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Abstract

There has been considerable progress in recent years in our understanding of the pat-

terns of cortical bone loss in the second metacarpal in archeological skeletal samples.

Nevertheless, cortical data from reference skeletal collections are insufficient, and the

possible connection of metacarpal cortical parameters with osteoporotic fractures has

not been thoroughly addressed. As such, this article aims to identify and explain sex‐

specific and age‐associated metacarpal cortical bone loss in a large sample (N = 302;

females: 154/males: 148) from the Coimbra Identified Skeletal Collection. Another

objective is to evaluate the association of cortical and demographic features with

osteoporotic fractures. Age‐related endocortical bone loss is significant in women

but not evident in men. Periosteal accretion of the bone is absent in both sexes. Over-

all, there is a net loss of the cortical bone in women, whereas cortical bone strength

seems to be preserved in men. The prevalence of osteoporotic fractures is similar in

both sexes, with age at death significantly influencing the probability of exhibiting a

fracture. Metacarpal cortical index does not seem to be an independent risk factor

for osteoporotic fractures in this sample.

KEYWORDS

bone fragility, fragility fractures, identified reference skeletal collections, osteoporosis
1 | INTRODUCTION

Worldwide demographic changes have resulted in the ageing of large

segments of the population, an ongoing social process with massive

public health implications. Osteoporosis, bone fragility, and associated

fractures are gradually more frequent at older ages, particularly affect-

ing postmenopausal women and ageing individuals of both sexes

(Sattui & Saag, 2014). Bone loss has been repeatedly evaluated in

historical skeletal samples, adding diachronic depth to the biomedical

knowledge about bone health associated with age, hormonal status,

physical activity or nutrition, among others (Brickley & Ives, 2008;

Curate, 2014).

Research of the structural basis of bone fragility have typically

concentrated on trabecular bone loss and fractures at trabecular‐rich

skeletal areas (Zebaze & Seeman, 2015). However, the conceptualiza-

tion of osteoporosis as a disorder of trabecular bone loss does not
wileyonlinelibrary.com
fathom its complexity and heterogeneity (Seeman, 2013). Indeed,

70% of all age‐related appendicular bone loss is cortical, despite the

faster remodelling rate of the trabecular bone (Zebaze et al., 2010).

Throughout the first years after menopause, cortical and trabecular

bone loss is balanced, but the cortical bone is accountable for greater

bone loss after 60 years of age (Seeman, 2013; Zebaze et al., 2010).

The cortical bone is a major contributor to the overall bone strength,

influencing resistance to external force loads and the occurrence of

fractures (Holzer, Von Skrbensky, Holzer, & Pichl, 2009; Piemontese,

Xiong, Fujiwara, Thostenson, & O'Brien, 2016). This is especially rele-

vant because nonvertebral fractures compose the bulk of osteoporotic

fractures and ensue predominantly at cortical sites (Center, 2010;

Zebaze & Seeman, 2015).

Cortical bone loss occurs mostly through intracortical remodelling

(Zebaze & Seeman, 2015). Radiogrammetry, a method that determines

the amplitude or geometry of the cortical bone in tubular bones, is
© 2018 John Wiley & Sons, Ltd./journal/oa 73
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suitable to evaluate cortical bone loss in historical/archeological con-

texts (e.g., Beauchesne & Agarwal, 2014, 2017; Glencross & Agarwal,

2011; Ives & Brickley, 2005; Lazenby, 1998; Mays, 1996, 2000, 2015;

