Allocation of Resources in SAaaS Clouds
Managing Thing Mashups

dJ. Guerreiro, L. Rodrigues and N. Correia

Abstract—The sensing and actuation as-a-service is
an emerging business model to make sensors, actua-
tors and data from the Internet of Things more attain-
able to everyday consumer. With the increase in the
number of accessible Things, mashups can be created
to combine services/data from one or multiple Things
with services/data from virtual Web resources. These
may involve complex tasks, with high computation
requirements, and for this reason cloud infrastruc-
tures are envisaged as the most appropriate solution
for storage and processing. This means that cloud-
based services should be prepared to manage Thing
mashups. Mashup management within the cloud al-
lows not only the optimization of resources but also
the reduction of the delay associated with data travel
between client applications and the cloud. In this
article, an optimization model is developed for the op-
timal allocation of resources in clouds under the sens-
ing and actuation as-a-service paradigm. A heuristic
algorithm is also proposed to solve the problem more
quickly.

Index Terms—Internet of Things, Cloud, Sensing
and actuation as-a-service, Heuristic.

I. INTRODUCTION

HE Internet of Things (IoT) is now attracting

the attention from both academia and industry,
and this interest is expected to grow [1l, [2]. In IoT,
physical objects can be accessed and controlled using
electronic devices that are able to communicate using
networking interfaces. However, the research in IoT
is primarily driven by technological advances and not
by applications or user needs. On the other hand,
research on smart cities, smart transportation, and
others, address specific problems and needs
citeCetall9. An effective bridge between these two
relies on an efficient resource discovery, access and
management, which can be provided by what is now
called the Web of Things (WoT) [4]l.

A move towards the WoT will prevent IoT from
becoming just a collection of Things, unable to be
discovered for interaction with other Things or applica-
tions. The idea of WoT is to reuse and leverage readily
available and widely popular Web protocols, standards
and blueprints, to make data and services offered by

dJ. Guerreiro, L. Rodrigues and N. Correia are with the Center for
Electronic, Optoelectronic and Telecommunications (CEOT).

N. Correia (email: ncorreia@ualg.pt) is with the Faculty of Science
and Technology, J. Guerreiro and L. Rodrigues are researchers
(emails: {jdguerreiro,lrodrig}@ualg.pt), all at University of Algarve,
8005-139 Faro, Portugal.

objects accessible to a larger pool of Web developers.
Things expose their functionality and properties as
Web resources, allowing reading (e.g., temperature
value) and/or update (e.g., trigger an actuation) by
others [5]. This means that any kind of behaviour can
be implemented through Web resources. Besides dis-
covery, such Thing exposure will facilitate the creation
of mashups, where services/data from one or multiple
Things are combined with services/data from virtual
Web resources (e.g., multiple sensor data sources can
be combined with virtual Web resources to decide for
an actuation at some device). As stated in [5], the
WoT is intended to enable interoperability across IoT
platforms and application domains.

The just mentioned developments will bring many
different devices into the IoT world, and large amounts
of data will be collected and analysed. As more and
more Things become available, and Thing mashups are
built, more data with processing needs will emerge,
meaning that new challenges arise in terms of storage
and processing. To deal with these issues, a Sens-
ing and Actuation as-a-Service (SAaaS) model relying
on cloud infrastructures is proposed in [6]. Applica-
tions are assumed to have software components with
bindings to virtual Things stored at the cloud, creat-
ing a multi-user environment assisting in the use of
resource-constrained devices.

The work in [6] is relevant because it introduces
the idea of Things as infrastructure for cloud-like
exploitation. The authors envision sensing and ac-
tuation resources not only as mere data endpoints,
and instead propose their abstraction, virtualization,
and their administration in groups. The architecture
and required modules are also discussed. However,
there is no reference on how to perform many-to-
one assignments (single virtual Thing serving multiple
compatible requests), which requires deciding on the
best assignments. Since a virtual Thing is then mate-
rialized onto a physical Thing, this is a way for a single
device to serve multiple consumers. Also, although the
possibility to manage Thing mashups is mentioned,
no details are given. Managing Thing mashups at
the cloud, instead of leaving this to the client, has
significant advantages:) multiple data travels to the
client side are avoided, improving delay and Quality of
Service (QoS); i7) mashups involve workflow between
mashup elements, and the assignment of mashup ele-
ments to virtual Things (just mentioned many-to-one

assignments) should take such flow dependencies into
account, for optimization of flows between workspaces
of virtual Things at the cloud. This requires the devel-
opment of new resource allocation approaches, which
has been addressed recently in [7]]. In such work, a the-
oretical model is proposed and used as a basis for the
development of a heuristic. However, the model just
outlines the problem and is not formulated to allow
the extraction of the optimal solution. The developed
heuristic has also drawbacks, as detailed in Section
Here in this article, a new approach to solve this
problem is proposed. The contributions of this article
are the following:

o A mathematical programming optimization model
is developed for resource allocation under the
SAaaS paradigm, considering Thing mashups
managed in the cloud. This optimization model
can be solved by software optimizers like CPLEXE]
for the optimal solution to be extracted.

e A heuristic algorithm is proposed that is able to
obtain near optimal solutions quickly, which is
critical when problem instances are large.

o The proposed optimization model and heuristic
algorithm are compared against the results pre-
sented in [7]. The optimization model is also used
to assess the benefits of managing Thing mashups
in the cloud, when compared with their manage-
ment at the client side.

The remainder of this article is organized as follows.
In Section the design and planning of SAaaS ar-
chitectures is discussed. Related work is presented in
Section Section formulates the resource allo-
cation optimization problem and Section [V| discusses
a heuristic algorithm to solve it. Section [VI| makes a
performance analysis, and Section concludes the
article.

