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Resumo

As doenças cardiovasculares (CVD) continuam a ser a maior causa de morte no mundo

e constituem um fator de risco para diabéticos para além de os diabéticos terem maior

propensão para desenvolver CVD. No entanto, apesar de as diretrizes recentes cobrirem

o risco de CVD, o efetivo controlo liṕıdico está longe de ser conseguido. Além disso, a

autogestão liṕıdica em conjunto com o gerenciamento de decisões terapêuticas, nem sempre

assume a prioridade adequada quer pelos pacientes quer pelos profissionais de saúde.

Pretendendo compreender melhor a influência dos parâmetros cĺınicos no colesterol de

lipoprotéınas de baixa densidade (LDL) de doentes diabéticos tipo 2, doentes estes cujo

gerenciamento dos valores liṕıdicos se suspeitam instáveis, recorreu-se a registos eletrónicos

de saúde (EHR) providenciados pela APDP (Associação Protetora de Diabetes Portugal)

para fazer um estudo baseado em técnicas de mineração de dados.

O banco de dados foi inicialmente analisado para compreender a integridade da base de

dados, nomeadamente no que consta a variabilidade de informação associada a cada paciente

e a identificação de valores corruptos ou incompreenśıveis. Para cada um dos parâmetros

cĺınicos com registo numérico foi estudada a sua distribuição estat́ıstica ao longo das consultas

médicas (MA) com vista á identificação do seu comportamento individual e qual a dimensão

da amostra da população que poderia ser usada para modelar o LDL. Considerou-se relevante

assumir primeiramente uma abordagem linear para modelar o LDL. Utilizaram-se as aborda-

gens mı́nimo quadrático ordinário e a sua variante passo a passo (‘stepwise’), a qual permite

ignorar os dados mais distantes da nuvem de dados. Depois, recorrendo aos mesmos conjun-

tos de dados usados nos modelos lineares testados foram testados modelos não-lineares, e as

suas performances foram comparadas com as dos modelos lineares. A EHR disponibilizada

inclúıa 32577 consultas médicas relativas a 1767 pacientes. Estas consultas foram registadas

no peŕıodo de janeiro de 2008 a fevereiro de 2018. Foram identificados como parâmetros

cĺınicos registados na base de dados com elevado número de registos numéricos, os seguintes:

hemoglobina glicada (HbA1c), colesterol LDL, colesterol de lipoprotéınas de alta densidade

(HDL), triglicéridos, gama-glutamil transferase sérica (GGT), plaquetas, microalbuminúria

(MAU), proteinúria, creatinina, e, modificação da dieta na doença renal (MDRD).

Da análise estat́ıstica efetuada verificou-se, entre outros fatores, que nem todas as consul-

tas de um paciente continham registos de parâmetros cĺınicos, e que nem todas as consultas

com registo de parâmetros cĺınicos continha o mesmo tipo de parâmetros. Tal conduziu ao

estabelecimento de uma restrição da população a utilizar nos estudos de modelação: ape-

nas seriam utilizados os dados de pacientes que tivessem pelo menos 5 consultas médicas

na década de registos nas quais houvesse registo de HbA1c. Do total de consultas médicas

verificou-se que 32% continham registo de valores de LDL e que 63% descreviam os valores de
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HbA1c. Contudo, nem todas as consultas com registo de HbA1c continham em simultâneo

registo do valor de LDL do paciente.

Baseado nas ferramentas de análise estat́ıstica do Matlab, o colesterol LDL foi modelado

por modelos lineares. Foram testados seis modelos lineares que diferiam pelo tipo de variáveis

que os compunham. Consideraram-se modelos com seis variáveis, tal que, cinco delas rep-

resentariam os parâmetros cĺınicos com maior frequência de registo na base de dados, ou

seja, colesterol total, LDL, HDL, triglicéridos e HbA1c, e a sexta variável iria sendo um dos

restantes parâmetros cĺınicos. De notar que dispúnhamos 4476 consultas médicas com registo

das primeiras cinco variáveis, o que se considerava estatisticamente confiável para modelação

do LDL. Analisando o desempenho dos modelos lineares verificou-se que o modelo linear mais

simples, envolvendo LDL e Colesterol Total, HDL, Trigliceŕıdeos, HbA1c e Proteinuria, ap-

resentava um erro quadrático médio (RMSE) de 0,054. Contudo, este modelo utilizava uma

quantidade de dados muito escassa (38 casos), motivo pelo qual foi desconsiderado. Sem este

tipo de restrição pode apontar-se o modelo linear 3, resultante da combinação dos parâmetros

LDL, Colesterol Total, HDL, Trigliceŕıdeos, HbA1c e Plaquetas, o qual apresentou um erro

quadrático de 0,07.

Foram depois testados modelos não-lineares baseados em modelação de redes neuron-

ais. Recorreu-se ao algoritmo genético multi-objetivo (MOGA) dispońıvel no laboratório

de investigação. Procedeu-se a um pré-processamento de dados eliminando os dados que

se encontravam acima de limiares estabelecidos experimentalmente. De seguida recorreu-

se à normalização dos dados, conforme requerido pelos algoritmos a utilizar. Após estes

pré-processamentos, o MOGA foi executado testando duas condições, uma sem limitações

e a segunda impondo restrições no RMSE de treino com o intuito de obter modelos mais

precisos. Considerando-se que cada execução do MOGA utilizaria estratégia semelhante

à utilizada nos modelos lineares, foram testados seis modelos não-lineares, cujas variáveis

correspondiam às cinco variáveis comuns entre os modelos lineares testados e as restantes

variáveis iriam alternando entre os restantes parâmetros cĺınicos existentes na base de dados.

De notar que nestes modelos foram considerados mais parâmetros que no caso dos modelos

lineares. Cada uma das 6 populações consideradas recorreria às variáveis correspondentes e

poderia utilizar de 2 a 25 neurónios. O algoritmo faria cinco testes de treino para encontrar o

melhor compromisso que satisfizesse os objetivos. Para cada um destes modelos dividiu-se a

população em três grupos: 60% da população foi usada para treino da rede neuronal, 20% da

população para teste do modelo e os restantes 20% da população foi usada para a validação

do modelo. As populações utilizadas em cada execução do MOGA, foram sujeitas ao algo-

ritmo passo a passo para avaliação da relevância de cada variável no desempenho do modelo,

criando dessa forma um novo modelo. O modelo MOGA com melhor desempenho na fase de
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treino (RMSE=0.034) foi o modelo 4 envolvendo os parâmetros LDL, colesterol total, HDL,

triglicéridos, HbA1c, GGT, plaquetas, MAU, creatinina, MDRD, sexo e idade. Contudo

este modelo recorreu a apenas 830 consultas médicas o que se considerou pouco relevante

estatisticamente. O modelo MOGA com menor RMSE na fase de validação foi o modelo 2,

com RMSE=0.057. Este modelo, em vez dos parâmetros GGT e plaquetas introduzia o mês

da consulta médica, sendo a população em estudo correspondente a 1410 consultas. Deve

ressaltar-se, no entanto, que o modelo linear utilizando a população identificada pelo MOGA

5 conseguiu ainda uma performance melhor apresentando um RMSE=0.054. Neste modelo,

LDL é função de colesterol total, HDL, triglicéridos, HbA1c, MAU, creatinina, MDRD, sexo

e idade:

LDL = 1+1.05(Colesterol Total) -0.314(HDL)-0.124(triglicéridos)-0.005(HbA1c)-0.009(MAU)

+ 0.003(creatinina) + 0.017(MDRD) + 0.005(sexo) + 0.009(idade)

Como trabalho futuro recomenda-se a exploração da influência da medicação e das com-

plicações no modelo do colesterol. Também é aconselhável que se mantenha um registo mais

completo dos parâmetros cĺınicos para se poder ver a evolução temporal de cada parâmetro.

Palavras-Chave: Lipoprotéına de Baixa Densidade, Diabetes, Data Mining, Modelo

Linear, Multi-Objective Genetic Algorithm
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Abstract

Cardiovascular Diseases (CVD) present the highest world health rate, constituting a risk

factor to patients with diabetes and simultaneously a consequence of dyslipidemia. Effec-

tive lipid management of patients with diabetes is still largely unattained, requiring better

perception of both patients and healthcare professionals. Aiming at better understanding

the influence of clinical parameters on Low Density Lipoprotein (LDL)-cholesterol patterns

of type 2 diabetes uncontrolled patients, the Electronic Health Records (EHR) provided

by APDP (Associação Protetora de Diabetes Portugal) have been subject to data mining

techniques.

The database content was primarily analyzed to understand data integrity and to avoid

usage of EHR’s corrupted values or misleading information. The statistical distribution of

each clinical parameter reported in the data base took place to identify their individual

behavior and to enable statistically coherent identification of the cohort to be used when

modeling LDL.

As a first approach, LDL linear modeling was considered, using both ordinary least-

squares and stepwise approaches. Then, LDL non-linear modeling was tested, using the

same populations employed on linear modeling to assess the most accurate and practical

LDL model. The provided EHR included 32577 medical appointments held by 1767 patients

between January 2008 and February 2018. More than 10 clinical features were studied,

leading to the decision of limiting the case-study population to those patients who had at least

5 Medical Appointments (MA) during the decade. From all MA’s, 32% and 63% reported

LDL and Glycated Hemoglobin (HbA1c) measurements, respectively, but some MA’s did not

report both simultaneously.

Six linear models, relating different sets of 6 clinical parameters were tested. The linear

model 3, involving LDL, Total Cholesterol, HDL, Triglyceride, HbA1c and Platelet is the

elected linear model with a Root Mean Square Error (RMSE) of 0.07. The model where

Platelets are substituted by Proteinuria presents a RMSE of just 0.054 but employed solely

38 case-studies.

Neural network-based modeling strategies were tested as an alternative to linear models.

In this sense, the Multi-Objective Genetic Algorithm (MOGA) was used. After data pre-

processing, MOGA was performed twice using different threshold values. Six models were

developed considering different combinations of clinical parameters. For each model, the

population was divided into 3 groups: 60% of the population was used to train the network,

20% to test the model and the remaining 20% to validate the model.

Using the populations employed by each MOGA run, the stepwise algorithm was used to

identify the relevance of each clinical parameter in the model and create another linear model
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using this parameter set. The MOGA model with the best training performance was Model 4,

while model 2 was the one performing best in validation with RMSE of 0.057. However, linear

model 5 created using the parameter selection identified by the MOGA presented a RMSE of

0.054 during validation when total cholesterol, HDL, triglyceride, HbA1c, microalbuminuria,

creatinine, MDRD, sex and age are used in the composition of the LDL linear model.

Therefore, we can conclude that LDL can be modeled by a linear model using 6 or 10

clinical variables with very low mean square error.

Keywords: Low Density Lipoprotein, Diabetes Mellitus, Data Mining, Linear Model,

Multi-Objective Genetic Algorithm
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1 Introduction

According to the World Health Organization (WHO) cardiovascular diseases (CVD) are the

major cause of human death. WHO also refers diabetes as one of the CVD risk factors. On the

other hand, people with diabetes have a well-established relation to increased CVD risk, both

as an independent risk factor and as a co-factor together with dyslipidemia. However, despite

that recent guidelines cover the therapeutic goals, effective lipid management of patients

with diabetes to reduce CVD risk is still largely unattainable. Furthermore, under the

burden of self-management and shared decision making, lipid management seldom assumes

the adequate priority in the perception of both patients and healthcare professionals.