Mays, Lees, & Stevenson, 1998; Umbelino et al., 2016). Metacarpal

radiogrammetry was independently and formally described in 1960

(Barnett & Nordin, 1960; Virtamä & Mähönen, 1960). There are

normative reference values for radiogrammetry in living populations

(e.g., Black et al., 2001; Hyldstrup & Nielsen, 2001; Shepherd et al.,

2005; Virtamä & Helelä, 1969), but data from reference skeletal

collections are scarce (e.g., Curate & Cunha, 2017). As such, this study

aims to establish a normative reference database for metacarpal corti-

cal index based on a large sample from the Coimbra Identified Skeletal

Collection (CISC), to identify and interpret the patterns of sex‐specific

and age‐related cortical bone loss in the second metacarpal, and to

test possible associations of cortical parameters of bone and demo-

graphic features with the so‐called osteoporotic fractures.
TABLE 1 Mean values of DTW (in mm) according to sex and age
class (CISC)

Age
class

Females Males

Mean SD 95% CI N Mean SD 95% CI N

20–29 7.14 0.67 6.84, 7.45 22 7.93 0.78 7.54, 8.32 19

30–39 7.28 0.63 7.01, 7.55 26 7.95 0.80 7.64, 8.26 28

40–49 6.93 0.62 6.66, 7.21 23 8.11 0.80 7.78, 8.44 26

50–59 7.16 0.43 6.99, 7.34 28 8.03 0.63 7.76, 8.30 25

60–69 7.03 0.77 6.60, 7.45 16 7.97 0.63 7.69, 8.25 22

70–79 7.27 0.56 7.00, 7.54 21 7.98 0.72 7.65, 8.32 21

80+ 7.17 0.74 6.80, 7.54 18 8.29 1.21 7.16, 9.41 7

Total 7.14 0.62 7.04, 7.25 154 8.01 0.75 7.89, 8.14 148

Note. CISC: Coimbra Identified Skeletal Collection; DTW: diaphysis total
width.
2 | MATERIALS AND METHODS

The CISC includes 505 individual skeletons primarily recovered in the

largest public cemetery of Coimbra (Portugal). Biographical details for

the skeletal individuals are accessible, for example, place of birth, sex,

age at death, and occupation (Cunha & Wasterlain, 2007). The sample

studied comprises 302 individuals (females: 154; males: 148), with an

age at death ranging from 20 to 96 years old (M = 51.79; SD = 18.67;

Table S1). All individuals were born in Portugal between 1827 and

1914 and died between 1910 and 1936 (i.e., before the introduction

of biomedical therapies for bone loss).

Conventional radiogrammetry was used to assess cortical param-

eters (DTW: diaphysis total width, MW: medullary width, and MCI:

metacarpal cortical index) at the second metacarpal midpoint (Ives &

Brickley, 2004; raw data available upon reasonable request). MCI is

defined as follows:

MCI ¼ DTW −MW
DTW

× 100:

Radiographs were obtained in a digital radiographic system

(Senographe DS, GE Healthcare) at the Coimbra University Hospitals

(focal distance 50 cm, Kv 27–30 and mAseg 14–20, in compliance

with the characteristics of each bone), and measurements were

performed with Centricity DICOM Viewer 3.1.1.

Osteoporotic, or fragility, fractures (vertebrae, hip, distal radius,

and proximal humerus) were macroscopically recorded with the sup-

port of clinical and paleopathological protocols (Curate, 2011; Curate,

2014; Curate, Silva, & Cunha, 2016; Lovell, 1997; Mays, 2006a;

Müller, Nazarian, Koch, & Schatzker, 1990). Hip fractures were speci-

fied as those occurring above a 5‐cm point underneath the lesser tro-

chanter up until the apex of femoral head. Distal radius fractures were

identified as those observed at the distal and metaphyseal areas of

the radius. Proximal humerus fractures were defined as those that

occurred from the apex of the humeral head up until the surgical

neck. A semiquantitative evaluation (the method of Genant, Wu, &

Vankuijk [1993] modified by Curate et al., 2016) was applied to

vertebral compression fractures.
Descriptive statistics including group means, standard deviation