II. SENSING AND ACTUATION AS-A-SERVICE
A. Everything as a Service

The Everything as a Service (XaaS) includes a set of
service models under the paradigm of cloud computing
that aim to concentrate software and hardware re-
sources, offering them as services to a large number of
users and, therefore, leveraging utility and consump-
tion of computing resources. The most relevant service
models are: i) Infrastructure as a Service (IaaS), where
computing resources like virtual machines, servers,
storage and load balancers are provided according
to customer requirements; ii) Platform as a Service
(PaaS), where computing platforms including operat-
ing system, programming language execution environ-
ment, database, Web server, and other, are provided
in a way that the user is not required to allocate
resources manually; iii) Software as a Service (SaaS),
where the cloud takes over the infrastructure and
platform while scaling automatically [8]].

IIBM ILOG CPLEX Optimizer.

Sensor Providers Data Consumers

Cloud of Things

Fig. 1. SAaaS scenario.

Virtual
Sensor

4 @& ..

Consumer 1

Coﬁrz ®| K/: @
a

Consumer N

Sensor
Virtualization Layer

Registered
Physical Sensors

Mashup
Virtualization Layer

Sensing Data
Consumers

Fig. 2. SAaaS virtualization with mashups managed in the cloud.

The just mentioned models promote the “pay only
for what you use” while allowing companies to fo-
cus on their core competencies instead of ICT [2],
[9]. The SAaaS model, proposed in [6l], emerged
more recently to assist in the use of resource-
constrained Things, as illustrated in Figure |1l Simi-
larly to the just mentioned cloud-based “as a service”
models, the resources in SAaaS systems should be
dynamically provisioned and de-provisioned on de-
mand. The virtualization of Things is used to en-
able the management and customization of devices
by clients/applications/consumers, eventually allowing
for the assignment of a single device to multiple con-
sumers. A virtual workspace (e.g., virtual machine) is
usually created for the provisioning of a virtual Thing
group (one or more virtual Things), which can be under
the control of one or more consumers.

When Thing mashups are managed in the cloud,
the events are processed and actuations are triggered
according to a workflow that is predefined by the client
application. The cloud delivers just the final data of
interest to the consumer/client application. The whole
mashup, or parts of it, may also be consumed by
multiple applications. This additional system function-
ality results in an additional virtualization layer, as
illustrated in Figure 2| Managing Thing mashups in
the cloud brings new challenges regarding resource
assignment (both physical Thing and cloud resources).
More specifically, each mashup ends up defining flow
dependencies between its mashup elements, and these
should be taken into account when assigning [7]: 7)

one or more mashup elements (from different client
applications) to a virtual Thing; i) virtual Things to
physical Things (materialization onto devices). This
awareness will allow the optimization of both physical
Things and cloud resources, ensuring a minimization
of the number of virtual workspaces and number of
flows between such virtual workspaces. This issue is
addressed here in this article.

III. RELATED WORK

Over the last years, cloud-based platforms became
popular for Wireless Sensor Network (WSN) appli-
cations. Due to limitation in memory, energy, com-
putation and scalability, large WSNs are difficult to
manage and for this reason their integration with
the cloud is proposed in [10]. The authors suggest a
shift from traditional WSNs to cloud-based architec-
tures, and a virtualization model is presented for a
uniform and widespread use of WSNs. The authors
conclude that sensor-cloud architectures outperform
traditional WSNs, allowing the increase of sensor life-
time, decrease of energy consumption, and reduction
of end user expenditure. Such WSN-cloud integration
can become more efficient if approaches like the ones
mentioned in [11[, [12], [13], [14] are used. In [11l,
a sustainable way of collecting data from WSNs to
the cloud is proposed. More specifically, the authors
state that the weak communication ability of WSNs
can make the upload (to the cloud) of big sensed data,
within a limited time, quite difficult. Sensors have
also limited power, and this kind of data transfer
significantly shortens the lifetime of WSNs. To solve
these problems, multiple mobile sinks are proposed
to help in data collection. In [12] it is proposed that
gateways find anomalies in the sensed values, reduc-
ing storage requirements if these are discarded, while
in [13] a mechanism is proposed that allows sensor
nodes to save their energy due to the aggregation of
application requests by the cloud. The use of IaaS
paradigm, to enhance the flexibility and scalability of
such architectures, is proposed in [14].

More recently, cloud-based Sensing as-a-Service (Se-
aaS) approaches started to emerge. This kind of service
is discussed in [2] and [15] in the context of smart
cities. The first work addresses technological, econom-
ical and social perspectives, while the last proposes
the abstraction of physical Things through semantics,
so that these can be integrated by neglecting their
underlying architecture. In [16]] and [17], the semantic
selection of sensors is also addressed. Multimedia Se-
aaS is explored in [18]], [19], [20], [21], and the focus
is mainly real-type communication requirements. In
[20], the cloud edge and fog are explored. Mobile
CrowdSensing (MCS) services using cloud infrastruc-
tures, which take into account the mobility of data
acquisition systems, are also studied in [22] and [23].
The general idea is to use the sensors of mobile devices

to fulfill some need. In [24], for example, crowdsourced
life streaming, where individuals become online broad-
casters, is considered. These are basically mobile Se-
aaS approaches. Specific platforms providing efficient
sharing mechanisms for data (among multiple appli-
cations) are proposed in [25], [26].

Instead of considering just sensing devices, some
proposals comprise an IoT including smart Things.
Besides sensing, smart Things may perform tasks, like
actuation and control, and are less focused on pure
data gathering, like sensor networks [27]. Approaches
for smart objects must consider the functionality of de-
vices, instead of just focusing on the data [6], [7]. Phys-
ical resources must be abstracted, virtualized, and
presented as a service to the end users. This way, the
access and interaction with physical Things becomes
uniform and in compliance with IoT/WoT goals. In [6l],
the design and technical aspects of such cloud-based
Sensing and Actuation as-a-Service (SAaaS) architec-
tures are discussed. A specific platform is proposed in
[28], which is basically an extension of [25].