The main motivation of this thesis is to understand the reasoning for the very low per-

centage of type 2 diabetes patients who, besides following medical monitoring, present low

density lipoprotein (LDL) above acceptable thresholds. A preliminary analysis of the elec-

tronic health records (EHR) available at the Portuguese Diabetes Association (APDP –

Diabetes Portugal) found that, within a sample of >5000 diabetes patients, only 12.3% had

a last known LDL-cholesterol measurement below 100 mg/dl.

Regarding this truly impressive evidence, the major goal of this thesis is to identify the

prevalence of uncontrolled LDL-cholesterol on type 2 diabetes patients within APDP’s EHR

aiming at posterior identification of lipid management clusters.

The patient’s sample is provided by APDP. It consist in a group of almost 500 people

diagnosed with diabetes mellitus type 2. Those individuals with an age greater than 18 have

at least 5 appointments for 10 followed years. During those years the patients had several

medical appointments and laboratory analysis. Some of the latter did not occur at the same

date as registered medical appointments.

So the first step on the development of this thesis is to identify the pertinent informa-

tion and values contained in the database, and to discern which medical records contain

statistically usable data to perform the proposed study.

In this sense, after describing the fundamental concepts behind this work in Chapter

2, Chapter 3 describes the statistical study developed to understand the database content

and the statistical behavior of the clinical parameters. Additionally, Chapter 3 includes the

description of different linear models tested to model LDL using different combinations of

clinical parameters.

Chapter 4 focus on the application of neural network based models to model LDL. Dif-
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ferent models were tested, results presented, and the obtained results were compared with

those obtained with linear model applied to the set of parameters identified as most relevant

by the neural network approach.

Chapter 5 presents concluding remarks about the work developed in this thesis and sug-

gests research topics to be addressed in the near future.
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2 Reviewed Concepts

2.1 Diabetes Mellitus

Diabetes Mellitus (DM) is largely explained as “a metabolic disorder of multiple set of causes

characterized by chronic hyperglycemia with disturbances of carbohydrate, fat and protein

metabolism resulting from defects in insulin secretion, insulin action, or both. The effects

of DM include long-term damage, dysfunction and failure of various organs. DM present

characteristic symptoms such as thirst, polyuria, blurring of vision, and weight loss. In its

most severe forms, ketoacidosis or a non-ketotic hyperosmolar state may develop and lead to

stupor, coma and, in absence of effective treatment, death” [3].

As described in [4] DM has severals factors which lead to its development such as: au-

toimmune destruction of the pancreatic b-cells and resistance to insulin action causing hy-

perglycemia. [4]

Subjects with diabetes mellitus can be categorized according to clinical stage as Type 1

or Type 2, although exist various different form of sub-diabetes these two are the most used.

[3]

Diabetes presents several comorbidities the most frequent being cardiovascular disease

(CVD). [5]

Dyslipidemia contributes to the increased risk of cardiovascular disease whose causes are

attributed to elevated levels of triglycerides and to low levels of high-density lipoprotein

(HDL) cholesterol.[6]

2.1.1 Type 1

Type 1 diabetes affects a small amount of people. Only 5 -10% of the population with

diabetes is Type 1. For this type of DM the patients require insulin for survival. [4]

Patients that present this form of diabetes are rarely obese, but that does not imply the

inexistence of this type of DM. [3]

This type of DM occurs more frequently in childhood and adolescence, but can occur at

any age. [4]
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2.1.2 Type 2

Type 2 is one of the most common form of diabetes and is also known as non-insulin dependent

diabetes (NIDDM).

The patients with this type of DM present disorders of the insulin action and secretion.

The reasoning of developing Type 2 DM is still a subject of clinical research [3], but it can

be said that is largely influenced by big quantity of nutrient ingestion and the person having

a sedentary life style.

Type 2 accounts for 90-95% of the population with diabetes, and most of the patients are

obese. [4]

2.1.3 Most common measurements in patients with diabetes

The most typical measurements that doctors ask for in order to diagnose or control the

patient’s disease are presented in this section.The list below represents the dyslipidemia

measurements contained in the database under study, and therefore the parameters to be

considered in this study.

Glycated Hemoglobin (HbA1c)

HbA1c is one of the most relevant parameters used in the state assessment and progression

of DM. It allows evaluating the concentration of glucose in the blood over the preecending

8-12 weeks before the measurement. [7] [8]

In Table 2.1 we have the most common reference values that are used either to diagnose

if the patients have DM, or to control those who already have the disease.

HbA1c

Diagnostic Control
4.5 to 5.6% Normal 4 to 6% Controlled

5.7 to 6.4% Prediabetes 6 to 7% Partially Controlled
>6.5% Possibly Diabetes > 7% Not Controlled

Table 2.1: Reference values for HbA1c in diagnosis and control of DM
[9]

LDL, HDL and Triglycerides in NIDDM patients

The two most important types of lipoproteins that carry cholesterol to and away from

the cell: one is low-density-lipoprotein (LDL), the other is high-density-lipoprotein (HDL).

The measurements of these types of cholesterol can be easily made through a blood test.

As we know LDL is considered the "bad" cholesterol because it contributes to the ac-

cumulation of fat in the arteries (atherosclerosis) leading to a narrowing of the arteries and

increased risk of heart attack, stroke and peripheral arterial disease.
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Also HDL is considered as the "good" cholesterol as it acts as a cleanser by taking LDL

(bad cholesterol) away from the arteries and back to the liver, where the LDL is eliminated.

A healthy HDL cholesterol level can protect against heart attacks and strokes. In the case

of HDL cholesterol, higher levels are actually better.

Triglycerides are the most common types of fat in the body as they store the excess energy

from our diet.

A high level of triglycerides combined with high LDL or low HDL cholesterol is linked

to the accumulation of fat inside the artery walls, which increases the risk of myocardial

infarction and stroke.

Patients with Type 2 diabetes are usally obese, they also have high values of tryglicerides

and low HDL. According to [10], higher values than 400mg/dL a metabolism problem may

be present. [11][12]

Table 2.2 presents the diagnostic values for the LDL, HDL and Triglycerides that we will

use during this thesis.

HDL
>60 mg/dL - High (Great)

41 a 60 mg/dL Normal
<40 mg/dL - Low (Bad)

LDL

<100 mg/dL - Optimal
101 to 130 mg/dL - Normal

131 to 160 mg/dL - Normal/High
161 to 190 mg/dL - High
>190 mg/dL - Very High

Triglyceride

<150 mg/dL - Normal
150 to 199 mg/dL - Borderline

200 to 500 mg/dl - High
>500 mg/dL -Very High

Table 2.2: Reference Diagnostic Values for HDL, LDL and Triglyceride
[13]

Serum gamma-glutamyl transferase (GGT)

Serum gamma-glutamyl transferase is an enzyme present in the liver [14] , but can also

be found in other organs according to [15] such as kidney, lung etc.

As stated in [16] GGT is used to test the hepatic inflammation of the liver, and also used

as a risk marker for CVD.

According to [16], GGT was positively correlated with triglycerides, body mass index,

LDL, age, sex and blood pressure. These parameters are to be used in our work too.

Table 2.3 presents the diagnostic values for the GGT parameter that we will use as

reference during this thesis.
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GGT
Men <45 U/L

Woman <35 U/L

Table 2.3: Reference normal values for GGT [2]

Platelets

Platelets are very tiny blood cells which help our body to stop bleeding.

Reference [17] states that a high platelet agregation can lead to development of CVD.

The normal number of platelets in the blood is 150,000 to 400,000 platelets per microliter

(mcL) or 150 to 400 Ö 109/L.

Microalbuminuria (MAU) , Proteinuria and Creatinine

MAU is an urinary secretion whose values are used to detect an early kidney disease.[18]

MAU is also used to predict CVD and some metabolic problems leading to insulin resis-

tance. [19][20]

Proteinuria is an urinary protein resultant from a collection of 24 hour urine sample. [21]

Acording to [22] Creatinine is used to assess the Glomerular Filtration Rate (GFR),

constituting a rough estimate of renal function. [23]

Table 2.4 presents the diagnostic values of microalbuminuria, proteinuria and creatinine

parameters that we will use during this thesis.

Microalbuminuria < 20 mg
Proteinuria < 150 mg/day

Creatinine
Masculine: 50 - 100 mmol/L
Feminine: 40 - 80 mmol/L

Table 2.4: Reference normal values for Microalbuminuria, Proteinuria and Creatinine
[21][24][25]

Modification of Diet in Renal Disease ( MDRD)

MDRD is a study equation used for detection of chronic kidney disease. [26]

The original equation shown in [27], was based on 6 variables: age; sex; ethnicity; and

serum levels of creatinine, urea, and albumin. Later, one equation using only age, sex,

ethnicity, and serum creatinine levels was proposed to simplify its use.

According to [26] the 6-variable and the 4-variable MDRD equations are the most accu-

rate, being those the equations now widely accepted, and used by the most clinical labora-

tories to report Glomerular Filtration Rate estimates and assess kidney function.
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2.2 Data mining

As the name suggests, Data mining is used to extract knowledge from large amounts of data.

It develops from the natural evolution of information technology, involving data collection,

data management and data analysis [28]. The same authors suggest the interpretation of Data

mining as Knowledge Discovery from Data (KDD) or just as a step in the process of knowledge

discovery. The process used for knowledge discovery is described in [28] as the folowing

consecutive steps: Data cleaning; Data integration ; Data selection; Data transformation;

Data mining; Pattern evaluation; Knowledge presentation. The first 4 steps are used for

data pre-processing.

After pre-processing the data provided for the current study, a smaller data base was

generated, containing the data selected for this particular study, this is, to identify LDL

patterns. Different mining techniques exist. Since, as far as known, at the clinical environ-

ment LDL cholesterol is linearily modeled, the first attempt to analyse LDL behaviour was

to apply linear modeling (section 2.3). Then a non-linear approach is considered, making use

of artificial neural networks (section 2.4). Further studies towards knowledge discovery from

the data base under study are required, as mentioned in chapter 5.

2.3 Linear Modeling

Linear regression is understood within the statistical field as a technique for estimating the

expected value of a variable y, given the values of some other variables x. Linear regression

is called "linear" because the output variable is represented as a linear function of input

variables, whose weight parameters determine different linear models.

In this thesis the output variable is LDL. The simpler and understandable linear model

makes use of ordinary least squares method. However, ordinary least squares modeling may

produce model estimates with large variance, therefore a tradeoff between higher estimate

accuracy and giving up use of some variables in the model becomes clarifying in terms of the

population under study [29]. In this sense, the stepwise function is also considered.

2.3.1 Ordinary least squares

Ordinary least squares (OLS) is a type of linear least squares method for estimating the

unknown parameters in a linear regression model. OLS chooses the parameters of a linear

function of a set of explanatory variables by the principle of least squares: minimizing the

sum of the squares of the differences between the observed dependent variable (values of the

variable being predicted) in the given dataset and those predicted by the linear function. [30]

In this thesis we use the function “fitlm”provided by MATLAB to create the initial linear
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models.

The functions “fitlm” according to the documentation of MATLAB has more than one

form of being used. The two most used forms of the function in this thesis are:

“mdl = fitlm(X,y) returns a linear regression model of the responses y, fit to the data

matrix X.”