(SD) and 95% confidence intervals (95% CI) were estimated for each

variable studied. Normal distribution for quantitative variables was

evaluated through skewness and kurtosis. As such, with values of|

Ku| < 2 and|Sk| < 2, it was assumed that a violation of normality was

not an issue. Homoscedasticity was assessed with a Levene's test. A

Student's t test was employed to consider the null hypothesis that

the means of two groups were equal. Linear Pearson correlation was

used to evaluate a possible linear relationship between two quantita-

tive variables. Logistic regression (stepwise variable selection; Forward

Conditional method) was applied to evaluate the relationship between

an outcome variable (presence vs. absence of fractures) and a set of

explanatory variables (age [at death], sex, and MCI). Local polynomial

regression fitting smoothing was used to graphically summarize non-

linear empirical relationships between variables (Cleveland, 1979). A

subsample of 25 metacarpals was analysed in two consecutive days

to assess intra‐observer error. Inter‐observer error was also evaluated

in the same metacarpals. Both measurement errors were estimated

with the relative technical error of measurement (rTEM, Ulijaszek &

Kerr, 1999), and rTEM values less than 5% were considered precise.

All statistical and graphical analyses were performed with R pro-

gramming language (Chang & Wickham, 2018; R Development Core

Team, 2018) and IBM SPSS v. 20.0.
3 | RESULTS

3.1 | Metacarpal cortical bone loss

Measurement error for both cortical measurements was always less

than 5% (Table S2).

Descriptive and test statistics are summarized in Tables 1, 2, 3,

and S3. Diaphysis total width (DTW) and metacarpal cortical index

(MCI) are significantly larger in men. Medullary width (MW) is larger

in women but the differences are not statistically significant. However,

MW is significantly larger in older women (individuals with more than

60 years of age) when compared with age‐matched men (Table S3).

MW and MCI in women are linearly correlated with age at death

(Pearson's r MW*age: 0.425; p < 0.001/Pearson's r MCI*age: −0.497;

p < 0.001). Both parameters exhibit a moderate significant bivariate



TABLE 2 Mean values of MW (in mm) according to sex and age class
(CISC)

Age
class

Females Males

Mean SD 95% CI N Mean SD 95% CI N

20–29 3.45 0.96 3.01, 3.89 22 3.77 0.99 3.27, 4.27 19

30–39 3.62 0.95 3.21, 4.04 26 3.79 1.18 3.33, 4.25 28

40–49 3.09 0.91 2.69, 3.48 23 4.00 1.09 3.55, 4.45 26

50–59 3.78 0.64 3.53, 4.04 28 3.84 1.32 3.28, 4.40 25

60–69 4.36 0.87 3.88, 4.85 16 3.75 1.00 3.31, 4.20 22

70–79 4.14 0.63 3.84, 4.44 21 3.81 0.83 3.42, 4.20 21

80+ 4.67 1.06 4.14, 5.20 18 4.68 1.10 3.66, 5.70 7

Total 3.82 0.98 3.66, 3.98 154 3.87 1.09 3.69, 4.05 148

Note. CISC: Coimbra Identified Skeletal Collection; DTW: diaphysis total
width.

FIGURE 1 Local polynomial regression fitting smoothing for
metacarpal cortical index and age at death in (females, Coimbra
Identified Skeletal Collection sample)
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association with age at death (Figures 1 and 2). DTW is not correlated

with age at death (Pearson's r DTW*age: 0.002; p = 0.772). Cortical bone

net loss between the first adult (20–29 years) and the seventh (80+

years) decades is 32.6%, with an average loss of 4.6% per decade.

