ-measurable function ϕ defined on
X , ϕ− and ϕ+ denote the quantities

ϕ+ := ess sup
x∈X

ϕ(x) and ϕ− := ess inf
x∈X

ϕ(x). (1)

By C (or c) we denote generic positive constants which may have different values at different occurrences. Sometimes
we emphasize their dependence on certain parameters (e.g. C(α) or Cα means that C depends on α, etc.).

2.1. Spaces of homogeneous type

By a space of homogeneous type we mean a triple (X ,d,μ), where X is a non-empty set, d : X × X → R is a quasi-metric
on X and μ is a non-negative Borel measure such that the doubling condition

μB(x,2r) � CμμB(x, r), Cμ > 1, (2)

holds for all x ∈ X and 0 < r < diam(X ), where B(x, r) = {y ∈ X : d(x, y) < r} denotes the open ball centered at x and of
radius r. For simplicity, we shall write X instead of (X ,d,μ) if no ambiguity arises.

As is well known, by iteration of condition (2) it can be shown that there exists a positive constant C such that

μB(x,�)

μB(y, r)
� C

(
�

r

)N

, N = log2 Cμ, (3)

for all the balls B(x,�) and B(y, r) with 0 < r � � and y ∈ B(x, r). From (3) it follows that

μB(x, r) � c0rN , x ∈ X , 0 < r � diam X , (4)

in the case X is bounded. Condition (4) is sometimes called the lower Ahlfors regularity condition.
The quasi-metric d is assumed to satisfy the standard conditions:

d(x, y) � 0, d(x, y) = 0 ⇐⇒ x = y, d(x, y) = d(y, x),

d(x, y) � a0
[
d(x, z) + d(z, y)

]
, a0 � 1.

We refer to [5,6,16,26] for general properties of spaces of homogeneous type.

2.2. On variable exponent spaces

Let p : X → [1,∞) be a μ-measurable function. Everywhere below we assume that

1 < p− � p(x) � p+ < ∞, x ∈ X ,

according to the notation in (1).
By L p(·)(X ) we denote the space of all μ-measurable functions f on X such that the modular

I p(·)( f ) = I p(·),X ( f ) :=
∫

X

∣∣ f (x)
∣∣p(x)

dμ(x)

is finite. This is a Banach space with respect to the norm

‖ f ‖p(·) = ‖ f ‖p(·),X := inf

{
λ > 0: I p(·)

(
f

λ

)
� 1

}
.

Variable exponent Lebesgue spaces over quasi-metric measure spaces have been considered in [13,22,23,29,35] and more
recently in [32,33], where the maximal operator was studied on weighted spaces. For completeness, we recall here some
basic properties of the spaces L p(·)(X ). It is known that the norm ‖ · ‖p(·) and the modular I p(·) are simultaneously greater
or simultaneously less than one, from which there follows that

c1 � ‖ f ‖p(·) � c2 	⇒ c3 � I p(·)( f ) � c4

and

C1 � I p(·)( f ) � C2 	⇒ C3 � ‖ f ‖p(·) � C4,

with c3 = min(cp− , cp+ ), c4 = max(cp− , cp+), C3 = min(C1/p− , C1/p+ ) and C4 = max(C1/p− , C1/p+ ).
1 1 2 2 1 1 2 2
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As usual, p′(·) denotes the conjugate exponent of p(·) and it is defined pointwise by p′(x) = p(x)
p(x)−1 , x ∈ X . The Hölder

inequality is valid in the form∫
X

∣∣ f (x)g(x)
∣∣dμ(x) �

(
1

p−
+ 1

p′−

)
‖ f ‖p(·)‖g‖p′(·).

We also note that the embedding

Lq(·)(X ) ↪→ L p(·)(X )

holds for 1 � p(x) � q(x) � q+ < ∞, when μ(X ) < ∞.
Often the exponent p(·) is supposed to satisfy the local logarithmic condition

∣∣p(x) − p(y)
∣∣ � A0

ln 1
d(x,y)

, d(x, y) � 1/2, x, y ∈ X , (5)

from which we derive
∣∣p(x) − p(y)

∣∣ � 2R A0

ln 2R
d(x,y)

, d(x, y) � R, x, y ∈ X .