“mdl = fitlm( ,modelspec) defines the model specification using any of the input argument

combinations in the previous syntaxes”.[31]

For the “modelspec” we used a robust fitting with the weight function OLS.

The output of the function is presented as a graphical window where the Model is shown,

and an output table with the next information:

� Formula of the linear model with the respective weights: y=1 + X1 + X2 + X3 + ..,

where y represents the output value of the parameter to be estimated, and X1, X2, X3,

etc. represent the variables introduced in the model.

� For each variable we obtain the next information from the table:

“Estimate — Coefficient estimates for each corresponding term in the model.

SE — Standard error of the coefficients.

tStat — t-statistic for each coefficient to test the null hypothesis that the corresponding co-

efficient is zero against the alternative that it is different from zero, given the other predictors

in the model. Note that tStat = Estimate/SE. .

pValue — p-value for the t-statistic of the hypothesis test that the corresponding coefficient

is equal to zero or not.”[32]

� A small summary statistic of the model:

“Number of observations — Number of rows without any NaN values.

Error degrees of freedom — n – p, where n is the number of observations, and p is the

number of coefficients in the model, including the intercept.

Root mean squared error — Square root of the mean squared error, which estimates the

standard deviation of the error distribution.

R-squared and Adjusted R-squared — Coefficient of determination and adjusted coefficient

of determination, respectively.
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F-statistic vs. constant model — Test statistic for the F-test on the regression model,

which tests whether the model fits significantly better than a degenerate model consisting of

only a constant term.

p-value — p-value for the F-test on the model.” [32]

And finally, in the same graphical window a Figure is shown with the fitted model,

presenting the adjusted data withing the Fit: y=d*X. and a linear 95% confidence bound.

2.3.2 Stepwise Function

The stepwise approach enables considering in the LDL model only the variables that most

contribute for the model [29].

The Matlab function stepwise opens a window that show us the Coefficient of each param-

eters, t-stat and p-value. There are also presented the values of RMSE, R-squared, Adjusted

R-Squared F-statistic and p-value of every previous model. This way we can choose the best

set of inputs and see how the parameters interact with each other.

2.4 Artificial Neural Networks

Artificial Neural Networks (ANN) are especially used to perform non-linear mapping

between an input space and an output space in order to obtain relationships between them

or to detect templates within the input data. [1]

ANN were originally developed as an attempt to mimic human brain behavior. ANN also

provides the ability to design algorithms that are applicable to many different domains by

just setting some parameters based on the corresponding context. These algorithms can be

used for statistical analysis and data modeling in several areas, such as medical diagnosis,

financial market forecasting, energy consumption.[33]

2.4.1 Radial basis functions neural networks

Radial basis functions neural network (RBFNN) is a feed forward network used for pattern

finding. It has the advantages of fast learning and a very high accuracy. [33]

A RBFNN is composed by three layers, as it can be seen in Figure 2.1 .[34]
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Figure 2.1: Radial basis function neural network structure.
[34]

First layer is a set of inputs connecting the network with its surroundings. The second,

is a hidden layer where non-linear transformation of the input space is performed. The

third layer unite the outputs of the second layer in order to obtain the overall output of the

network. [34]

The hidden layer is formed by a set of neurons used for processing the information. Each

neuron is expressed by a radial function defined in [34] such as:

ϕi (x) = γ(| ci − x |) (1)

where g represents a transformation (usually non-linear), ci ∈ Rd (where d is the number

of network inputs) is the function center and x ∈ Rd is the point where the function is

evaluated. To note that Rd represents the real space with dimension equal to the number of

network inputs (d). “ [34]:

The mostly applied radial function is the Gaussian function :

ϕi (x) = e
− ‖ci−x‖

2

2σ2
i (2)

where σi is the function spread. [34]

2.4.2 Learning Algorithms

Learning algorithms are classified by the type of learning mechanism they use or by the

time interval between updating each parameter. In terms of the type of learning mechanism

the algorithms can be classified as supervised, unsupervised, a combination of supervised and

unsupervised, and, as reinforcement type of learning.
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As a further classification we can say that learning algorithms can be categorized based

on time that the parameters are updated:

� Offline: parameter update occurs after seeing all the data sample;

� Online: parameters update happens as each new data sample arrives. [33]

2.4.2.1 Supervised learning Supervised learning can be explained as a type of learning

where the network is provided with a correct answer (output) for every data sample that it

is fed to the algorithm. [33][35]

2.4.2.2 Back propagation technique Back propagation technique is a learning algo-

rithm which looks for the minimum value of the error function, therefore improving the

accuracy of predictions.

2.4.3 Genetic Algorithm

As explained in [33] the Genetic Algorithm (GA), introduced by John Holland and his

students, is an algorithm created to find the best solution from a search space, through an

imitation of the natural process of evolution. The two main principles on which the algorithm

is based are:

“1- competition or survival of the fittest ;

2- child’s inheritance of the parents genetic make-up.” [33]

The GA creates an initial population acting as potential solutions. The population devel-

ops gradually over a number of generations, where each solution is evaluated and a measure

of fitness is attributed. Only the best fitted ones are employed on the next generation, pur-

suing till the combination of input parameter settings solve the optimization problem. More

details about the algorithm may be found in PhD thesis “Intelligent Support System for Cva

Diagnosis By Cerebral Computerized Tomography” [33].

2.4.4 Multi-Objective Genetic Algorithm (MOGA)

MOGA [1] is an algorithm available at the laboratory where this work was developed

that apply a blend between GA and state-of-the-art derivative based training algorithms to

design neural network. [36]

Each solution is treated as a chromosome composed by a number of neurons and a vector

for selecting features. This way the GA searches the best features. For the parameter
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estimation the algorithm uses a modified Levenberg-Marquardt (LM) algorithm in order to

exploit the linear-nonlinear separability of the network parameters.[37].

The network training is a nonlinear problem, so for each potential solution is trained a

number of times. As a form of terminating the training early-stopping is normally used.[36]

The MOGA cycle (Figure 2.2) consists of three actions: problem definition, solutions

generation and analysis of results.

Figure 2.2: MOGA execution cycle [1]

Our data is supplied to MOGA in three different sets: for parameter estimation, early-

stopping termination and for validation. We obtain them by using the ApproxHull algorithm.

The validation set is used for evaluation of the performance and for selection of the final

model. [36]
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3 Statistical study of the database

In this section we start studying the database (DB) to identify the pertinent information and

values contained in the database, and to discern which medical records contain statistically

usable data to perform the proposed study. Then we test the clinical parameters to identify

their correspondent statistical distribution, and how the parameters relate among them.

As previously mentioned it will be used a private clinical database provided by APDP.

This database includes data from 32577 medical appointments held since January 2008 till

February 2018, corresponding to 1767 patients. Although expected a monthly based update

of clinical records, it is known that patients’ appointments have a larger periodicity. It is also

suspected that not all appointment records will provide values for all the medical parameters

included in the database. A previous research on APDP database [38] reported that some

fields of the data records were unfulfilled. In this sense, a primary analysis of the current

database status and the integrity of the values and information is required to avoid usage of

corrupted values or misleading information during present study.

3.1 Analysis of database content

The database consists of a total of 1767 patients, where 786 are female and 981 are male.

Both present an average age of 60 years old on 2018. Women average height is 157cm while

males present and average height of 170cm. The total number of medical appointments in

the database is 32577 being held between January 2008 and February 2018.

Figure 3.1: Distribution of Patients regarding sex
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Among this population, in average, we can observe that both male and female present

the same age of diabetes diagnose, the age of 43, they both joined the APDP at the age of

52 and their last medical appointment was performed at the age of 58. However, observing

Figure 3.2, one can observe that the age of the majority of the patients in these classes is

different: we observe that 114 women have 61 years old, while 87 men have 66 years old,

and the distribution of number of patients per age varies as male or female is considered, as

expected by the results obtained on other studies.

(a) (b)

Figure 3.2: Number of female (a) and male (b) patients per patient’s age

The database includes, for each patients medical appointment several fields to be fulfilled

by the clinician. Besides the patient’s identification, age, dates of medical appointments,

one should mention the clinical parameters of interest for this study as the columns la-

bels provided in the database: Colesterol Total (total cholesterol), LDL, HDL, Triglicéridos

(triglycerides), HbA1c, GGT, Plaquetas (platelets), Microalbuminuria, Proteinuria, Crea-

tinina, MDRD, MDRD Estadio Peso (weight) , IMC (body mass index), TA systolic, TA

diastolic, plus other fields were the proposed medication and complementary exams are ful-

filled.

As a start, we considered the first 11 parameters above listed, and we analyzed the

distribution of the total number of medical appointments for each patient during the 10

years period. From Figure 3.3 and Table 3.1 we observe that the most frequent occurrence is

patients with 8 medical appointments (MA). Once we previously established as a patient’s

inclusive criteria that he/she should have at least 5 MA whose HbA1c was stored in the

database, Table 3.1 results guarantee the accomplishment of the inclusive criteria established.
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Figure 3.3: Distribution of total number of medical appointments for each patient during 10
years

MA 1 2 3 4 5 6 7 8 9 10 11 12 13

Patients 0 8 29 43 101 100 103 144 123 135 124 121 126

MA 14 15 16 17 18 19 20 21 22 23 24 25 26

Patients 96 103 97 70 59 49 46 22 19 12 12 4 5

MA 27 28 29 30 31 32 33 34 35 36 37

Patients 2 4 0 2 1 4 2 0 0 0 1

Table 3.1: Table values for Histogram in Figure 3.3

From these patients we need to choose the ones that have the most quantity of data

available. In Figure 3.4(complemented by Table 3.2), we see that there is a big amount of

MA, more precisely 6768 MA’s, where only three parameters were fulfilled. Nevertheless,

nearly 11% of the MA’s have eleven parameters fulfilled.

Figure 3.4: Distribution of number of fulfilled clinical parameter per MA
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Number of MA 1 2 3 4 5 6 7 8 9 10 11 12
Quantity Of Data 553 181 6768 1655 1552 852 1310 1776 2324 1605 2288 6

% 2.65 0.867 32.429 7.93 7.437 4.082 6.277 8.51 11.136 7.69 10.963 0.029

Table 3.2: Table values for Histogram in Figure 3.4

As we can see in Table 3.2, almost 43.8 ≈ 44% of the Medical Appointments have less

than 5 parameters fulfilled. Only a really small population of the MA have all the clinical

parameter values present, 6 (six) MA or 0.029%.

Concentrating on this subset of the database (Table 3.2), we have to know which param-

eters are the ones that are more frequently fulfilled. In order to do that we have to see for

each of the selected parameter the respective histogram.

Referring to Figure 3.4, this histogram shows us promising values, but there is a need

of analyzing the number of patients and for which of them, the database present at least 5

(five) medical appointments with the highest number of parameters.

Figure 3.5: Total Cholesterol

As we can see in Figure 3.5 and from the Table 3.3 there are a lot of patients with five MA

where Total Cholesterol is present, but we also have a significant amount of patients where the

Total Cholesterol value is not present, or, that do not satisfy the five medical appointments

limit. This subset corresponds to 828 patients, roughly 47% of the total population.
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Figure 3.6: HDL

Looking at the Figure 3.6 we see the histogram of MA where HDL is present, unfortunately

we observe that most of the patients have 4, 3 or 2 Medical Appointments. A total of 845

patients or 48% of the population is below the minimum proposed value of MA.