The pattern of net loss is irregular, with marginal variation in the first

years of adulthood. Between the fifth and sixth decades, net cortical

loss intensifies—reaching 15.6%. Periosteal apposition (using DTW as

surrogate) is negligible, whereas endocortical loss (with MW function-

ing as proxy) increases by 35.4%. Cortical bone parameters are not

associated with age at death in men (Pearson's r DTW*age: 0.043;

p = 0.605/ Pearson's r MW*age: 0.050; p = 0.554/Pearson's r MCI*age:

−0.036; p = 0.665; Figures 3 and S1).
3.2 | Fragility fractures

The prevalence of fragility fractures of any type (hip, vertebral bodies,

distal radius, and proximal humerus) in the overall sample is 14.9%

(45/302; Table 4). The prevalence is similar for men (15.5%; 23/148)

and women (14.3%; 22/154; Table S4). The overwhelming majority

of fractures among women was observed in individuals older than

50 years (95.5%; 21/22), especially after the seventh decade of life

(68.2%; 15/22). In the group of males, 69.6% (16/23) of the fractures

were observed in individuals older than 50 years, with the remaining

30.4% (7/23) recorded at younger ages. On average, men with a fragil-

ity fracture are older (M = 58.5; SD = 17.1 years) than those without

(M = 49.5 years; SD = 17.6; Student's t = −2.254; df = 146;
TABLE 3 Mean values of MCI according to sex and age class (CISC)

Age
class

Females

Mean SD 95% CI N

20–29 52.16 10.17 47.65, 56.67 2

30–39 51.06 9.69 47.15, 54.97 2

40–49 55.71 11.42 50.76, 60.65 2

50–59 47.66 8.76 44.26, 51.05 2

60–69 40.23 10.29 34.75, 45.72 1

70–79 43.05 6.03 40.30, 45.80 2

80+ 35.14 10.45 29.95, 40.34 1

Total 47.21 11.43 45.39, 49.03 15

Note. CISC: Coimbra Identified Skeletal Collection; DTW: diaphysis total width
p = 0.026), with a matching tendency—even if more evident—among

women (fractured: M = 70.7 years; SD = 13.7/nonfractured:

M = 49.6 years; SD = 19.8; Student's t = −5.056; df = 152; p < 0.001).

Women with a fragility fracture of any type tend to possess a

larger medullary width (fractured: M = 4.41; SD = 0.86/ nonfractured:

M = 3.72; SD = 0.97; Student's t = −3.110; df = 152; p = 0.002) and a

reduced metacarpal cortical index (fractured: M = 38.97; SD = 9.51/

nonfractured: M = 48.60; SD = 11.17; Student's t = 3.814; df = 152;

p < 0.001). Men with a fragility fracture exhibit a larger diaphysis

width (fractured: M = 8.41; SD = 0.74/nonfractured: M = 7.95;

SD = 0.74; Student's t = −2.700; df = 146; p = 0.008). In the logistic

regression (LR) model (overall sample,i.e., both sexes combined), only

the variable «age» (β = 0.046; Wald = 21.769; p < 0.001; odds

ratio = 1.047) exerted a significant effect on the probability of

exhibiting a fragility fracture of any type.

Vertebral compression fractures (Figure 4) are the most common

in the CISC overall sample (11.9%; 36/302), followed by distal radius

(3.6%; 11/302), hip (1.7%; 5/302), and proximal humerus fractures
Males

Mean SD 95% CI N

2 52.84 12.21 46.95, 58.73 19

6 52.66 12.71 47.73, 57.59 28

3 50.28 11.46 45.65, 54.91 26

8 53.16 13.74 47.48, 58.83 25

6 52.88 11.33 47.85, 57.91 22

1 52.66 11.17 47.57, 57.75 21

8 43.94 6.54 37.89, 50.00 7

4 52.08 11.96 50.12, 54.04 148

.



FIGURE 2 Local polynomial regression fitting smoothing for
medullary width (mm) and age at death (females, Coimbra Identified
Skeletal Collection sample)

FIGURE 3 Local polynomial regression fitting smoothing for
metacarpal cortical index and age at death (males, Coimbra Identified
Skeletal Collection sample)

TABLE 4 Prevalence of fragility fractures (hip, distal radius, proximal
humerus, and vertebrae) in the CISC sample, according to sex and age
class

Age
class

Females Males

% n N % n N

20–29 ‐ ‐ 22 ‐ ‐ 19

30–39 3.8 1 26 14.3 4 28

40–49 ‐ ‐ 23 11.5 3 26

50–59 17.9 5 28 17.4 4 25

60–69 6.2 1 16 22.7 5 22

70–79 33.3 7 21 19.0 4 21

80+ 44.4 8 18 42.9 3 7

Total 14.3 22 154 15.5 23 148

Note. N: number of individuals in each age/sex categories; n: number of
individuals with fractures; %: prevalence of fragility fractures; CISC: Coim-
bra Identified Skeletal Collection; DTW: diaphysis total width.