Mashup tools to connect smart Things have also
been proposed, most of them to be used at the appli-
cation/client side [291, [301, [31l, [32]. Thing mashup
management in the cloud is considered in [25], and
in [33] IoT mashups as a service is proposed. Dis-
cussion is, however, around concepts and architecture
of the service model, and no specific approach for
resource allocation is proposed. As far as known, this
has only been addressed in [7]. Table |, presents the
resource allocation strategies (RAS) limitations in the
related work articles in comparison to our work: Table
presents the resource allocation strategies (RAS)
limitations in the related work articles in comparison
to our work:

Here in this article, and similarly to [7l, resource
allocation in clouds managing Thing mashups is ad-
dressed. A mathematical programming optimization
model is proposed that allows optimal solutions to
be obtained, which is not possible with the approach
from [7]. A heuristic algorithm is also proposed that
outperforms the results obtained in [7].

IV. RESOURCE ALLOCATION PROBLEM

A. Assumptions and Definitions

A Cloud Service Provider (CSP), denoted by S, in-
cludes a set of distributed networks that interconnect
to provide services, and these can be organized accord-
ing to a common role or in order to better serve certain
regions. Therefore, S = {S,...55/}, where S; denotes
one of the distributed networks. The set of all client ap-
plications outside the cloud, and requesting for regis-
tered physical Things, is denoted by A = {A;, ..., A 4/}
An application A; can have one or more independent
components, denoted by C(A;) = {C, ""CliC(Ai)|}’ and
each component C; is binded to a Thing mashup in the
cloud.

TABLE 1

RESOURCE ALLOCATION STRATEGIES LIMITATIONS

Authors

Limitations

S.Misra et al[10]
T.Wang et al[11]
L.Kumar et al[12]
T.Dinh et al[13]
A.Deshwal et al[14]
C.Perera at al[2]

R.Petrolo at al[15]
S.Misra et al[16]

Y.Hsu et al[17]

C.Lai et al[18]
C.Lai et al[19]

W.Wang et al[20]

Y. Xu et al[21]
X.Sheng et al[22]

M.Al-Fagih et al23]

C.Dong et al[24]
J.Kim et al[25]

M.Kim et al[26]

E.Al-Hawri et all27]
S.Distefano et all6]

J.Guerreiro et all7]

R.Casadei et al[?]
F.Longo et al[28]

R Kleinfeld et al[?]
H.Oh et al[29]
S.Heo et all30]
X.Jin et all31]
S.Eom et al[32]
D.Guinard et al[?]
J.Im et all33]

No RAS to determine properties closer to requests.
Does not use mashups embedded in the cloud.

No RAS is presented in the paper.

No RAS is presented in the paper.

Does not use mashups embedded in the cloud.
RAS satisfies one by one request.

Does not use clusters or mashups on cloud side.
No RAS is presented in the paper.

No RAS is presented in the paper.

RAS using a broker to publish/subscribe data.

No RLS to determine properties closer to requests.

Does not use clusters or mashups on the cloud side.

Semantic RAS satisfies one by one request.

No RLS to determine properties closer to requests.
Does not use mashups on the cloud side.

No RAS to determine properties closer to requests.
Does not use mashups embedded in the cloud.

No RAS to determine properties closer to requests.
Does not use clusters or mashups on cloud side.
RAS using energy cost estimation as basis.

Does not consider data flows or delays in the cloud.
No RAS to determine properties closer to requests.
Does not use mashups embedded in the cloud.

No RAS is presented in the paper.

Does not use clusters or mashups on cloud side.
RAS using phone location.

Use only mobile phone services.

RAS with delay and quality requirements.

Does not consider processing or network delays.
No RAS to determine properties closer to requests.
Does not use mashups embedded in the cloud.
Time slot RAS for video distribution.

Does not use clusters or mashups on cloud side.
RAS chooses devices/mashups to collect data.

No RAS to determine properties closer to requests.
RAS where users subscribe from a list of sensors.
No RAS to determine properties closer to requests.
Does not use mashups embedded in the cloud.

No RAS is presented in the paper.

Semantic RAS to map devices to requests.

No RAS to determine properties closer to requests.
Does not use mashups embedded in the cloud.
Predecessor article of this work.

Some drawbacks explained in section .

No RAS is presented in the paper.

No RAS to determine properties closer to requests.
Does not use mashups embedded in the cloud.

No RAS to determine properties closer to requests.
No RAS to determine properties closer to requests.
No RAS to determine properties closer to requests.
No RAS to determine properties closer to requests.
No RAS to determine properties closer to requests.
No RAS to determine properties closer to requests.
No RAS to determine properties closer to requests.

In general, a mashup can be defined as a way to

compose a new service from existing services [34]. The
focus is on mashing up information services. However,
with the recent efforts on WoT standardization by
W3C (see [5]), Things will also be able to expose
their functionality and properties as Web resources,
allowing Thing mashups to be built using existing
Web mashup technologies. Semantic search of Things
is also considered in [5]. For the particular case of
SAaaS, clients will be using templates to draw Thing
mashups that integrate Things with services/data
from virtual Web resources. When drawing such
mashups, Things will be mashup elements having a
functionality requirement and property conditions,
which should be semantic-based (see [35).

Definition 1 (Thing Mashup). Workflow wiring
together Things with virtual Web resources. When
drawing the mashup, Things will be mashup elements
with a functionality requirement and a set of property
conditions. The functionality of mashup element n is
denoted by f,, while P,, denotes its property conditions.

Each p, € P, has a “subject/predicate/object” de-
scriptiorﬂ of the condition/requirement that is being
defined (e.g., cameraResolution greaterThan 12.1MP;
frequencySampling equalTo 10s). The overall popu-
lation of mashup elements (from all applications) is
denoted by V.