Figure 3.7: LDL

In Figure 3.7, the MA with LDL recordings, we see a more evenly distributed quantity of

MA. Now we only have 750 patients or 42% below the threshold, it’s a small improvement,

but we also observe that a lot of patients present a number of MA between 5 and 10 which

is very good for our research.
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Figure 3.8: GGT

For the histogram of GGT (Figure 3.8) we observe a very high density of the population

under the 5 (five) MA, more precisely 1396 patients have a number of MA under the imposed

limit. Only 21% patients are above the threshold, which is a very bad result.

Figure 3.9: HbA1c

The HbA1c parameter is the most present parameter in our population. We have a very

low number of patients under the threshold, only 84 as it can be seen in the Figure 3.9 and

calculated from Table3.3. With only 4% of the population below the limit of 5 MA with

HbA1c values registered we can consider that this parameter is one of the most important

as it is the one that is the most measured.

18



Figure 3.10: Triglyceride

For Triglyceride measurements, Figure 3.10 show a good amount of patients with less

than five MA, 806 or 46%. We can see that most of them have 3 (three) MA with Triglyc-

eride measurements. For our threshold we have a good amount of patients that present the

parameter in at least 5 (five) observations.

Figure 3.11: Proteinuria

Looking at Figure 3.11 we can see that Proteinuria is the parameter least registered. Very

few patients have registered values and even less have over the established limit of five MA.

Almost all of the population don’t have this parameter present in their MA.

We think that one of the reasons behind this small amount of data is given by the fact

that this clinical parameter is difficult to obtain with precision.
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Figure 3.12: Platelets

The MA including Platelets values are also a small amount of data according to Fig-

ure 3.12, 1207 patients are below our limitation,which corresponds to almost 68% of total

population.

Figure 3.13: Creatinine

In Figure 3.13 we see that the majority of the patients have less than 5 (five) appointments,

but the good thing is that we have a good amount of patients that have over 5 MA with

registered values.
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Figure 3.14: Microalbuminuria

In what concerns Microalbuminuria, Figure 3.14 shows a high amount of patients that

have this clinical parameter present in their MA , and the majority of the patients also have

at least 5 (five) MA. Therefore Microalbuminuria is worthwhile being included in our study.

Figure 3.15: MDRD

Figure 3.16: MDRD Estádio
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Figure 3.15 and Figure 3.16 present the MDRD and MDRD-Estadio registration pro-

file. Those parameters have a very good presence in our database. These two features are

calculated the same way, MDRD-Estadio being just another annotation for MDRD.

MA
Patients

ColT HDL LDL Trig HbA1C GGT Crea Micro Plaq Prot MDRD MDRD E

0 14 12 12 12 2 38 130 27 25 1551 9 9
1 169 171 156 169 0 549 486 170 449 111 25 25
2 204 217 188 193 10 362 409 214 302 35 47 47
3 212 217 202 217 29 254 237 214 236 15 56 56
4 229 228 192 215 43 193 175 214 195 11 119 119
5 191 181 171 194 102 124 104 189 144 12 122 122
6 161 168 168 150 105 90 76 140 121 4 107 107
7 148 143 140 136 103 69 42 130 99 4 145 145
8 104 105 131 117 142 32 31 129 70 6 142 142
9 81 78 107 81 130 23 10 93 46 2 128 128
10 80 81 82 82 131 16 15 66 27 7 117 117
11 54 47 59 56 125 6 9 55 14 2 123 123
12 34 40 42 49 120 4 11 44 9 2 118 118
13 25 23 37 33 130 5 9 30 7 1 96 96
14 23 19 31 19 95 0 9 18 7 1 94 94
15 13 14 15 12 106 2 4 15 4 0 87 87
16 11 8 11 13 100 4 7 6 1 60 60
17 3 7 9 7 67 2 5 0 0 42 42
18 4 3 8 3 55 1 3 4 1 35 35
19 2 2 3 2 47 1 1 1 1 35 35
20 0 0 0 2 44 1 0 0 18 18
21 1 1 2 2 21 1 3 1 13 13
22 1 1 0 0 16 7 7
23 2 1 1 1 17 4 4
24 0 1 7 5 5
25 0 0 3 2 2
26 0 0 6 3 3
27 0 0 1 2 2
28 1 1 4 0 0
29 0 1 1
30 4 2 2
31 1 3 3
32 1

Table 3.3: Histogram values of the parameters registered for 1767 patients

As we can see in Table 3.3, we have a number of patients where the MA=0, which means
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they do not have any registered value for that clinical parameter. We see that Protinuria

(Prot) is the clinical parameter where the most patients do not have a value.

3.2 Analysis of clinical parameters statistical behavior

We are now interested in analyzing the temporal evolution of the clinical parameters. Since

this would be a fastidious task due to the high number of patients, we are analyzing only

some randomly chosen patients.

3.2.1 Analyzing medical appointment’s distribution

After a close look at our database we extracted the MA that present obligatory the HbA1c

parameter, and the results we obtained are as follows:

� Total MA under consideration: 20588

� Average interval between MA’s: 6

� Mean value of MA held per patient: 12

(a) (b)

Figure 3.17: (a) number of medical appointments per patient (b) Average time elapsed
between consecutive MA for each patient. All patients considered had HbA1c registrations

When plotting the histogram of the average number of medical appointments per patient

(Figure 3.17a) the highest column corresponds to the number of patients which had MA with

HbA1c registered. In Figure 3.17b, where the average time elapsed between consecutive MA

for each patient is represented, we see that, in general, patients have 5 and 6 months between

every MA where the HbA1c parameter is present.
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3.2.2 HbA1c evolution according to time elapse between medical appointments

Considering only the MA’s reported in the database which present values on the column

of HbA1c parameter we obtain a matrix of every value of HbA1c of every patient, and we

randomly choose 10 of them. Through the temporal evolution of HbA1c values we can see if

the patients reacts to treatment by lowering his HbA1c value below the threshold established

for diabetic patients, this is, below 7.

Figure 3.18 describe the temporal evolution of HbA1c.

(a)

(b)

(c)
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(d)

(e)

Figure 3.18: Temporal evolution of HbA1c for 10 patients (randomly selected) in months

As we can see in Figure 3.18a we have two different patients, patient number 68625 has

all of the values above the limit 7. The second patient, ID=55462, has a good control over

the parameter, staying a good amount of time below the threshold.

In Figure 3.18b, 3.18c and 3.18d some patients reach the threshold but none of them

can maintain it below the limit, which indicates that they may not follow as they should the

recommended treatment. Figure 3.18e shows two individuals where one reaches the threshold

and stays under the limit, and the other struggles to reach it.

To have a better understanding as how the patients develop along time, we must also see

the time interval between every MA, and observe the difference (positive or negative) of the

“actual” parameter regarding the “past” one, this is the previously registered HbA1c value.

Figure 3.19 the number of months between January 2008 and the first MA where HbA1c

has been registered located at the y-axis label. The rest of the x-axis values represent the

time elapse between consecutive MA’s. The y-axis expresses the HBA1c difference from the

initially obtained value (presented in the y-axis label). The blue and red circles indicate if

the clinical parameter is below or above the the admissible HBA1c value, respectively.
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(a)

(b)

(c)

(d)
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(e)

Figure 3.19: Difference between HbA1c values of consecutive MA’s for 10 patients (referred
in Figure 3.18)

In Figure 3.19a we have two patients, on the left side we can see that patient 68625 has

some fluctuations especially after the fourth MA where we see a big decrease of almost 4%

in the value. On the right we have a patient with a lot more MA, presenting fluctuations of

the HbA1c values and the majority of them are in the blue zone, indicating that therapy is

improving his health status.

The left patient presented in Figure 3.19b starts with big fluctuations and presenting

values over the limit, but managing to reduce the margins and finally reaching the threshold.

The patient 53898 has a small try at reducing the value of HbA1c, but doesn’t succeed,

keeping all of his measurements above the limit.

Figure 3.19c, 3.19d and 3.19e show HbA1c values of patients with difficulties in reducing

their values to the limit or below, only one of them managing to reduce it and to keep it

under the limit (Figure 3.19e left).

From all these Figures we can conclude that the small sample of patients have at least

five values for the parameter HbA1c. Some of them manage to reduce between every MA.

Also one can see that the majority of the patients succeed to get at least once a value below

the threshold (HbA1c=7).

3.2.3 Analyzing HbA1c values through MA’s evolution

Our database presents a quantity of 3836 MA with HbA1c below threshold.

The next histogram, Figure 3.20, presents the number of patients whose HbA1c mea-

surement reached the limit of value 7 or below this limit according to the months taken to

achieve so, considering the beginning of treatment at APDP as the beginning. As may be

seen many patients started the MA at APDP with values under the limit, explaining the

histogram column height at 0 on the x-axis.
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Figure 3.20: Number of patients whose HbA1c measurement reached the limit of value 7 or
below according to the months taken to achieve so, considering the beginning of treatment
at APDP as the temporal beginning

One can also see that the individuals that obtain a reduction of their HbA1c values do

it in the first months of their treatment. There are also many patients that reduce HbA1c

values just after several months of treatment , but it can be considered that some of these late

MA’s achievements (more to the left of the graphic) may be due to patients who had already

reached the desired levels before. We saw in previous Figures that the patients presented

fluctuations in HbA1c values, and if they reach the goal in one MA not necessarily maintain

the value under the limits on the following MA’s.

If we now analyze the same population but considering only males and only females

(Figure 3.21 left and right respectively) we see that both gender patients present more MA

above limit than below limit. Also we have a big population with only one value below the

limit, for both sexes.

Figure 3.21: Quantity of MA every patient have below HbA1c threshold (7) by sex

There are several patients in both sexes that manage to reduce after just one MA, as

show in Figure 3.22 ( Left-Male, Right- Female).
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Figure 3.22: Patients who managed to reduce HbA1c below the threshold after number of #
MA

As we can see there is a tendency in both histograms: along x-axis the values of y reduce

in relation to the last value. We identify some cases where that does not happen, and tried

to see if there is any relation with the season of the year.

We chose the patients that reduced their HbA1c values 9 times (of the both sexes),

because there is a good amount of individuals in this situation, and Figure 3.23 and Figure

3.24 represents all the HbA1c values they had at the MA’s for females and males respectively.

Figure 3.23: Female patients with 9 MA where HbA1c is below the limit along time
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Figure 3.24: Male patients with 9 MA where HbA1c is below the limit along time

We conclude that, for both sexes, the periods of the year such as Christmas or other

festive period, do not influence the raise in HbA1c. Therefore we may conclude that seasons

where typically people eat more does not influence the diabetes evolution.

3.2.4 Analyzing LDL values through MA’s evolution

In this part we will consider only the MA presenting LDL values. We obtain a matrix of

every value of LDL of every patient, and we randomly choose 10 patients to observe their

LDL evolution along the sequence of MA. In this case we consider that a patient is improving

his/her health condition if his/her LDL values are below 100 mg/dL.

(a)
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(b)

(c)

(d)
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(e)

Figure 3.25: Temporal evolution of LDL for 10 patients (randomly selected) in months

As we can see in the Figure 3.25 all patients have fluctuations in their LDL values. What

we can see from those patients is that most of them reduce the values below the optimal

value of 100 mg/dL, but they don’t manage to keep LDL under the limit, confirming the

need for deeper studies on LDL patterns.