FIGURE 4 Vertebral compression fracture in the fourth lumbar
vertebra, grade 3, wedge (female, 58 years, MCI = 25.63, Z‐
score = −2.51) [Colour figure can be viewed at wileyonlinelibrary.com]
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(1.3%; 4/302). In the females' group, vertebral compression fractures

are also the most prevalent (10.4%; 16/154), trailed by distal radius

(4.5%; 7/154), hip (1.9%; 3/154), and proximal humerus fractures

(1.9%; 3/154). Vertebral fractures are also the more frequent in men

(13.5%; 20/148), followed by distal radius (2.7%; 4/148), hip (1.4%;

2/148), and proximal humerus fractures (0.7%; 1/148). Differences

in prevalence between sexes are not significant.
Women with vertebral compression fractures are significantly

older (M = 70.63 years; SD = 14.13) than women without this type

of fracture (M = 50.54 years; SD = 19.03; Student's t = −4.087;

df = 152; p < 0.001; Table S5). MW is larger in women with a vertebral

fracture (fractured: M = 4.48; SD = 0.92/nonfractured: M = 3.74;

SD = 0.97; Student's t = −2.924; df = 152; p = 0.004), whereas MCI

is significantly lower in women with a compression fracture of the ver-

tebral body (fractured: M = 37.95 years; SD = 10.17/nonfractured:

M = 48.30 years; SD = 11.11; Student's t = 3.555; df = 152;

p < 0.001). In the males' group, individuals with vertebral fractures

are slightly older (fractured: M = 56.25 years; SD = 16.74/

nonfractured = 50.09; SD = 17.80), but the difference is not significant

(Student's t = −1.450; df = 146; p = 0.149). DTW in men with a verte-

bral compression fracture is significantly larger (fractured: M = 8.39;

SD = 0.61/nonfractured: M = 7.96; SD = 0.76; Student's t = −2.332;

df = 146; p = 0.021). Logistic regression (overall sample) suggests that

only «age» influenced the probability of suffering a vertebral compres-

sion fracture (β = 0.037; Wald = 12.829; p < 0.001; odds

ratio = 1.037).

http://wileyonlinelibrary.com
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Descriptive statistics for fractures of the hip, distal radius, and

proximal humerus are summarized in Tables S4, S6, S7, and S8. All

distal radius fractures were observed in individuals with an age at

death exceeding 50 years, and all hip and proximal humerus fractures

(Figures 5 and 6) were recorded in individuals older than 70 years. For

these types of fracture, no statistical analysis was undertaken due to

the small sample size.
FIGURE 6 Fracture of the right proximal humerus, surgical neck,
severe angulation (X‐ray, female, 73 years, MCI = 33.74, Z‐
score = −1.54)
4 | DISCUSSION

4.1 | Metacarpal cortical bone loss

In the CISC sample, sexual differences in metacarpal cortical parame-

ters result from gendered disparities in the rate and pattern of bone

loss and also bone dimensions (Samuel, Baran, Wei, & Davis, 2009;

Seeman, 2013). On average, men have larger bones, enduring a longer

period of skeletal maturation (Doyle, Lazenby, & Pfeiffer, 2011;

Seeman, 2002, 2008). Androgen increases periosteal bone formation,

stimulating the enlargement of diaphyseal diameters (Seeman, 2002).