A set of physical Things is assumed to be registered
at the cloud. The owners voluntarily register/de-
register physical Things to/from the cloud, meaning
that CSPs must compensate the device owners for
their contribution, or find some incentive mechanism
for them to participate [22], [36ll.

Definition 2 (Physical Thing). A sensor or actuator
exposing its functionality and properties as Web
resources, allowing reading (e.g., temperature value)
and /or update (e.g., trigger an actuation) by others. The
model of a physical Thing t includes a functionality,
denoted by f;, and all properties necessary to describe
it, denoted by P;.

Each property p: € P, has a “sub-
ject/predicate/object” description associated with
it (e.g., cameraResolution hasValue 12.1MP). The
set of all physical Things is denoted by 7T, while P
and F are used to denote the set of all properties
(e.g., sensing range, communication facility, energy
consumption, location) and functionalities (e.g., image
sensor), respectively.

In SAaaS, mashup elements should not be directly
binded to physical Things. Instead, virtual Things
should be wused as intermediate entities. More
specifically, each mashup element n € A should be
binded to a single virtual Thing, while a virtual
Thing can be binded to multiple mashup elements
(with same functionality and compatible property
requirements). Virtual Things are then “materialized”
onto physical Things.

Definition 3 (Virtual Thing). Entity built at the cloud
to act on behalf of a set of compatible mashup elements.
The materialization of a virtual Thing j must fulfill
the requirements of all its mashup elements.

The use of virtual Things, each requiring some vir-
tual workspace, allows data to be consumed by multi-
ple application mashups and allows a reduction of data

2A Resource Description Framework (RDF) triple. See [37].

collection/storage, increasing the usefulness of data.
Resources are, therefore, better utilized. Different pos-
sible bindings between mashup elements and virtual
Things will have different impacts on resource usage,
cloud scalability and Quality of Experience (QoE). The
set of virtual Things created in the cloud is denoted by
TV.

The use of semantic tools allows the cloud to find
different ways of achieving a functionality. That is, a
functionality f € F can also be achieved by joining
functionalities at multiple devices. Thus, there will be
multiple ways of achieving a functionality, and each
of them can be materialized in one or more devices.
The set of possible materializations for functionality
f is denoted by M(f), and /\/lf € M(f) denotes the

h possible materializatlon that may include one or
more devices. That i terft 2 f,vMI e M(f).
A virtual Thing will be materialized using one of
these materialization possibilities. At last, the SAaaS
materialization problem is defined as follows.

Definition 4 (SAaaS Materialization (SASM)
Problem). Given a set of applications, each with
a set of components binded to Thing mashups at the
cloud, assign mashup elements to virtual Things, and
materialize virtual Things onto physical Things, so
that the overall cost is minimized while meeting the
functionality and property needs of mashup elements.

In order to define what is meant by cost, let us
assume 7 = {N1,N2,...,N|7v|} as a feasible partition
of mashup elements (all elements in each A, have
the same functionality requirement and compatible
property requirements). That is, each N, will give
rise to a virtual Thing. For such partition of mashup
elements, the cost of assigning materialization M{ to

N; will be:

Cost(MI, N;) = Gap(MI, N;) + Flow(N;). (1)

The first component is the property gap cost when
assigning materialization /\/l to N, M e M(f),
while the second component is the flow cost or number
of flows to other virtual Thing workspaces at the
cloud, which is dependent on individual Thing mashup
workflows. These should be normalized, and weights
can be given to the two components. The property gap
cost is given by:
Gap(MI,N;)

Z MiNpen, {A”p (2)

{rex}
where x = U,/cn; P, includes the set of all properties
used in N’s mashup element conditions, and A" P
the hlghest gap between the condition spemﬁed for

3The symbol £ means equal by definition, in our case logi-
cally/semantically equivalent.

property p in mashup element n, and p values offered
by physical Things in /\/lf . This highest gap should
be captured because more than one physical Thing in
/\/lf can have a given property. Since multiple mashup
elements in N; may impose conditions for property p,
the min is used to capture the lowest A” associated
with such mashup elements. Such lowest request-
supply gap, from all n’s in N, refers to the closest
matching. As an example, let us assume two mashup
elements in N requesting for different camera res-
olutions. If a feasible camera is supplied to both of
them, the most demanding request (the one requesting
for highest resolution) will be the one closer to the
supplied camera resolution, having the lowest gap. The
other request can be considered fulfilled.

B. Mathematical Formulation of the SASM Problem

The following client-related information is assumed
to be known:

A Set of applications, where A; € A refers to
a specific application.

Set of independent application components
at A; € A, where C; € C(A;) refers to a spe-
cific component. A component is binded to
a Thing mashup in the cloud, each mashup
having a set of elements.

Set of all mashup elements, from all
application components. That is, N =
Ua,eal (.Az) .

In Functionality required by mashup element
neN.

Set of all property conditions of mashup
element n € NV.

One if n,n’ € N have different function-
alities or some property that makes then
incompatible for materialization onto the
same physical Thing; zero otherwise.

One if there is a mashup flow n — 7/,
n,n’ € N; zero otherwise.

C(A)

Pr

Hnn

’

Qnn

That is, each n € AN requires a functionality
and imposes several property constraints, which
imposes limitations on the set of mashup elements
binded a virtual Thing and, consequently, its
materialization onto a physical Thing. Some n
may have no functionality and property requirements
if used for aggregation of flows with Web services.
Regarding physical Things, the known information is
the following:

TF Set of all physical Things registered at the
cloud, where t € 7T is used to refer to a
specific physical Thing.

It Functionality of physical Thing ¢t € 7F.
P Set of properties of physical Thing ¢t € 7F.