We also have one patient ID: 71513 who only has two values for LDL and both are above

the limit, with only these values we cannot conclude anything for this patient therefore he

will be excluded from the study. Patient ID: 54777 has all the values below the proposed

threshold, which is a strong indicator that the parameter is under control.

The database includes a total of 10468 MA where the parameter LDL is registered. In

average, the time elapse between Medical Appointments of these patients is 7.9 months.

3.2.5 Joint analysis of HbA1c and LDL values registration through MA’s

In this case we want to see how these two parameters interact which each other, and how

they limit the amount of patients in regard to the MA provided in the database. We first

analyze the histogram of each parameter in Figure 3.26a and 3.26b, and then we consider

the patients who have registration of both parameters at the same MA.
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(a) (b)

Figure 3.26: Histogram of quantity of patients who have (a) LDL values (b) HbA1c values
registered at a MA record

Figure 3.27: The number of patients who have on their MA values of LDL and HbA1c
simultaneously registered

As we can see in Figure 3.26 the “dominant” parameter is LDL, since the quantity of

patients with more than 5 (five) MA’s is dramatically reduced if we consider the histogram

(Figure 3.26b) related to HbA1c registrations. In fact, comparing, Figure 3.26a and 3.27, we

see that they are similarly shaped.

3.3 Linear Modeling

In this section we present the results obtained with the MATLAB function fitlm, described

in section 2.3. Those models are initially applied to all of the data just to give us an idea of

how the parameters interfere with each other. The next linear models are established with

fewer entries in order to see how each one of the features influence the expected results.

The aim of this research step is to find how we can prevent dyslipidemia by better con-

trolling all the proteins associated with it. As explained in Section 2, controlling LDL is

expected to lower CVD related problems, so we decided to create models where the output is
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the low density lipoprotein (LDL) and we considered it as a function of other linearly related

clinical parameters. Doing this we hope to see how LDL is influenced by the parameters and

in which amount relative to each other.

After having analyzed the database content and performing the statistical studies previ-

ously reported, we selected as sample population all patients who have at least five medical

appointments where the reported clinical parameters are: Total Cholesterol, LDL, HDL,

Triglyceride and HbA1c. Under these constraints we obtain a database with 4476 MA,

which, in statistical terms is very good.

Every tested model assumes LDL as the output variable.

A pre-selection of data, to remove the values that are too far away from a rational range

was performed. After removing the outliers, the parameter values to be considered in this

study were all normalized between -1 and 1, by considering the maximum value reached by

each parameter.

1st Best Fit 2nd Best Fit 3rd Best Fit

ID ’logistic’ ’normal’ ’generalized extreme value’
Mês ’generalized pareto’ ’generalized extreme value’ ’normal’
ColT ’generalized extreme value’ ’normal’ ’tlocationscale’
LDL ’generalized extreme value’ ’normal’ ’tlocationscale’
HDL ’generalized extreme value’ ’logistic’ ’tlocationscale’
Trig ’generalized extreme value’ ’tlocationscale’ ’logistic’

HbA1c ’generalized extreme value’ ’normal’ ’tlocationscale’
GGT ’tlocationscale’ ’generalized pareto’ ’logistic’
Plaq ’generalized extreme value’ ’tlocationscale’ ’normal’
micro ’generalized pareto’ ’generalized extreme value’ ’tlocationscale’
Prot ’generalized pareto’ ’generalized extreme value’ ’logistic’
Crea ’generalized extreme value’ ’normal’ ’generalized pareto’

MDRD ’extreme value’ ’generalized extreme value’ ’normal’
MDRD est ’tlocationscale’ ’generalized pareto’ ’logistic’

Sex ’extreme value’ ’normal’ ’tlocationscale’
Age ’extreme value’ ’generalized extreme value’ ’logistic’

Height ’generalized extreme value’ ’normal’ ’extreme value’
Weight ’extreme value’ ’normal’ ’tlocationscale’
BMI ’extreme value’ ’generalized pareto’ ’normal’

TA sys ’extreme value’ ’logistic’ ’normal’
TA dia ’extreme value’ ’logistic’ ’normal’

Table 3.4: Best fitted distribution for every parameter

By using the algorithm ’allfitdist.m’, a Matlab function created by Michael Sheppard

from MIT Lincoln Laboratory we managed to determine, for each clinical parameter, what
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fitting distribution would better fit the 1st best fitting model (1st column, in Table 3.4) or

the 2nd and 3rd best fitting distributions (2nd and 3rd columns in Table 3.4).

From Table 3.4 we can see that normal distributions appear frequently and for almost all

parameters, although the distributions tails differ giving rise to differently named distribution.

Following this stage, some linear models were created by using functions as fitlm available

in Matlab.

3.3.1 Linear Model 1: Total Cholesterol, LDL, HDL, Triglyceride and HbA1c

As a primarily attempt we decided to determine the best fitted model when the most fre-

quently registered parameters are considered, this is, Total Cholesterol, LDL, HDL, Triglyc-

eride and HbA1c. The correspondence of these clinical parameters with the Matlab descrip-

tion is the: Var1 - Total Cholesterol, Var2 - LDL, Var3 - HDL, Var4 - Triglyceride and Var5

- HbA1c. .

Figure 3.28: Linear Modelusing Total Cholesterol (Var1 ), LDL (Var2), HDL (Var3), Triglyc-
eride (Var4), and HbA1c (Var5)

As we can see in Fig 3.28 the model presents a suitable distribution. As our data is

already normalized, between -1 and 1, we can see that the RMSE value (0.0736) is very

small denoting that the model has a good potential. An additional conclusion is that all

these clinical variables influence the obtained LDL values since the resulting linear equation

presented in Fig 3.28 involves all clinical parameters, with privilege among them given by

the order Total Cholesterol (Var1), HDL (Var3), Triglyceride (Var4) and HbA1c (Var5) as

described by the respective coefficients.

In terms of the correspondent data contained in the database we see that 4477 MA are

included in the analysis.

As so, we may conclude that this model shows a good LDL prediction.
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3.3.2 Linear Model 2 ( Model 1 parameters + GGT)

In this model we tested the situation of adding up the clinical parameter GGT. The Matlab

numbering of these parameters is the same as in the previous model and Var6 corresponds

to GGT.

Figure 3.29: Linear Model using Total Cholesterol (Var1 ), LDL (Var2), HDL (Var3),
Triglyceride (Var4), HbA1c (Var5) and GGT (Var6)

As we can see from Figure 3.29 the number of medical appointments diminished dras-

tically, now the model just uses 2457 MA’s, which is almost half from our previous model

(Linear Model 1). In terms of database data such a short number of MA’s limits our expec-

tation of obtaining good fitting results, and it might implicate that we no longer guarantee

the insertion criterion of this study of having at least five MA per patient. If this situation

happens we are disabled of obtaining the temporal evolution of the parameters.

Analyzing the RMSE results we can see that the obtained value is smaller than the one

obtained with model 1 (0.07), indicating that, besides the restriction above mentioned, this

model can possibly be used as a good LDL predictor. In terms of the variables’ influence on

the model, we see that Var5 keeps its low impact on the model, as well as Var6, although

Var6 has almost four times higher influence than the Var5. The other variables weight the

whole model with coefficients almost 100 times greater than Var5 and Var6.

3.3.3 Linear Model 3 (Model 1 parameters + Platelet)

Now we considered the 5 clinical parameters used on model 2 and instead of using GGT the

platelet parameter was considered. As previously, the Matlab’s assigned variables are follows:

Var1 - Total Cholesterol, Var2 - LDL, Var3 - HDL, Var4 - Triglyceride, Var5 - HbA1c and

Var6 - Platelet
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Figure 3.30: Linear Model using Total Cholesterol (Var1 ), LDL (Var2), HDL (Var3), Triglyc-
eride (Var4), HbA1c (Var5) and Platelet (Var6)

Figure 3.30 represents the results obtained for this model. The number of Medical ap-

pointments involved is similar to those involved in model 2, leading to the same conclusion

about the volume and type of data to create the model. The RMSE value was also kept

on lower values, which again is a good indicator. In terms of variable influences, the Var6

(platelet) coefficient is higher than in the last model. Therefore we may say that platelet is

more influent on the linear modelling of LDL, being more influent (at least ten times) than

HbA1c.

3.3.4 Linear Model 4 (Model 1 parameters + Microalbuminuria)

In this model the effect of Microalbuminuria (MAU) in model 1’s parameters will be tested.

Matlab maintained the same labeling of the first 5 variables and attributed Var6 to Microal-

buminuria.

Figure 3.31: Linear Model using Total Cholesterol (Var1 ), LDL (Var2), HDL (Var3), Triglyc-
eride (Var4), HbA1c (Var5) and Microalbuminuria (Var6)

From Figure 3.31 one may conclude that MAU has a very small influence on the LDL

values. The number of medical appointments is higher than in the previous model and, again,

the value of RMSE shows promising results for this model.
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Regarding the weights of HbA1c and MAU on the whole model we may conclude that

these two parameters have very few influence on the model. This conclusion is supported by

Linear Model 1’s results since when on both models we can see that HbA1c has not a strong

supported by the results obtained on Linear Model 1, since on both models we see that both

HBA1c and MAU present weak influence on the model.

3.3.5 Linear Model 5 (Model 1 parameters + Proteinuria)

Just like in model 4, this model is obtained by adding Proteinuria to the set of 5 initial

parameters, and again, Matlab numbered this sixth variable as Var6.

Figure 3.32: Linear Model using Total Cholesterol (Var1 ), LDL (Var2), HDL (Var3), Triglyc-
eride (Var4), HbA1c (Var5) and Proteinuira (Var6)

The variable we added now, as we can see in the Figure 3.32, cannot be used to model

LDL as a linear model because it is a feature with very little presence in the database, this

is, with only 38 observations.

Looking at the results obtained, the values of RMSE and the weight of Proteinuria in the

model is considerable comparing to the influence of HbA1c on model 2 (for instance). But

the available number of studying-cases to be considered would have no statistical reliability.

3.3.6 Linear Model 6 (Model 1 parameters + Creatinine)

In this last model tested, the five parameters of model 1 are now combined with Creatinine.

Matlab assigned Var6 to Creatinine
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Figure 3.33: Linear Model using Total Cholesterol (Var1 ), LDL (Var2), HDL (Var3), Triglyc-
eride (Var4), HbA1c (Var5) and Creatinine (Var6)

The results of this model are presented in Figure 3.33 demonstrating that parameters

HbA1c (Var5) and Creatinine (Var6) do not have major influence in the LDL linear model.

The model presents a very good RMSE value (0.0541), but what really matters is the influence

of the features, and in this respect we conclude that the Creatinine do not change significantly

the expected results of predicted LDL values.

3.3.7 Performance summary

Linear Models RMSE R2

Model 1 0.074 0.945
Model 2 0.071 0.950
Model 3 0.070 0.950
Model 4 0.072 0.948
Model 5 0.054 0.970
Model 6 0.071 0.949

Table 3.5: Comparative Results of the Linear Models

To conclude, Table 3.5 enables a comparison of the six models’ performance. RMSE indicates

how the predicted data are around our linear model, while the R2 coefficient is a statistical

measurement of how well the regression predictions approximate the real data points.