In women, oestrogen production increases after puberty, possibly

constraining periosteal bone formation (Seeman, 2008; Gosman,

Stout, & Larsen, 2011). Bone growth is also regulated by mechanical

loading and nutrition, among others, and the impact on bone size

might be gender‐specific (Gilsanz et al., 1997; Gosman et al., 2011;

Nieves et al., 2004). Cortical skeletal surfaces influenced by sex

hormones are very responsive to mechanical loads (Gosman et al.,

2011), especially the endocortical surface (Birkhold et al., 2016).

Men in the CISC sample were mostly manual workers, with strenuous

workloads (e.g., railroader or farmer), but women also faced a lifestyle

that encompassed demanding physical work (Cunha & Umbelino,

1995). The scarcity of animal proteins and dairy products during

growth is well‐known for the Coimbra underprivileged classes in the

early 20th century (Lopes, 1999; Pereira, 1975) and affected both

sexes—but probably more young women (Pereira, 1975).
FIGURE 5 Hip fracture, intracapsular, with cervical resorption (male,
78 years, MCI = 50.58, Z‐score = −0.19) [Colour figure can be viewed
at wileyonlinelibrary.com]
In this sample,MWandMCI are similar in both sexes during the first

decades of adult life. However, after the fifth decade (60–69 years), the

differences become obvious, with net cortical loss in women reaching

its peak between the fifth and sixth decades. Oestrogen withdrawal

around menopause increases bone remodelling, with less bone being

formed, and more resorbed at the basic multicellular units (Khosla,

2013; Seeman, 2008). Menopause age is not known for the women in

the CISC sample, but the average age of menopause in past populations

most likely varied between 45 and 50 years (Post, 1971). As such,

menopausal hormonal changes in women are probably a major cause

for the observed sexual differences in MW and MCI. In the CISC, a

radiogrammetric study in the femur yielded similar results (Curate &

Cunha, 2017). Sexual differences regarding cortical bone loss have been

expressed in studies involving both modern (e.g., Barnett & Nordin,

1960; Ginsburg, Kobyliansky,Malkin, &Rudan, 2001; Karasik, Ginsburg,

Livshits, Pavlovsky, & Kobyliansky, 2000; Virtamä & Helelä, 1969) and

archeological samples (e.g., Agarwal, Glencross, & Beauchesne, 2011;

Carlson, Armelagos, & Gerven, 1976; Cho & Stout, 2011; Dewey,

Armelagos, & Bartley, 1969; Drusini, Bredariol, Carrara, & Bonati,

2000; Glencross & Agarwal, 2011; Ives, 2007; Mays et al., 1998;

Umbelino et al., 2016). Other paleopathological studies found no differ-

ences between sexes (e.g., Beauchesne&Agarwal, 2014; Beauchesne&

Agarwal, 2017; Mays, 1996).

Age‐related changes in the cortical bone are complex but, in

general, the cortical bone becomes weaker with age—mainly due to

increased endocortical resorption and cortical porosity (Buenzil et al.,

http://wileyonlinelibrary.com


78 CURATE ET AL.
2013; Zebaze & Seeman, 2015). Cortical thinning with age is the con-

sequence of increased resorption depth, reflecting the deeper pene-

tration by bone multicellular units (Han, Palnitkar, Rao, Parfitt, &

Nelson, 1996). In this study, cortical bone changes with age are only

significant among females—namely, medullary width and cortical

index. The cortical bone is maintained during the first decades of life

(the same pattern was observed for femoral the cortical bone and

BMD at the proximal femur, see Curate & Cunha, 2017; Curate &

Tavares, 2018), and an acceleration in bone loss is observed around

the fifth decade. Metacarpal medullary cavity diameter increases

during ageing due to an imbalance between endosteal bone resorption

and formation that eventually prompts bone loss at the endocortical

envelope (Boskey & Coleman, 2010). Endosteal bone remodelling

increases considerably in perimenopausal and early postmenopausal

women and slows down in older women (Clarke, 2008). Metacarpal

cortical bone loss in women from the CISC reproduces the general

pattern of bone loss with ageing, as observed in the same collection

through other methods (Bergot et al., 2009; Curate et al., 2013;

Curate & Cunha, 2017). DTW, which functions as a proxy for perios-

teal apposition and is often viewed as a response adaptation to pre-

serve resistance to bending (Lazenby, 1990), does not increase with

age. It is noteworthy that DTW measured in the femur enlarges with

age, probably reflecting the fact that the femur is a weight‐bearing

bone, susceptible to augmented biomechanical loading (Curate &

Cunha, 2017).