M(f) Set of possible materializations for func-
tionality f, where Mf € M(f) denotes
the i*? possible materlahzatlon which may
include one or more physical Things.

i Highest gap value, from all physical Things
enrolled in materialization M/, for a par-
ticular p of n € V.

A™* Highest possible property gap.

Note that ™" and A7 can be extracted using
SPARQLE] because both propert1es/funct10nahty re-
quirements and properties/functionality of physical
Things are semantic-based.

The variables required to formulate the SASM
problem are:

A

One if the i** possible materialization for
functionality f, .M{ € M(f), is in use; zero
otherwise. The cloud will have an active
virtual Thing for each M/ in use.

ntf’i One if physical Thing t € 7T is enrolled
in the materialization of virtual Thing M/;
zero otherwise.

One if mashup element n € AV is binded to
virtual Thing M/ ; zero otherwise.

Cj’f’i Highest property p gap, from all mashup
elements binded to virtual Thing M.

p;’,fi, One if there is flow from virtual Thing M]
to virtual Thing Ml, , zero otherwise.

Y Total property gap cost.

R Total number of flows.

The SASM problem is mathematically formulated
as follows:

— Objective function:

max Z Z Z Bfi—

{rert (mfem(p)y {neny

. r
P x Amax x |V

LG
P x Amax » N3

where P =3~ _\-|Py|, N = |N|and A™* is the highest
possible property gap. With this goal the number of
fulfilled mashup elements is first maximized and
then, as a secondary goal, the total property gap cost
and total number of flows (between virtual Things
inside the cloud) are minimized due to their negative
sign. This goal is subject to:

3)

— Physical Thing assignment:

/i)},i Zaf,er]—",VMf GM(f),VteM{ 4)

2.

{feFt {miem()}

Kb, <1,V eTE (5)

4Semantic query language. See [38].

Constraints state that all physical Things enrolled
in a materialization (of a virtual Thing) must be in
use if the virtual Thing is active. Constraints (5) force
a physical Thing not to be assigned to more than one
virtual Thing.

DD DR D A

{feF} (mfem(n)y {tgml}

(6)

Constraints (6) state that a physical Thing can not be
assigned to a virtual Thing if it is not participating
in the materialization (device orchestration) of such
virtual Thing.

— Fulfilling functionality of mashup elements:

Y Bl <LVREN f=f,)
{MIem(f)}
> B1 V€N, f = fo,YM] € M(f) (8)

Constraints (7) ensure that the functionality required
by n is fulfilled by no more than one virtual Thing.
In constraints (8), virtual Things become active if at
least one mashup element is binded to it.

— Fulfilling property conditions of mashup elements:

B+ BE, <2—0"" 0 €N, f = fu,

ML e M(f),)

These constraints are used to ensure that two mashup
elements with incompatible properties are not binded
to the same virtual Thing (materialized onto the same
physical Thing).

— Gap between property conditions of mashup ele-
ments and physical Thing properties:

C?i > B}T‘L,z 2 A?:lp - (1 - B?z) X Amax’vn € N?f = fna

YMI e M(f),¥p € P, (10)

where A’} is the highest gap value, from all physical

Things in materialization Mf for a partlcular p of
n (more than one physical Thlng in /\/l can have
property p), and A™2* is the highest poss1b1e gap value.
The (7, gives the upper bound of A7, for a set of
mashup elements binded to the v1rtual Thmg of Mf
The total gap cost is given by

POED DI DN« #

{FeFt (Ml em()y {reP}

(11)

which is included in the objective function, for gap
cost minimization.

— Flows between virtual things:

Pj‘ciz‘/ > (B + ﬁ?’/,i’) x QU —1,Yn,n’ €N,
= fan = fur, VM € M(f), VM € M(f)

where Q™" is given information stating if there is a
mashup flow n — n’. These constraints find if there
is any flow between virtual Things, which depends on
the bindings between mashup elements and virtual
Things. The overall number of flows between virtual
Things is given by

=D > >)

UeFH MIemNy U'EFE (M em(s)y

(12)

Pl (13)

which is included in the objective function, for flow
minimization.

— Non-negativity assignment to variables:

af kY Bl €40, 11 ¢h, T, T e RT (14)

These constraints define the type of variables.

The CPLEX optimizer is used to solve instances of
this problem. The solution found will be the optimal
solution for the SASM problem instance under consid-
eration.

C. Hardness of the Problem
Theorem 1. The SASM problem is NP-hard.

Proof. Considering a compatibility graph G = (N, &)
such that (n,n/) € € iff & =0, constraints (9) state
that all mashup elements assigned to a virtual Thing
(to be materialized onto a device) must be compatible,
which corresponds to a clique subgraph in G. When
adding constraints (10)-(13), and inserting T and ¥
into the objective function, the clique size is to be
maximized as this leads to lower T and ¥ values. This
comes down to the maximum clique problem, which
happens to be NP-hard [39]]. Since multiple virtual
Things are being built, the SASM problem can be seen
as a multi-dimensional maximum clique problem. The
SASM problem is, therefore, NP-hard. O

V. ALGORITHMIC APPROACH
A. Motivation

Although optimal solutions can be obtained using
the mathematical model previously presented, the
hardness of the SASM problem makes it difficult to
obtain solutions within a reasonable time when the
instances of the problem are large. For this reason
a heuristic is proposed in the following section. Its
performance in then compared against the heuristic
proposed in [7]. As far as known, [7] is the only work
proposing a concrete solution to bind multiple Thing
requests to a physical Thing, while considering Thing

mashups managed in the cloud. Such approach starts
with a single mashup element binded to a virtual
Thing. These are randomly placed at the cloud and
initialized with infinite cost. The solution is then
improved as maximum cliques are extracted, from a
mashup element compatibility graph G, and assessed
for their effectiveness in improving the solution.