The minimum RMSE (0,054) and the maximum R2 (0,970) is obtained on model 5, this is

to say, the best linear modeling of LDL should consider Total Cholesterol, HDL, Triglyceride,

HbA1c and Proteinuria. But, since only 38 observations were considered, this model has to

be discarded. So, Model 3, presenting an RMSE of 0.07 and the maximum R2 of 0.950

should be the linear model to consider. This model considers Total Cholesterol, LDL, HDL,

Triglyceride, HbA1c and Platelet. Within 2539 observations, the model gives more than 10
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times more relevance to Platelets than to HbA1c, both of them presenting much less influence

on the model than the other clinical parameters.

Next chapter describes the tests implemented to model LDL with non-linear models,

provided by a Multi-Objective Genetic Algorithm.
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4 Multi-Objective Genetic Algorithm (MOGA)

Multi-objective formulations tend to present more realistic models for many complex opti-

mization problems. Quite often, in real-life problems such as this particular case-study where

clinical data is under analysis, the objectives under consideration conflict with each other.

So, when optimizing a particular solution with respect to a single objective (as was the case

of the linear models described in chapter 3) we may obtain unacceptable results with respect

to the other objectives. A reasonable solution to a multi-objective problem is to investigate

a set of solutions, each of which satisfies the objectives at an acceptable level without being

dominated by any other solution.

In this chapter the experiments made to model LDL using the model proposed by the

Multi-Objective Genetic Algorithm (MOGA) are described.

Making use of a Matlab interactive tool, the so called Stepwise algorithm, a complemen-

tary study was developed to understand at what extend each clinical parameter influences

the LDL modeling. In this context, the training matrix of each MOGA model tested was

therefore analyzed through the Stepwise algorithm. Results obtained are reported and com-

ments on their comparison are included. Results are also compared with the results obtained

with the linear models obtained when using the same populations identified by MOGA.

Using the same strategy as described in Chapter 3, particularly section 3.3, we decided

to use most of the clinical parameters available in the database, except for those database

fields concerned with complications and medication, due to the type of data of their content.

Care is also taken to avoid creating models based on statistically irrelevant populations

and those patients who had less than 5 MAs during the 10 years period under analysis.

As a first processing stage, the population outliers are excluded and then we proceed to

a data normalization, using the same strategy as when creating linear models (Chapter 3).

To remove the outliers we assumed ID>0 and month >0, and used the following re-

strictions, indicating for each variable the maximum values that can be considered within a

normal range (and not an error):

Total Cholesterol<300;

LDL<250;

HDL<100;

Triglycerides <600;

HbA1c<13;
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GGT<200;

Platelet<450;

Microalbuminuria<500;

Proteinuria<500;

Creatinine<500;

MDRD<500;

MDRD Estadio<500;

Sex<500;

Age<500;

Height<500;

Weight <500;

Body Mass Index<500;

TA Sistólica<500;

TA Diastólica<500.

We assumed this maximum limitations to remove the most unreal values each parameter

has. The 500 limit for some parameter are just to make sure that we don’t have values that

are unreal.

After scaling the values, the population was divided into three sets, such that 60% of the

data is used for training the models, 20% for testing the models and the last 20% was used

to validate the model.

Researching the performance of different models, several MOGA runs with different for-

mulations were performed. To ease the description we will enumerate every test run as

MOGA #, giving rise to the below sections.

Each case-study will use a number between 2 and 25 neurons and the input terms will

vary according to the model. The algorithm will do five training tests for each candidate

using the best compromise trial to compute the desired objectives. For the execution part

we will use a number of 50 generations each with a population size of 100.

For each modeling case, MOGA was run twice. The first time without any restriction

and the second time imposing a restriction on the value of RMSE for the training set aiming

at obtaining better models. The RMSE maximum allowed value was imposed according to

the particular model in study.

To select the restriction goals we used a Matlab script named “analisa arx v3” provided

by Prof. Doutor António Ruano. This script used the obtained non-dominated solutions

from MOGA whose Euclidean norm of the vector of linear weights (w) are below or equal to

a user-specifed threshold (EN).

In all experiments LDL was considered to be the feature to be predicted. LDL was
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considered as output variable and the other input variables varied according to the specific

experiment.

4.1 MOGA 1

In this experiment we modeled LDL as a function of 9 variables. For simplicity they will be

numbered as follows: Var0 -LDL, Var1 - Total Cholesterol, Var2 - HDL, Var3 - Triglyceride,

Var4 - HbA1c, Var5 - GGT, Var6 - Platelets,Var7 - MAU, Var8 - Creatinine, Var9 - Month

of MA.

With all of these features only 830 MA from the database could be used, which is a very

small population. The population was divided in three sets as follows, where the training set

included 60% of the whole population:

� Training - 498 Observations

� Testing - 166 Observations

� Validation - 166 Observations.

After obtaining the matrices we introduced them in the MOGA software using the parameters

of the algorithm as explained before.

4.1.1 Results

The given results comes to reinforce what we saw in section 3.4 using some of the features

alone with the first five, and as we can see in the Figure 4.1 Var4 - HbA1c, Var5 - GGT,

Var6 - Platelets presents the least presence in the obtained models.

Figure 4.1: MOGA 1 - Histograms of number of models using each variable
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Features 1stRun Thres:1000 2ndRun Thres:1000 2ndRun Thres:10
Var1 10 49 11

Var2 10 49 11
Var3 10 49 11
Var4 5 32 5
Var5 9 35 7
Var6 5 28 3
Var7 7 35 7
Var8 6 30 8
Var9 10 49 11

Table 4.1: MOGA 1 - Table with values referent to Figure 4.1

For the second run the selected RMSE training goal was: 0.037852.

We analyzed the second run with two EN thresholds in order to find the best model but

also to see how the presence of the features evolves. Looking to both histograms their pattern

is similar.

model 1819

y(k)=f(v1(k),v2(k),v3(k),v4(k),v5(k),v7(k),v8(k),)
RMSE Training scaled 0.048
RMSE Testing scaled 0.065

RMSE Validation scaled 0.064

Table 4.2: MOGA 1 - Preferred Model

The model we selected was chosen by looking at the list we obtained using the lowest

threshold and we chose the one that had the smallest RMSE training and validation values.

In the Table 4.2 we have the values obtained by the model and we can also see that this

model uses as parameters Var1, Var2, Var3, Var4, Var5, Var7 and Var8.

(a)
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(b)

Figure 4.2: Predicted values (red) and Original Data (blue) of Model 1819 during Testing
(a) and Validation (b) procedures

Figure 4.2 shows us how the model predicted the data versus the original values using

the testing and validation observations. We can see the predicted data colored in red and

the original values in blue, also if we look closely at both graphics presented in Figure 4.2

we see that the predicted data follows the original really close with some minor deviations.

The results are pretty good besides the limitation of using a low number of observations.

4.1.2 Linear Models

In this sub-section we are going to use the same data used in section 4.1.1 and see how a

linear model will behave and what result we obtain. Due to different software used Var1 to

Var10 is to simplify the usage of available algorithms and will be assigned as follow : Var1

-LDL, Var2 - Total Cholesterol, Var3 - HDL, Var4 - Triglyceride, Var5 - HbA1c, Var6 - GGT,

Var7 - Platelets,Var8 - MAU, Var9 - Creatinine, Var10 - Month of MA. In section 3, these

clinical parameters were also numbered for facility of representation.
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Figure 4.3: Linear model using MOGA 1 Training matrix

From Figure 4.3 we see the values of the weights attributed to each feature. The results

confirm the weak contribution of Var6 and var7 (GGT and Platelets respectively) on the

model just like MOGA-1 did, as represented in Figure 4.1. The selected MOGA-1 model,

model 1819 (Table 4.2) presented a RMSE during training of 0.048, this is, less than the

linear model hereby presented where RMSE = 0.0562.

(a)
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(b)

Figure 4.4: Predicted values (red) and Original Data (blue) of the Linear Model using
Testing (a) and Validation (b) matrices provided by MOGA

Comparing Figure 4.4 with Figure 4.2 we can see that the result from MOGA are fol-

lowing better the expected values, by visual inspection. Which is confirmed by the RMSE

correspondent values.

4.1.3 Stepwise

We use this interactive function to see how the linear models behaves by adding or removing

features from the model. Labels of the parameters: X1 - Total Cholesterol, X2 - HDL, X3 -

Triglyceride, X4 - HbA1c, X5 - GGT, X6 - Platelets,X7 - MAU, X8 - Creatinine, X9 - Month

of MA are now employed.

To test the values with the stepwise function we used the Training matrix obtained and

used in previously models.

Figure 4.5: Stepwise panel obtained when MOGA-1 training matrix is used

As we can see in Figure 4.5 we conclude that GGT and Platelet should be discarded,
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as they are not statistically significant, since the algorithm did not included the variables

signaled with red in the model once they would increase the model’s RMSE.

4.2 MOGA 2

From section 4.1 we saw that some features could be discarded. This way we decided to

eliminate GGT and Platelet. In section 3.4 we also saw that those two factors did have a

low influence in the linear models.

In this section labels are as follows: Var0 -LDL, Var1 - Total Cholesterol, Var2 - HDL,

Var3 - Triglyceride, Var4 - HbA1c, Var5 - MAU, Var6 - Creatinine, Var7 - Month of MA,

Var8 - Sex, Var9 - Age.

With all these features we obtained a total of 1410 MA, which is still a low value for a

statistical population but better than the last one. As in section 4.1, the observation was

divided in three matrices as follows:

� Training - 846 Observations

� Testing - 282 Observations

� Validation - 282 Observations.

4.2.1 Results

Again the first run had no restrictions while, for the second run the selected RMSE training

goal was: 0.042774.

Figure 4.6: MOGA 2 - Histograms of number of models using each variable
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Features 1stRun Thres:100 2ndRun Thres:10 2ndRun Thres:100
Var1 8 11 37

Var2 8 11 37
Var3 8 10 36
Var4 4 9 27
Var5 5 7 23
Var6 1 6 18
Var7 8 10 35
Var8 3 6 24
Var9 7 7 23

Table 4.3: MOGA 2 - Table with values referent to Figure 4.6

In terms of quantity of models where our clinical parameters are present we see that Cre-

atinine (Var6) does not appear in many models, being the one that has the least occurrences.

MAU (Var5) and age (Var8) also have little number of appearances so we can consider them

as features with little impact on LDL as shown in Figure 4.6.

Model 599

y(k)=f( v1(k),v2(k),v3(k),v4(k),v5(k),v6(k),v7(k),v8(k),)
RMSE Training scaled 0.044
RMSE Testing scaled 0.052

RMSE Validation scaled 0.057

Table 4.4: MOGA 2 - Preferred Model

Looking at the chosen model in the Table 4.4 we can see that it considers almost all the

variables but not the age. As stated before age is a factor that has little presence. The

selection of model 599 (Table 4.4) was somehow random, as we looked at various model

within the least chosen threshold and selected the one that seemed to have the smallest

RMSE values.
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(a)

(b)

Figure 4.7: Predicted values (red) and Original Data (blue) of Model 599 during Testing (a)
and Validation (b) procedures

Figure 4.7, shows how the model behaves during testing and validation stages, and we

easily see that the predicted curves follow the original values (in blue) very close.