Men seem to preserve the cortical bone at the second metacarpal

through the ageing process—although MCI seems to decrease in older

men (sampling bias may have hampered statistical significance

because there are only seven males in the oldest age cohort). Bone

loss usually occurs with ageing in both women and men, but age‐

related bone loss occurs much later in men (Khosla, Amin, & Orwoll,

2008). Of course, men do not experience an abrupt loss of gonadal

sex steroid secretion (Khosla, 2013). Moreover, men of the CISC were

involved in highly demanding activities (not unlike women, though)

and possibly benefited from better nutrition (Pereira, 1975). The dif-

ferential allocation of food according to age and sex, especially during

growth, can affect bone health (Cho & Stout, 2011), and although this

practice has not been directly confirmed in the CISC collection, the

few individuals that died from diseases directly associated with malnu-

trition were women (Santos, 1995). Also, a socio‐economic enquiry

conducted in the region of Coimbra in 1906 showed that food rations

for women were both quantitatively and qualitatively inferior (Pereira,

1975). In skeletal samples, the cortical bone has been shown to

decrease with age in both males and females (Beauchesne & Agarwal,

2014; Beresheim, Pfeiffer, Grynpas, & Alblas, 2018; Ives, 2007; Mays,

2015) or only in females (Mays, 1996; Umbelino et al., 2016). Other

studies at the CISC also suggest that cortical bone loss in males is neg-

ligible (Bergot et al., 2009; Curate & Cunha, 2017). However, bone

mineral density measured through DXA significantly decreased with

age in males (Curate et al., 2013).
4.2 | Fragility fractures

The aetiology of osteoporotic fractures is complex, but old age, sex,

and bone fragility are major risk factors (Johansson, Kanis, Oden,
Johnell, & McCloskey, 2009; Ström et al., 2011). In univariable statis-

tical analysis, MW and MCI in females and DTW in males were asso-

ciated with fractures. Also, the second metacarpal cortical index, sex

and age (at death) were modelled as risk factors for fracture. Logistic

regression suggested that only age influenced the probability of

exhibiting an osteoporotic fracture of any type or the probability of

displaying a vertebral compression fracture. The LR model implies that

MCI in a multivariable analysis is not a statistically significant indepen-

dent risk factor for osteoporotic fractures. These results must be

interpreted with caution as they may be, at least to a degree, a conse-

quence of the lumping of different types of osteoporotic fracture—of

course, this is not the case for vertebral compression fractures. Also,

radiogrammetry is insensitive to early bone loss, and metacarpal

radiogrammetry does not assess cortical bone mass in the typical sites

of osteoporotic fracture (Bonnick, 2010). Finally, bone mass only cor-

relates to a certain degree with the risk of fracture, and other factors,

such as bone quality or the propensity to falls, are involved (Grynpas,

2003).