Assumption (5) is known in the literature as Dini–Lipschitz condition or log-Hölder continuity.
We will also deal with Hölder spaces Hλ(·) of variable order. Hölder functions on metric measure spaces were considered,

for instance, in [14,15,34,36] for constant orders λ. Hölder spaces of variable order λ(x) were considered in [17,27,28,37] in
the one-dimensional Euclidean case and in [39–42] on the unit sphere Sn−1 in R

n . In the case of variable order we follow a
symmetric approach, which was suggested in [37] in the one-dimensional Euclidean case. We say that a bounded function f
belongs to Hλ(·)(X ) if there exists c > 0 such that

∣∣ f (x) − f (y)
∣∣ � cd(x, y)max{λ(x),λ(y)}

for every x, y ∈ X , where λ is a μ-measurable function on X taking values in (0,1]. Hλ(·)(X ) is a Banach space with
respect to the norm

‖ f ‖Hλ(·)(X ) = ‖ f ‖∞ + [ f ]λ(·),
where

[ f ]λ(·) := sup
x,y∈X

0<d(x,y)�1

| f (x) − f (y)|
d(x, y)max{λ(x),λ(y)} .

We observe that for 0 < β(x) � λ(x) � 1, there holds

Hλ(·)(X ) ↪→ Hβ(·)(X ),

where “↪→” means continuous embedding.

2.3. Hajłasz–Sobolev spaces with variable exponent

Let 1 < p− � p+ < ∞. We say that a function f ∈ L p(·)(X ) belongs to the Hajłasz–Sobolev space M1,p(·)(X ), if there exists
a non-negative function g ∈ L p(·)(X ) such that the inequality

∣∣ f (x) − f (y)
∣∣ � d(x, y)

[
g(x) + g(y)

]
(6)

holds μ-almost everywhere in X . In this case, g is called a generalized gradient of f . M1,p(·)(X ) is a Banach space with
respect to the norm

‖ f ‖1,p(·) = ‖ f ‖M1,p(·)(X ) := ‖ f ‖p(·) + inf‖g‖p(·),
where the infimum is taken over all generalized gradients of f .

For constant exponents p(x) ≡ p, the spaces M1,p were first introduced by P. Hajłasz [18] as a generalization of the
classical Sobolev spaces W 1,p to the general setting of the quasi-metric measure spaces. If X = Ω is a bounded domain
with Lipschitz boundary (or Ω = R

n), endowed with the Euclidean distance and the Lebesgue measure, then M1,p(Ω)

coincides with W 1,p(Ω). Recall that the oscillation of a Sobolev function may be estimated by the maximal function of its
gradient. In other words, every function f ∈ W 1,p(Ω) satisfies (6) by taking M(|∇ f |) as a generalized gradient (see, for
instance, [4,20,30], for details and applications, and [2] where this property was also discussed for variable exponents).

Hajłasz–Sobolev spaces with variable exponent have been considered in [22,24]. In [24] it was shown that M1,p(·)(Rn) =
W 1,p(·)(Rn) if the maximal operator is bounded in L p(·)(Rn), which generalizes the result from [18] for constant p.
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3. Some pointwise estimates

Let α : X → (0,∞) be a μ-measurable function. We define the fractional sharp maximal function of order α(·) as

M	

α(·) f (x) = sup
r>0

r−α(x)

μB(x, r)

∫
B(x,r)

∣∣ f (y) − f B(x,r)
∣∣dμ(y),

where f B(x,r) denotes the average of f over B(x, r), with f ∈ L1
loc(X ). In the limiting case α ≡ 0, M	

α(·) is the well-known
Fefferman–Stein function.

According to the notation above we write

α− = ess inf
x∈X

α(x) and α+ = ess sup
x∈X

α(x).

For constant α = β the following inequality was proved in [19, Lemma 3.6], which in turn generalizes Theorem 2.7 in [7],
given in the Euclidean setting.

Lemma 1. Let X satisfy the doubling condition (2) and f be a locally integrable function on X . If

0 < α− � α(x) � α+ < ∞ and 0 < β− � β(x) � β+ < ∞,

then
∣∣ f (x) − f (y)

∣∣ � C(μ,α,β)
[
d(x, y)α(x)M	

α(·) f (x) + d(x, y)β(y)M	

β(·) f (y)
]

(7)

μ-almost everywhere.