However, and contrarily to our mathematical model,
the approach in [7] gives no guarantees of finding
an optimal solution, besides having some drawbacks.
More specifically:

o Maximum cliques are extracted from the compati-
bility graph, one for each mashup element n ¢ N.
Finding the maximum clique is known to be NP-
hard, and feasible just through heuristic tech-
niques [39]. Among existing heuristic techniques,
the greedy-based ones present great simplicity
and high speed but have difficulty in finding good
solutions given its myopic nature. In [7]], a greedy-
based approach is used.

e Only maximum cliques, from the compatibility
graph G, are considered when binding mashup
elements to virtual Things. Other grouping combi-
nations are not evaluated (subgraphs of maximum
cliques), meaning that some mashup elements
may not be fulfilled although there was a viable
solution.

o The impact of selected virtual Thing materializa-
tions, at each step, is also not evaluated. That is,
choices made in a specific step can make future
virtual Thing materializations infeasible because
virtual Things will compete for devices.

The heuristic proposed next has no such drawbacks
because it tries to increase the size of feasible cliques
around each mashup element, in parallel, while per-
forming productive swap operations. This way differ-
ent mashup element groupings are evaluated while
avoiding building a myopic greedy approach. A feasi-
ble clique is one for which there is a materialization
(physical Thing) available.

B. Algorithm Details

Let us assume the previously mentioned compatibil-
ity graph G = (V, £) such that {n,n'} € & iff & =0,
and let N, denote the neighbours of node n ¢ N,
N, = {n € N : (n,n) € £}. Let us define X(Q)
as the set of nodes that may expand a given clique
Q, either through direct inclusion or after a swap
operation. That is, considering a given clique Q C G,
X(Q) ={ne N :|Q\WN,| € {0,1}}. When |Q\N,| =0
the clique can expand by the direct inclusion of node
n, and when |Q\N,,| = 1 the clique can swap one of its
nodes (the one not connected to n) with n in order to
diversify the attempts to expand.

As previously stated, the heuristic tries to increase
the size of cliques around each mashup element, in
parallel. Thus, every node will be included in a clique,

1 /* STEP: Initialization */

2 Q:{Q1>Q27"‘7Q|N|}

3:1=1

4 for each n € N do

6 end

7 [* STEP: Clique expansion */

8 repeat

9 L=0

10 for each Q; € Q: Q; #(do
11 Determine X (Q;)

12 for each n € X(Q;) do
13 if |Q;\Wy.| = 0 then
14 L < cost reduction scenario using Claim
15 en(F]
16 if |Q;,\N,.| =1 then
17 L <+ cost reduction scenario using Claim
18 en(?]
19 end
20 end
21 I* = BestScenario(L)
22 Realize [*

23 until [* =0 ;
Algorithm 1: Pseudo-code of heuristic algorithm.

although with a single node at the beginning. When
attempting to expand cliques, nodes may move from
one clique to another and a clique can be absorbed by
another. The heuristic is based on the following claims:

Claim 1. The direct inclusion of n € X(Q1) into clique
Q1, and consequent removal from its current clique
Q,, should only be performed if EM{,M‘; e M(f)
such that Cost(M], Q1 U {n}) + Cost(M}, Qx\{n}) <
Cost(M], Q1) + Cost(M!,Qy)}, where f is the
functionality required by all nodes in Q1 and Qs. That
is, there is an overall cost reduction.

Claim 2. The swap between n € X(Qq) and n’ € Qy,
where (n,n') ¢ &, should only be performed if
EIM{,M;-C € M(f) such that applying Claim |I| to
91\{n'} U {n} compensate the cost increase associated
with such swap.

where function Cost(,) has been defined in (I).
For this function to be aligned with the objective
function used by the mathematical model, and fair
comparison between these two approaches, a small
weight should be given to the second component of
Cost(,). Regarding Claim [2| the idea is that there will
be a cost increase when swapping n with n’ (current
cliques were built having the best cost into account,
and at the time all neighbours were evaluated), but
then a direct inclusion compensates such increase.
The pseudo-code of the heuristic algorithm is shown
in Algorithm

TABLE II
ADOPTED PARAMETER VALUES.
Parameter Value
Functionality pool size 10
Avg size of property pools 10
Total number of devices 100
Total number of mashup elements 20-200 (z-axis)
Avg number of elements per mashup 5or 10
Mashup element’s properties (from pool) 50%
0.5
{A1,..., As} {1,..,5}

VI. ANALYSIS OF RESULTS
A. Scenario Setup

For the evaluation of results, random scenarios were
generated based on a pool of functionalities and a
pool of properties, for each functionality. The physical
Things and mashup elements were created as follows:

o Mashups are randomly generated using the algo-
rithm in [40], considering an average number of
elements per mashup.

e A mashup element will have its functionality
requirement randomly selected from the pool of
functionalities, together with a percentage of its
properties.

« Any pair n;,n; € N with the same functionality re-
quirement, at at least with a property in common,
is compatible with probability ¢ (incompatibility
may exist due to their property conditions).

o A physical Thing has a functionality assigned to it,
randomly selected from the pool of functionalities,
together with all the properties associated with
the selected functionality.

o The gap between a property condition and device
property is randomly selected from {A;,...,As5},
where A; is the lowest cost and Ajs is the highest.

Table [II| summarizes the adopted parameter values.