Osteoporotic fractures are usually more prevalent in women

(Alvarez‐Nebreda, Jiménez, Rodríguez, & Serra, 2008; Ström et al.,

2011), resulting from differences in areal BMD, bone size, and geom-

etry (Seeman, 2008). Nonetheless, overall fracture prevalence in both

sexes from the CISC sample is very similar. Prevalence per type of

fracture shows that only vertebral fractures are more common in

men, in agreement with some epidemiological studies that indicate a

similar or higher prevalence in men (e.g., Kudlacek, Schneider, Resch,

& Freudenthaler, 2000; Kwok, Gong, & Wang, 2013). A substantial

number of vertebral fractures in men affected younger individuals,

hinting at an association with occupational hazards and not with bone

loss (Zebaze & Seeman, 2003). As previously mentioned, most of the

men in the CISC sample were engaged in physically demanding jobs,

including agricultural and industrial activities, that increased the expo-

sure to occupational hazards (Cunha & Umbelino, 1995). Interestingly,

the only young woman that suffered a vertebral fracture died due to

dystocic labour (Curate & Tavares, 2018). On rare occasions, preg-

nancy‐associated osteoporosis can cause vertebral compression frac-

tures (Krishnakumar, Kumar, & Kuzhimattam, 2016), but this woman

showed normal BMD values (Curate, 2011).

Age is an independent risk factor for fracture, reflecting the

effects of other factors related with ageing, including secondary

hyperparathyroidism, sarcopenia, motor performance deficits, cogni-

tive decline, and liability to falls (Durão, Pedrosa, Curate, & Cunha,

2018; Krege et al., 2013). Cortical bone properties are also directly

affected by age‐related changes (Boskey & Coleman, 2010). Overall

prevalence of osteoporotic fractures increases with age, with a similar

pattern for each type of fracture. Notwithstanding, a substantial

number of vertebral compression fractures in men was observed in

younger individuals and probably were not fragility fractures. In

archeological contexts, fragility fractures of any type are usually asso-

ciated with older individuals (Curate, Assis, Lopes, & Silva, 2011;

Curate, Lopes, & Cunha, 2009; Ives, Mant, de la Cova, & Brickley,

2017; Lovell, 2016; Mays, 2006b; Umbelino et al., 2016).

Both cortical thinning and trabecular bone loss influence bone fra-

gility but at some skeletal sites of interest—such as the femoral neck—

the cortical bone and its geometric and material characteristics seem



CURATE ET AL. 79
the primary determinants of bone strength (Holzer et al., 2009). Corti-

cal parameters (MCI and MW in females and DTW in males) were sig-

nificant factors in univariable analysis. Notwithstanding, in the logistic

regression model, the cortical index of the second metacarpal do not

seem to influence the risk of osteoporotic fracture (be it all types of

fractures evaluated together or just vertebral compression fractures).

Digital X‐ray radiogrammetry assesses osteoporotic fracture risk in liv-

ing populations (Bach‐Mortensen et al., 2006; Haugeberg et al., 2004),

and Mays (1996) observed an association between low metacarpal

cortical index and fractures in females from the medieval site of

Wharram Percy (UK). In other archeological samples, that possible

relation was not observed (Mays, 2000; Mays, 2006b). The occurrence

of «classical» osteoropotic fractures (e.g., vertebral compression frac-

tures and hip fractures) in the archeological record has sometimes

being interpreted as a consequence of etiological factors other than

bone mass (Antunes‐Ferreira, Prates, & Curate, 2018; Umbelino

et al., 2016). In another CISC sample, women with a densitometric

diagnosis of osteoporosis had a much higher probability of showing

an osteoporotic fracture (Curate et al., 2013).
5 | FINAL REMARKS

Metacarpal cortical bone loss patterns in a sample from a Portuguese

reference skeletal collection are complex, developing differently along

sex and age categories. Endocortical bone loss increases with age in

women, particularly in presumed peri‐ and postmenopausal women,

whereas it is unremarkable in men. There was no accretion of bone

in the outer diameter of the second metacarpal, in contrast to what

was observed in the femur. Cortical parameters of the second meta-

carpal in men remain essentially unaltered until late in life, with bone

strength preserved. The overall prevalence of fragility fractures is

apparently influenced by age, whereas metacarpal cortical index does

not seem to be an independent risk factor. This investigation presents

a few shortcomings, namely, the cross‐sectional nature of the data and

the dependence on mediolateral axis measurements only for the

evaluation of the cortical bone.
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