Proof. We skip some details since the proof follows similar arguments of [19]. For a Lebesgue point x we have

∣∣ f (x) − f B(x,r)
∣∣ �

∞∑
j=0

∣∣ f B(x,2−( j+1)r) − f B(x,2− j r)

∣∣ �
∞∑
j=0

1

μB(x,2−( j+1)r)

∫

B(x,2− j r)

∣∣ f (z) − f B(x,2− j r)

∣∣dμ(z).

Hence, by the doubling condition (2) we get

∣∣ f (x) − f B(x,r)
∣∣ � cμ

∞∑
j=0

1

μB(x,2− jr)

∫

B(x,2− j r)

∣∣ f (z) − f B(x,2− j r)

∣∣dμ(z) � cμc(α)rα(x)M	

α(·) f (x) (8)

where c(α) := ∑∞
j=0 2− jα− = 2α−

2α−−1 . On the other hand, similar techniques also yield
∣∣ f (y) − f B(x,r)

∣∣ �
∣∣ f (y) − f B(y,2r)

∣∣ + ∣∣ f B(x,r) − f B(y,2r)
∣∣ � c(μ,β)rβ(y)M	

β(·) f (y) (9)

when y ∈ B(x, r) and β+ < ∞. Thus, if x 
= y we take r = 2d(x, y) and write
∣∣ f (x) − f (y)

∣∣ �
∣∣ f (x) − f B(x,2d(x,y))

∣∣ + ∣∣ f (y) − f B(x,2d(x,y))

∣∣.
Now it remains to make use of (8) and (9), where we also observe that both α(·) and β(·) are bounded. �

Having in mind some applications, it is of interest to estimate the oscillation of a Hajłasz–Sobolev function in terms of
the fractional maximal function of the (generalized) gradient. Recall that the fractional maximal function Mα(·) f of a locally
integrable function f is given by

Mα(·) f (x) = sup
r>0

rα(x)

μB(x, r)

∫
B(x,r)

∣∣ f (y)
∣∣dμ(y),

where the order α is admitted to be variable, namely α is a μ-measurable function, with 0 � α(x) � α+ < ∞. In the
limiting case α(x) ≡ 0 we obtain the well-known Hardy–Littlewood maximal function M = M0.

The next lemma is an adaptation of Corollary 3.10 in [19] to variable exponents. We point out that the pointwise in-
equality (10) has been discussed before for variable exponents in the Euclidean case, see [2, Proposition 3.3].

Lemma 2. Let X satisfy the doubling condition (2) and let f ∈ M1,p(·)(X ) and g ∈ L p(·)(X ) be a generalized gradient of f . If 0 �
α+ < 1, 0 � β+ < 1, then

∣∣ f (x) − f (y)
∣∣ � C(μ,α,β)

[
d(x, y)1−α(x)Mα(·) g(x) + d(x, y)1−β(y)Mβ(·) g(y)

]
(10)

μ-almost everywhere.
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Proof. Taking into account (7), it suffices to show the estimate

M	

1−λ(·) g(x) � cMλ(·) g(x), 0 � λ(x) < 1. (11)

But (11) follows from the Poincaré type inequality∫
B(x,r)

∣∣ f (z) − f B(x,r)
∣∣dμ(z) � cr

∫
B(x,r)

g(z)dμ(z), x ∈ X , r > 0, (12)

which is valid for every f ∈ M1,p(·)(X ), where g � 0 is a generalized gradient of f . Indeed, (12) can be obtained just by
integrating the both sides of

∣∣ f (y) − f (z)
∣∣ � d(y, z)

[
g(y) + g(z)

]
, μ-a.e. y, z ∈ B(x, r)

(see (6)) over the ball B(x, r), first with respect to y and then to z. �
Remark 3. In the previous proof we used partially the statement of Theorem 4.2 in [24]. However, the boundedness of the
maximal operator required there is not needed here.