B. Evaluation

1) Fulfilled Mashup Elements and Virtual Things:
Here, the number of mashup elements that have been
fulfilled (mapped to a virtual Thing), the total number
of generated virtual Things (successfully materialized
onto devices), and the average number of mashup
elements per virtual Thing (average size of cliques
in compatibility subgraph G), are analysed. Compar-
ison will be done between the proposed mathematical
optimization model (MathOptim), proposed heuristic
algorithm (Heuristic), and the Highest Cost Variance
(HCV) variant of the heuristic proposed in [7]. As
stated in [7], the HCV variant is the one performing
better, making it unnecessary to consider the other
variants. These results are shown in plots of Figures
and [5] respectively, for an increasing number of
mashup elements. Regarding the mathematical model,
and after obtaining the solution for instances using
CPLEX, the values for the first plot are the result

200

150

100

50

No. of Fulfilled Mashup Elements

HCV —+—
Heuristic —>¢—
Matr‘10ptim ﬁK—

O L L L L L L
20 40 60 80 100 120 140 160 180 200

Total Number of Mashup Elements

Fig. 3. Number of fulfilled mashup elements. Avg number of
elements per mashup = 10.

100

60

40

No. of Materializations

20 h

HCV —+—
Heuristic —>¢—
Matr‘10ptim ‘—)l(—

SE N

O L L L L L L
20 40 60 80 100 120 140 160 180 200

Total Number of Mashup Elements

Fig. 4. Number of virtual Things materialized onto physical devices.
Avg number of elements per mashup = 10.

Avg Clique Size

05 |- HCV —+— |
. Heuristic —>%—

MathOptim ‘—)l%

O L L L L L L
20 40 60 80 100 120 140 160 180 200

Total Number of Mashup Elements

Fig. 5. Average number of fulfilled mashup elements per virtual
Thing. Avg number of elements per mashup = 10.

of counting non-zero 3 variables, while the values for
the second plot are the result of counting non-zero «
variables. The last plot is built using information from
the first and second plots.

From these results it is possible to observe that the
new heuristic is able to fulfill more mashup elements
(see plot [3) than the heuristic approach proposed in
[7], closely approaching the mathematical optimization

500 -

400

300

200

Total Gap Cost

HCV —+— |
Heuristic —>%—
MathOptim —X%—
MashL‘JpOutsid‘eCIoud ‘—EI—

100

I
20 40 60 80 100 120 140 160 180 200
Total Number of Mashup Elements

Fig. 6. Total property gap cost of materializations (Y). Avg number
of elements per mashup = 10.

model. This is more pronounced for less than 160
mashup elements. As the number of materializations
(virtual Things) gets closer to the number of available
devices, the proposed heuristic slows down its per-
formance, although it still outperforms the heuristic
variant from [7]. Please note that the proposed heuris-
tic could increase the number of fulfilled elements,
for such scenarios, if swap operations explore more
distant neighborhoods. However, this will increase the
complexity of the heuristic.

In what concerns to the number of virtual Things
(materializations), the proposed heuristic is able to
use less virtual Things (materializations) than all
approaches, mathematical model included, meaning
that more mashup elements are mapped to a
virtual Thing (cliques of larger size). This makes
materializations more effective and releases more
devices for future materializations (see plot [5).
Note that the heuristic requires less virtual Things
than the mathematical optimization model because
the primary goal of the mathematical model is to
maximize the number of fulfilled mashup elements,
and not the clique size. To maximize the clique size
the mathematical model would become non-linear,
making the model untreatable. However, since the
materialization cost is also at the objective function
(secondary component), the mathematical model
has also interest in larger clique sizes. This becomes
noticeable when the population of mashup elements to
be fulfilled increases. In this case multiple solutions
exist for the same number of fulfilled mashup
elements, and then the second component can play
its role. For this reason, the mathematical model
keeps increasing the clique size as the number of
mashup elements increases, being able to manage
materializations more efficiently than the other
approaches in such scenarios: provides high number
of fulfilled mashup elements and large clique size.

2) Materialization Cost: Here, the total property
gap cost associated with the chosen materializations,

HCV —+— 4
Heuristic —>%¢—

MathOptim —X%—
MashupOutsiquIoud ‘—EI—

Avg Gap Cost per Mashup Element

Il Il Il
20 40 60 80 100 120 140 160 180 200
Total Number of Mashup Elements

Fig. 7. Average property gap cost per mashup element. Avg number
of elements per mashup = 10.

and average property gap cost per mashup element,
are analysed. These results are shown in plots of
Figures[6|and[7] respectively, for an increasing number
of mashup elements. To assess the benefits of man-
aging Thing mashups in the cloud, when compared
with their management at the client side (traditional
approach), and effectiveness of the proposed approach
that aims to minimize both property gap and flow
costs, plots also include the results of the mathemati-
cal optimization model for a different objective func-
tion: max } ¢ e x E{szeM(f)} > (neny B This rep-
resents the case where Thing mashups are managed at
the client side (MashupOutsideCloud). In this case the
devices are individually picked by the client without
taking into account other requests, and for this reason
T and ¥ are left out.

From the results it is possible to observe that the
mathematical optimization model (MathOptim) is the
one finding devices more close to the needs of mashup
elements (lower materialization costs) releasing the
other devices for future requests. Since the gap cost is
included in the objective function as a secondary goal,
this effect becomes more visible when the population
of mashup elements increases. That is, since many so-
lutions exist for the same value of the first component
of the objective function (number of fulfilled mashup
elements), the optimizer is then able to retrieve the so-
lution having lower gap cost (second component). The
proposed heuristic presents better results than HCV
from [7], meaning that materializations are choosing
devices closer to the needs of the mashup elements.

Results also show that managing Thing mashups
outside the cloud leads to significant property gap
cost increases, as no optimized assignment of mashup
elements to virtual Things is performed. This is
confirmed by Figure |7| where the average property
gap cost per mashup element is shown. Such cost has
a more pronounced reduction when Thing mashups
are managed in the cloud (MathOptim), revealing
that virtual Things are built more effectively. This
does not happen when devices are picked at the

10

250 T T T T T T T T

200

150

No. of Flows

100

*'/H**" —
- HCV —+— A

Heuristic —>%—

50

MathOptim —X%—
MashL‘JpOutsid‘eCIoud ‘—EI—

Il Il Il
20 40 60 80 100 120 140 160 180 200
Total Number of Mashup Elements

Fig. 8. Total number of flows (¥). Avg number of elements per
mashup = 10.