4.2.2 Linear Model

As we did before, MOGA-2 training, testing and validation matrices were used to build a

linear model. Again, the linear model features were renamed as follows: Var1 - LDL, Var2

- Total Cholesterol, Var3 - HDL, Var4 - Triglyceride, Var5 - HbA1c, Var6 - MAU, Var7 -

Creatinine, Var8 - Month of MA, Var9 - Sex, Var10 - Age.
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Figure 4.8: Linear model using the MOGA-2 Training matrix

The linear regression model we obtained is shown in Figure 4.8. According to the esti-

mated values (left column of table) one can observe that Var5 - HbA1c and Var9 -Sex, have

the lowest contribution to the model.

(a)

(b)

Figure 4.9: Predicted values (red) and Original Data (blue) of the Linear Model using the
MOGA 2 Testing (a) and Validation(b) matrices
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Figure 4.9 show the predicted values (in red) using the linear model follow the original

values, both for testing and for validation, presenting similar behavior, with similar RMSE

values, these being similar to the RMSE value obtained with MOGA 2 model 599, as may

be seen by comparison with 4.7.

4.2.3 Stepwise

Labeling the clinical parameters as: X1 - Total Cholesterol, X2 - HDL, X3 - Triglyceride, X4

- HbA1c, X5 - MAU- , X6 - Creatinine,X7 - Month of MA, X8 - Sex, X9 - Age, and applying

the Stepwise algorithm to the training matrix correspondent to MOGA-2 model,Figure 4.10,

demonstrates that variable X4, this is HbA1c, presents a very weak contribution to the model,

being recommended its exclusion from the model.

Figure 4.10: Stepwise panel obtained when MOGA 2 training matrix is employed

4.3 MOGA 3

After the results we obtained in the previous two models we considered that the variable

month of the MAs should not be used as a MOGA feature. In fact, the month of the MA was

referenced to the first month of 2008 corresponding to the time the patient joined APDP,

but that did not correspond to the beginning of the disease. Also, we were testing the whole

data available at the database, therefore we could not guarantee that all patients had more

than 5 MA.

Labels of the features used in this model are: Var0 -LDL, Var1 - Total Cholesterol, Var2

- HDL, Var3 - Triglyceride, Var4 - HbA1c, Var5 - GGT, Var6 - Platelet, Var7 -MAU, Var8 -

Creatinine.

With all this features we obtained a total of 830 MA, which is very low number since it

was divided in three matrices as follows:
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� Training - 498 Observations

� Testing - 166 Observations

� Validation - 166 Observations.

4.3.1 Results

Our result continue similar to the other models, Var5 - GGT and Var6 - Platelet mantain

their low influence in the model. Now we can see that Var4 - HbA1c improved its influence

and the other parameters keep their levels of occurrence.

Figure 4.11: MOGA 3 - Histograms of number of models using each variable

Features 1stRun Thres:100 2ndRun Thres:10
Var1 9 5

Var2 9 5
Var3 9 5
Var4 8 5
Var5 6 3
Var6 5 2
Var7 8 5
Var8 5 4

Table 4.5: MOGA 3 - Table with values referent to Figure 4.11
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Model 31

y(k)=f( v1(k),v2(k),v3(k),v6(k),)
RMSE Training scaled 0.053
RMSE Testing scaled 0.068

RMSE Validation scaled 0.064

Table 4.6: MOGA 3 - Preferred Model

For the second run the selected RMSE training goal was: 0.048448.

As for the model we chosen we see that it has less features present and the value of RMSE

for each matrix of data tests are low indicating a good model. Figure 4.12 also show us that

the prediction of the model is within the range of the expected values.

(a)

(b)

Figure 4.12: Predicted values (red) and Original Data (blue) of Model 31 during Testing (a)
and Validation (b) procedures
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4.3.2 Linear Model

For the linear model to compare we use the following labels: Var1 -LDL, Var2 - Total

Cholesterol, Var3 - HDL, Var4 - Triglyceride, Var5 - HbA1c, Var6 - GGT, Var7 - Platelet,

Var8 - MAU, Var9 - Creatinine.

Figure 4.13: MOGA 3 - Linear model using Training matrix used for MOGA

From the Figure 4.13 we see that the lowest influence on the model is presented by Var6

- GGT.

(a)
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(b)

Figure 4.14: Predicted values (red) and Original Data (blue) of the Linear Model using the
MOGA 3 Testing(a) and Validation(b) matrices

The model presents a very good RMSE value and good predictive results as seen in Figure

4.14.

Comparing MOGA 3 and the linear model we see that they obtain equivalent results,

having both similar values of RMSE and good prediction values.

4.3.3 Stepwise

Once more the weight of each variable on the linear model is assessed using Stepwise algo-

rithm. The correspondent labels of features are: X1 - Total Cholesterol, X2 - HDL, X3 -

Triglyceride, X4 - HbA1c, X5 - GGT, X6 - Platelet, X7 - MAU, X8 - Creatinine.

Figure 4.15: Stepwise panel obtained when MOGA 3 training matrix is employed

From Figure 4.15 we see that the function recommends discarding more variables than we

previously did. We can see that it does not take into consideration HbA1c, GGT, Platelet

and Creatinine. But looking at the values of RMSE and R squared, we observe that they are
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worse than in the MOGA 3 model, which can indicate us that our linear model could have

better results.

Figure 4.16: Stepwise panel obtained when MOGA 3 training matrix is employed with man-
ually selecting the parameters used

In Figure 4.16 we see that manually adding some of the parameters discarded in the first

run (4.15) lead to a slighter better RMSE value and R squared.

4.4 MOGA 4

As in the previous models we used only the features we considered most important due to

their relevance on the identification and management of diseases, we now decided to introduce

some additional features originated from the type of patient such as age, sex and one more

clinical calculation the MDRD.

Features and correspondent labels are as follows: Var0 -LDL, Var1 - Total Cholesterol,

Var2 - HDL, Var3 - Triglyceride, Var4 - HbA1c, Var5 - GGT, Var6 - Platelets,Var7 - MAU,

Var8 - Creatinine, Var9 - MDRD, Var10 - Sex, Var11 - Age.

With all this features we just obtained a total of 830 MA divided in three matrices as

follows:

� Training - 498 Observations

� Testing - 166 Observations

� Validation - 166 Observations.

4.4.1 Results

From Figure 4.17 we observe that now sex in the second run improved it’s presence, Var5 -

GGT still maintains its low occurrence in the models as it did previously. Although with the
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threshold we used we obtained a low number of models we can still conclude that GGT has a

very low influence on LDL, not only based on this models but also taking into consideration

the results we previously obtained.

Figure 4.17: MOGA 4 -Histograms of number of models using each variable

Features 1stRun Thres:1000 2ndRun Thres:1000
Var1 6 10

Var2 6 10
Var3 6 10
Var4 5 10
Var5 5 5
Var6 6 7
Var7 6 9
Var8 5 6
Var9 5 7
Var10 3 9
Var11 4 7

Table 4.7: MOGA 4 - Table with values referent to Figure 4.17

Model 2144

y(k)=f( v1(k),v2(k),v3(k),v4(k),v5(k),v6(k),)
RMSE Training scaled 0.034
RMSE Testing scaled 0.084

RMSE Validation scaled 0.133

Table 4.8: MOGA 4 - Preferred Model

For the second run the selected RMSE training goal was: 0.040444.

The model we selected has the first 6 variables used, we chose it based on the RMSE

training values and as we can see the results using Testing and Validation got worse than

previous MOGA models.
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(a)

(b)

Figure 4.18: Predicted values (red) and Original Data (blue) of Model 2144 during Testing
(a) and Validation (b) procedures

4.4.2 Linear Model

The labels we used in this linear model are as follows: Var1 -LDL, Var2 - Total Cholesterol,

Var3 - HDL, Var4 - Triglyceride, Var5 - HbA1c, Var6 - GGT, Var7 - Platelets,Var8 - MAU,

Var9 - Creatinine, Var10 - MDRD, Var11 - Sex, Var12 - Age
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Figure 4.19: Linear model using the MOGA 4Training matrix

Taking a closer look at Figure 4.19 we can see that this model presents very low values for

Var6, Var11 and Var12 indicating that those features will have little impact in the prediction

of our expected values.

(a)
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(b)

Figure 4.20: Predicted values (red) and Original Data (blue) of the Linear Model using the
MOGA 4 Testing (a) and Validation (b) matrices

Figure 4.20 shows the result the model offers for testing and validation sets, and we can

see small discrepancies in the predicted values (in red) and the original data (in blue) in red.

Comparing MOGA 4 and this linear model we see that both models are consistent in

discarding the same variables.

4.4.3 Stepwise

To interpret 4.21 and 4.22, the following labels should be considered: X1 - Total Cholesterol,

X2 - HDL, X3 - Triglyceride, X4 - HbA1c, X5 - GGT, X6 - Platelets, X7 - MAU, X8 -

Creatinine, X9 - MDRD, X10 - Sex, X11 - Age.

Figure 4.21: Stepwise panel obtained when MOGA 4 training matrix is employed

As observed in Figure 4.21 the function omits a few variables from the model, but after

we add the parameters we consider relevant and only omit GGT, Sex and Age, we obtain a

better model with lower RMSE and R-Square value a little higher as can be seen in Figure

4.22.
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Figure 4.22: Stepwise panel with added features

4.5 MOGA 5

As we saw before GGT and Platelet have shown little influence on the models, so we did

a new model without them and keeping MDRD, sex and age. Labels of the features are:

Var0 -LDL, Var1 - Total Cholesterol, Var2 - HDL, Var3 - Triglyceride, Var4 - HbA1c, Var5

- MAU, Var6 - Creatinine, Var7 - MDRD, Var8 - Sex, Var9 - Age.

With all these features we obtained a total of 1409 MA divided in three matrices:

� Training - 845 Observations

� Testing - 281 Observations

� Validation - 283 Observations.

4.5.1 Results

From Figure 4.23 we see that the obtained results are somehow already the expected ones,

Var5 - MAU and Var6 - Creatinine are showing the same behavior as in the previous models.

In the second run of MOGA we see that Var6 diminished more than Var5 that keeps its level

at four models, but in the second run we have less models within the threshold so we can say

that the influence augmented a little.
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Figure 4.23: MOGA 5 -Histograms of number of models using each variable

Features 1stRun Thres:10000 2ndRun Thres:100
Var1 9 7

Var2 9 7
Var3 9 7
Var4 9 6
Var5 4 4
Var6 5 3
Var7 9 7
Var8 8 5
Var9 9 6

Table 4.9: MOGA 5 - Table with values referent to Figure 4.23

Model 48

y(k)=f( v1(k),v2(k),v3(k),v4(k),v5(k),v6(k),v7(k),v8(k),)
RMSE Training scaled 0.046
RMSE Testing scaled 0.066

RMSE Validation scaled 0.074

Table 4.10: MOGA 5 - Preferred Model

For the second run the selected RMSE training goal was: 0.047118.

The chosen model has its results presented in Table 4.10. The prediction over testing

and validation assume good results. This model uses almost all the features presented in the

database and the evolution of the RMSE value using testing and validation matrices is good,

showing us that the model respects the expected values.
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(a)

(b)

Figure 4.24: Predicted values (red) and Original Data (blue) of Model 48 during Testing (a)
and Validation (b) procedures

In Figure 4.24 we see that the predicted values during testing and validation follow closely

the original ones, giving us a good example that the model has a good fitting.