4. Sobolev embeddings into variable exponent Hölder spaces

4.1. Embeddings of variable Hajłasz–Sobolev spaces

Estimate (10) suggests that a function f ∈ M1,p(·)(X ) is Hölder continuous (after a modification on a set of zero measure)
if the fractional maximal function of the gradient is bounded. As we will see below, this is the case when the exponent p(·)
takes values greater than the “dimension”. First we need some auxiliary lemmas.

The following statement was given in [22] (see also [3] for an alternative proof).

Lemma 4. Let X be bounded, the measure μ satisfy condition (4) and p(·) satisfy condition (5). Then

‖χB(x,r)‖p(·) � c
[
μB(x, r)

] 1
p(x) (13)

with c > 0 not depending on x ∈ X and r > 0.

Below N > 0 denotes the constant from (4).

Lemma 5. Let X be bounded and μ satisfy condition (4). Suppose that p(·) is log-Hölder continuous. If f ∈ L p(·)(X ), then

M N
p(·)

f (x) � c‖ f ‖p(·), (14)

where c > 0 is independent of x and f .

Proof. Let x ∈ X and r > 0. By the Hölder inequality we have

r
N

p(x)

μB(x, r)

∫
B(x,r)

∣∣ f (y)
∣∣dμ(y) � 2r

N
p(x)

μB(x, r)
‖ f ‖p(·)‖χB(x,r)‖p′(·).

From this, we easily arrive at (14) by using the inequality (13) and the assumption (4). �
Theorem 6. Let X be bounded and let μ be doubling. Suppose also that p(·) satisfies (5) with p− > N. If f ∈ M1,p(·)(X ) and g is a
generalized gradient of f , then there exists C > 0 such that

∣∣ f (x) − f (y)
∣∣ � C‖g‖p(·) d(x, y)

1− N
max{p(x),p(y)} (15)

for every x, y ∈ X with d(x, y) � 1.

Proof. After redefining f on a set of zero measure, we make use of (10) with α(x) = N
p(x) and β(y) = N

p(y)
, and get

∣∣ f (x) − f (y)
∣∣ � C(μ, N, p)d(x, y)

1− N
min{p(x),p(y)}

[
M N

p(·)
g(x) + M N

p(·)
g(y)

]
for all x, y ∈ X . Hence we arrive at (15) taking into account (14). �

The statement of the next theorem was proved in [2] within the frameworks of the Euclidean domains with Lipschitz
boundary.
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Theorem 7. Let the set X be bounded and the measure μ be doubling. If p(·) is log-Hölder continuous and p− > N, then

M1,p(·)(X ) ↪→ H1− N
p(·) (X ). (16)

Proof. Let x ∈ X and r0 > 0 be arbitrary. Recovering the argument from (8), we make use of (11) and we get

∣∣ f (x) − f B(x,r0)

∣∣ � cr
1− N

p(x)

0 M	

1− N
p(·)

f (x)

� cr
1− N

p(x)

0 M N
p(·)

g(x)

� cr
1− N

p(x)

0 ‖g‖p(·),

where in the last inequality we took estimate (14) into account, with g ∈ L p(·)(X ) denoting a gradient of f ∈ M1,p(·)(X ). On
the other hand, the Hölder inequality (cf. proof of Lemma 5) yields

| f B(x,r0)| � cr
− N

p(x)

0 ‖ f ‖p(·).
Hence, choosing r0 = min{1,diam(X )} above, one obtains

‖ f ‖∞ � c‖ f ‖1,p(·). (17)

It remains to show that f is Hölder continuous. To this end, we apply inequality (15) and we get

| f (x) − f (y)|
d(x, y)

max{1− N
p(x) ,1− N

p(y)
} � c‖g‖p(·) d(x, y)

N
max{p(x),p(y)} − N

min{p(x),p(y)}

for every x, y ∈ X , x 
= y, with d(x, y) � 1. Since p(·) satisfies the log-condition, then

d(x, y)
N

max{p(x),p(y)} ∼ d(x, y)
N

min{p(x),p(y)} .

Hence there holds [ f ]1− N
p(·)

� c‖g‖p(·) , from which the embedding (16) follows, having also in mind (17). �
4.2. Further results for the Euclidean case

In the particular case when X is a bounded domain Ω (with Lipschitz boundary) in the Euclidean space R
n , then

W 1,p(·)(Ω) ↪→ H1− n
p(·) (Ω) (18)

where it is assumed that p(·) is log-Hölder continuous and p− > n. In this section we are concerned with corresponding
embeddings for higher smoothness. For constant exponents p such embeddings are well known and can be found, for
instance, in [1].