4.5.2 Linear Model

For this linear model we use the next labels: Var1 -LDL, Var2 - Total Cholesterol, Var3 -

HDL, Var4 - Triglyceride, Var5 - HbA1c, Var6 - MAU, Var7 - Creatinine, Var8 - MDRD,

Var9 - Sex, Var10 - Age.
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Figure 4.25: Linear model using the MOGA 5 Training matrix

Figure 4.25 shows us the weight of each parameter in obtaining the values of LDL using

this model. We observe that Var5, Var6, Var7, Var9 and var10 have little impact in the

model compared with the other ones.

(a)

(b)

Figure 4.26: Predicted values (red) and Original Data (blue) of the Linear Model using
MOGA 5 Testing (a) and Validation (b) matrices
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Figure 4.26 shows us how the linear model predicts the values of LDL and we can see

that it behaves well. As we can see the blue line which refers to the prediction values follows

closely the original line in red.

Comparing the two models we see that both predict values of LDL really well. In terms

of features we see that both consider the same variables(HbA1c, MAU, Creatinine, Sex and

Age) having small influence on the models.

4.5.3 Stepwise

The correspondent labels for Stepwise algorithm are: X1 - Total Cholesterol, X2 - HDL, X3

- Triglyceride, X4 - HbA1c, X5 - MAU, X6 - Creatinine, X7 - MDRD, X8 - Sex, X9 - Age.

Figure 4.27: Stepwise panel obtained when MOGA 5 training matrix is employed

Figure 4.28: MOGA 5 - Stepwise panel with added features

From Figure 4.27 and Figure 4.28 we can see that at first the tool excludes several variables

but after we included some others (X5 - MAU and X9 - Age) the model presents better results.

After the inclusion we conclude that X4- HbA1c and X6 - Creatinine influence the least our

predictions.
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4.6 MOGA 6

As a last model we wanted to see how LDL is influenced if we added the body mass index

(BMI) in the features. BMI have a very close relationship with diabetes as is related to

the weight of the patient, and as we know, the higher the weight implies higher BMI and

simultaneously higher risk of DM.

Labels of the variables as follows: Var0 -LDL, Var1 - Total Cholesterol, Var2 - HDL, Var3

- Triglyceride, Var4 - HbA1c, Var5 - MAU, Var6 - Creatinine, Var7 - MDRD, Var8 - Sex,

Var9 - Age, Var10 - BMI.

With all these features we obtained a total of 1113 MA. The total of the observations was

divided in three matrices as follows:

� Training - 667 Observations

� Testing - 222 Observations

� Validation - 224 Observations.

4.6.1 Results

From Figure 4.29 we can see that almost all of the features have a good influence. The only

ones that are less influent are Var5, Var6 and Var8 ( MAU, Creatinine and Sex, respectively).

Figure 4.29: MOGA 6 - Histograms of number of models using each variable
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Features 1stRun Thres:1000 2ndRun Thres:100
Var1 12 17

Var2 12 17
Var3 12 17
Var4 11 14
Var5 7 10
Var6 6 8
Var7 10 14
Var8 5 10
Var9 10 16
var10 8 12

Table 4.11: MOGA 6 - Table with values referent to Figure 4.29

Model 2441

y(k)=f( v1(k),v2(k),v3(k),v4(k),v8(k),v9(k),)
RMSE Training scaled 0.042
RMSE Testing scaled 0.079

RMSE Validation scaled 0.099

Table 4.12: MOGA 6 - Preferred Model

For the second run the selected RMSE training goal was: 0.045184.

The model obtained (shown in Table 4.12) uses the most influential features as shown

before and the RMSE values are very good.

(a)
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(b)

Figure 4.30: Predicted values (red) and Original Data (blue) of Model 2441 during Testing
(a) and Validation (b) procedures

In Figure 4.30 we see the results of the model in testing and validation environment. The

model behaves well as the curves follows each other closely, indicating very good levels of

trust.

4.6.2 Linear Model

The labels used for the correspondent linear model are: Var1 -LDL, Var2 - Total Cholesterol,

Var3 - HDL, Var4 - Triglyceride, Var5 - HbA1c, Var6 - MAU, Var7 - Creatinine, Var8 -

MDRD, Var9 - Sex, Var10 - Age, Var11 - BMI.

Figure 4.31: MOGA 6 - Linear model using Training matrix used for MOGA

As we see in the Figure 4.31 the linear model follows the same tendency as MOGA
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6 showing good influence for almost all parameters, were almost all of them maintain the

expected levels. The least influent factor is Var9 - Sex which should have a little more impact,

but as we saw in the previous models it keeps influence low.

(a)

(b)

Figure 4.32: Predicted values (red) and Original Data (blue) of the Linear Model using the
MOGA 6 Testing (a) and Validation (b) matrices

From Figure 4.32 we see that the model obtain relatively close values to the expected ones

indicating very good behavior. The RMSE values for Training and Validation stay similar

to the other models. .

4.6.3 Stepwise

Relabeling the variables as follows : X1 - Total Cholesterol, X2 - HDL, X3 - Triglyceride, X4

- HbA1c, X5 - MAU, X6 - Creatinine, X7 - MDRD, X8 - Sex, X9 - Age, X10 - BMI.
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Figure 4.33: Stepwise panel obtained when MOGA 6 training matrix is employed

The first obtained results using Stepwise are presented in Figure 4.33, where we see that

there are a few variables excluded. After a few testing we managed to obtain a better result in

terms of RMSE and R-square improving them as shown in Figure 4.34. The resultant model

excludes X8 - Sex and X10-BMI as they do not improve the models performance values due

to their small influence.

Figure 4.34: Stepwise panels with added features
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4.7 Conclusions

Model Type of Error MOGA 1 MOGA 2 MOGA 3 MOGA 4 MOGA 5 MOGA 6

MOGA
RMSE Training 0.048 0.044 0.053 0.034 0.046 0.042
RMSE Testing 0.065 0.052 0.068 0.084 0.066 0.079

RMSE Validation 0.064 0.057 0.064 0.133 0.074 0.099

Linear
RMSE Training 0.056 0.053 0.058 0.058 0.057 0.056
RMSE Testing 0.059 0.054 0.061 0.059 0.059 0.059

RMSE Validation 0.058 0.058 0.061 0.061 0.054 0.059
Stepwise RMSE Training 0.056 0.053 0.058 0.058 0.0574 0.056

Table 4.13: Comparison of each RMSE values achieved by each model

As Table 4.13 shows we have some similar values for each model we trained. The best model

using MOGA algorithm comparing the RMSE Validation values is obtained by MOGA 2.

The best model using linear regression we obtained as the best model MOGA 5.

If we look at the Table 4.13 we see that the value of these two models are not very similar

using the various approaches we have chosen (MOGA, linear regression or Stepwise). MOGA

5 only presents very good result in the linear regression, while MOGA 2 has the best values

in MOGA and Stepwise. But, knowing that the linear regression model is much faster that

an algorithm such as MOGA, we have to chose as the best MOGA 5.
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5 Conclusions, remarks and future work

We did several models using the data at our disposable and we obtained satisfactory results,

considering that we can conclude which of the parameters have the smallest and higher

influence in the variations of LDL.

After the study of the different models we used we could say that the least influencing

parameters on the LDL could be GGT and Platelet. Controlling these parameters will show

little result in the objective of lowering the LDL values.

On the other side Total Cholesterol, HDL, Triglycerides, HbA1c, MDRD and BMI have

promising results, each one of them show good presence and influence in the models, leading

us to believe that if we can control them and keep them between the reference values we can

achieve a lowering in the fluctuations of LDL leading us to a better control.

MAU and Creatinine showed us that they can have a little impact in the models and can

have a role in the objective in controlling LDL.

Using all the models created we can say that one model that could interpret the relation

of the LDL values with the other features should include obligatorially Total Cholesterol,

HDL, Triglycerides, HbA1c, MDRD. As a second option we can include sex, age and BMI in

order to introduce more information correspondent to the patients.

All these results are complemented by the stepwise results, as we saw from the tests for

each linear model. In general, all the created models revealed the same features as being the

lowest influencer factors.

Better controlling the parameters we choose as the ones with the greatest influence can

lead to better control of the DM and the its subjacent comorbidities, in particular CVD.

Sadly we could not use medication and previous complication of the patients as input

features for our models, given the small amount of observations we obtained from the database

with the majority of features present. This fact leaded us to not manage to get a time line

for the individuals so we could not tell how the medication would influence the control of

LDL because we didn’t have the next medical appointment present to see the evolution.

In subsection 3.3 the different RMSE and R-square values obtained, using the Linear

Models presented, are shown in Table 3.5. From this Table we can easily conclude that the

best model is Model 5 with an RMSE of 0.054 and an R-square of 0.97. Using this model

the equation that better predicts LDL values is:

LDL = 1+0.989(TotalCholesterol)−0.301(HDL)−0.121(Triglyceride)−0.067(HbA1c)−
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0.012(Proteinuria)

But as previously said this model can’t be used as there are so little observations, the

next best model is Model 3 with an RMSE of 0.070 and an R-square of 0.950. The equation

of the models is as follows:

LDL = 1+0.991(TotalCholesterol)−0.302(HDL)−0.116(Triglyceride)−0.005(HbA1c)−
0.037(Platelet)

The results obtained with the selected population using the MOGA algorithm are pre-

sented in Table 4.13.

In order to compare all of the used methods firstly we have to compare RMSE Training.

Looking at the Table 4.13 we see that for the Linear Models and Stepwise the best RMSE

value (0.053) is obtained in MOGA 2. On the other side MOGA obtained the best RMSE

value (0.034) using the population from MOGA 5. Comparing the three values we see that

MOGA obtained far better results.

As we know in order to select the better model we have to compare the RMSE Validation

values. This values were obtained only using MOGA and Linear Models. Table 4.13 shows

us that using MOGA the best results for RMSE Validation (0.057) were obtained using

population from MOGA 2. For the Linear Model the RMSE Validation (0.054) is the lowest

using MOGA 5 and is better that the one obtained with the MOGA algorithm.

Using the best model to predict the LDL values we have the next formula:

LDL = 1+1.05(TotalCholesterol)−0.314(HDL)−0.124(Triglyceride)−0.005(HbA1c)−
0.009(MAU) + 0.003(Creatinine) + 0.017(MDRD) + 0.005(Sex) + 0.009(Age)

From the Table 4.13 we see that the obtained values of each model are very similar

between them leading us to conclude that the results obtained using linear models and

prediction show us better results or similar results to the ones from the MOGA. As we know

the neural network models take more time to be created and the linear ones are faster to

obtain, and in our case as the result are similar we should think of using the linear ones.

One of the facts that lead to those results may be due to the small quantity of data we

withdraw from the database provided. We could not increase the data selection as we initially

hoped. As we previously showed, some of the values can be estimated using others and we

thought that we could obtain some of them, but after we took a closer look we saw that when

the factor to be estimated was missing also some of the elements needed for prediction also

failed to be present.

As a future work I would suggest to keep a better track of the records introduced in the

database, introducing all the values of the clinical parameters so when you look back in time

you can extrapolate more easily all the parameters and use them to better predict the future.

Also in future the models should take into account the medication, which should be
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divided by classes. The complications should also be taken into account and introduced into

the models. A more closely observations for each patient is required in order to better find

the fluctuation in every clinical parameter.
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