Let Ω ⊂ R
n be an open set and k ∈ N. Recall that the usual Sobolev space W k,p(·)(Ω) consists of all functions f for

which the (weak) derivatives Dβ f are in L p(·)(Ω), for any 0 � |β| � k. This is a Banach space with respect to the norm

‖ f ‖k,p(·),Ω =
∑

|β|�k

∥∥Dβ f
∥∥

p(·),Ω .

The next statement was proved in [8].

Theorem 8. Let k ∈ N with 1 � k < n. If p(·) is log-Hölder continuous and is constant outside some large ball, with 1 < p− � p+ < n
k ,

then

W k,p(·)(
R

n)
↪→ Lq(·)(

R
n)

, (19)

where 1
q(x) = 1

p(x) − k
n , x ∈ R

n.

If Ω ⊂ R
n is an open bounded set with Lipschitz boundary, then there exists a bounded linear extension operator

E : W k,p(·)(Ω) → W k,p̃(·)(Rn), such that E f (x) = f (x) almost everywhere in Ω , for all f ∈ W k,p(·)(Ω). The exponent p̃(·) is
an extension of p(·) to the whole R

n preserving the original bounds and the continuity modulus of p(·). All the details of
this construction in the case k = 1 can be found in [8, Theorem 4.2 and Corollary 4.3], and [10, Theorem 4.1]; constructions
for k 
= 1 follow the same way, since the Hestenes method is known to work well with higher derivatives as well. As a
consequence we conclude that embedding (19) holds also for bounded open sets Ω with Lipschitz boundary, namely if p(·)
satisfies condition (5) in Ω with 1 < p− � p+ < n

k , then

W k,p(·)(Ω) ↪→ Lq(·)(Ω),
1

q(x)
= 1

p(x)
− k

n
, x ∈ Ω. (20)
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Remark 9. Embedding (20) was proved in [8, Corollary 5.3] in the case k = 1, which in turn generalizes a former result
from [10] formulated for Lipschitz continuous exponents. We note that embedding (20) was also proved in [12] by assuming
the Lipschitz continuity of p(·) and the cone condition in Ω .

Theorem 10. Let Ω ⊂ R
n be an open bounded set with Lipschitz boundary. If p(·) is log-Hölder continuous and (k − 1)p+ < n < kp− ,

then

W k,p(·)(Ω) ↪→ Hk− n
p(·) (Ω). (21)

Proof. As in the classical setting of constant exponents, the proof can be reduced to the case k = 1 as follows. By (20) we
have

W k,p(·)(Ω) ↪→ W k−1,p(·)(Ω) ↪→ Lq(·)(Ω),

where 1
q(x) = 1

p(x) − k−1
n , x ∈ Ω . Thus we also get W k,p(·)(Ω) ↪→ W 1,q(·)(Ω). Hence it remains to observe that

W 1,q(·)(Ω) ↪→ H1− n
q(·) (Ω),

which follows from (18). Indeed, we have n
q− = n

p− − k + 1 < 1 and 1 − n
q(x) = k − n

p(x) . �
Remark 11. Since we consider Hölder spaces of orders less than 1, in Theorem 10 we in fact have a restriction k <

p+
p+−p− .

To avoid this restriction one should make use Hölder spaces of higher order which we do not touch here. Observe that
the condition (k − 1)p+ < n of Theorem 10 may be omitted, but then we should just assume that (k − 1)p+ 
= n and

embedding (21) written in the form W k,p(·)(Ω) ↪→ H{k− n
p(·) }(Ω), where {k − n

p(x) } stands for the fractional part of k − n
p(x) .

Corollary 12. Let Ω ⊂ R
n be an open bounded set with Lipschitz boundary. Let also p(·) be log-Hölder continuous with p− > n

k ,
k > 1. Then

W k,p(·)(Ω) ↪→ Hλ(·)(Ω),

for any function λ(·) ∈ L∞(Ω) such that λ(x) � k − n
p(x) and λ− > 0, λ+ < 1.
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