HCV —+—

Heuristic —%— |
MathOptim —¥—
MaShL‘IpOUtSid‘eOOUd ‘—E—

Avg No. Flows per Mashup Element

0 L L L L L
20 40 60 80 100 120 140 160 180 200

Total Number of Mashup Elements

Fig. 9. Average number of flows per mashup element. Avg number
of elements per mashup = 10.

client (MashupOutsideCloud), although some virtual
Things may still act on behalf of more than one device.

3) Flows at the Cloud: This section analyses the to-
tal number of flows between virtual Thing workspaces
at the cloud, and average number of flows per mashup
element. These results are shown in plots of Figures
and [9] respectively, for an increasing number of
mashup elements. The case of Thing mashups man-
aged at the client side is also shown.

Results show that the proposed mathematical
optimization model and heuristic present the best
results. More specifically, although the number of flows
increases, this is mainly related with the increase in
the number of fulfilled mashup elements and number
of virtual Things built. The average number of flows
per mashup element is kept under control (see Figure
[9), which means that the assignment of mashup
elements to virtual Things is performed in a way that
flows between virtual Thing workspaces is minimized
(cliques are built taking into account mashup elements
having common predecessor/successors). This is not
possible when mashups are managed outside the
cloud, as seen in Figure [9] The heuristic approach
proposed in [7]] presents a low number of flows, which

is mainly related with the low number of fulfilled
mashup elements and virtual Things.

4) Size of Mashups: Figures[10]-[13|show the impact
of low and high flow dependency level among mashup
elements. More specifically, the average number of
flows is plotted for mashups with an average size
of 5 and 10 elements, meaning that the overall flow
dependency among mashup elements will be lower for
the first and higher for the second. Results show that
the proposed mathematical optimization model (Math-
Optim) and heuristic perform quite well, being able
to minimize flows between virtual Thing workspaces
for low and high flow dependency levels. The HCV
is not able to perform well when flow dependency is
low, although the average number of flows per mashup
element reduces slightly as the number of mashup
elements increases, meaning that flow merging is em-
bedded in its goal. This does not happen in Figure
because mashups are managed at the client side,
meaning that it is not possible to globally optimize
flows from multiple client mashups. For this reason
the average number of flows per mashup element in-
creases as the number of mashup elements increases.

VII. CONCLUSIONS

This article addresses resource allocation in SAaaS
clouds managing virtual sensor mashups. Besides an
adequate mathematical optimization model to solve
this problem, a heuristic is proposed. The heuristic
outperforms previous works, fulfilling more mashup
elements (requests from clients) and using less phys-
ical Things for materialization of virtual Things. This
means that virtual Things are acting on behalf of more
mashup elements, making them more productive. The
heuristic also shows lower materialization costs, which
means that allocated physical Things are near to what
is requested by clients, leaving physical Things with
better features for future requests. Flows are also
adequately optimized in order to reduce the overall
data transfer between virtual workspaces of virtual
Things.

ACKNOWLEDGMENT

This work was supported by FCT (Foundation for
Science and Technology) from Portugal within CEOT
(Center for Electronic, Optoelectronic and Telecommu-
nications) and UID/MULTI/00631/2019 project.

REFERENCES

[1] G. Fortino, et. al.: “Modeling Opportunistic IoT Services in Open
IoT Ecosystems”, Proceedings of Workshop “From Objects to
Agents”, Italy (2017).

[2] Charith Perera, Arkady Zaslavsky, Peter Christen, and Dim-
itrios Georgakopoulos: “Sensing as a Service Model for Smart
Cities Supported by Internet of Things”, Transactions on Emerg-
ing Telecommunications Technologies, Vol. 25, No. 1 (2014), John
Wiley & Sons, Inc. New York, NY, USA.

11

1.6 T T T T T T T T

1.4 b

1.2 1

Avg No. Flows per Mashup Element

0.2 |-

Elements per mashup=10 —+— |
E‘Iements‘per mas‘hup=5 ‘—>(—

O L L L L
20 40 60 80 100 120 140 160 180 200

Total Number of Mashup Elements

Fig. 10. Avg number of flows per mashup element for mashup sizes
of 5 and 10: HCV.

1.6
€t 14} 8
[
§
g 12t .
Q
3
E 1‘§+) % L . 4 3
5 0.8 | 1
Q
"
2 0.6 [B
o
('
S 04 4
z
g
< 02F Elements per mashup=10 —+— |
E‘Iements‘per ma%hup=5 ‘—)%

0 L L L L
20 40 60 80 100 120 140 160 180 200

Total Number of Mashup Elements

Fig. 11. Avg number of flows per mashup element for mashup sizes
of 5 and 10: Heuristic.

1.6

1.4 1

1.2 B

0.8 - B

0.6 - B

0.4 |- .

Avg No. Flows per Mashup Element

0.2 - Elements per mashup=10 —+— |

EJIementster masjhup=5 J—)&

O 1 1 1 1
20 40 60 80 100 120 140 160 180 200

Total Number of Mashup Elements

Fig. 12. Avg number of flows per mashup element for mashup sizes
of 5 and 10: MathOptim.

[3] Ing-Ray Chen, et al.: “Trust-Based Service Management for
MobileCloud IoT Systems”, IEEE Transactions on Network and
Service Management, Vol. 16, No. 1 (2019).

[4] Dominique Guinard and Vlad Trifa: “Building the Web of
Things”, Manning Publications (2016).

[56] W3C: “Web of Things (WoT) Architecture”, https:/w3c.github.io/
wot-architecture/ [Accessed 02-12-2019].

[6] Salvatore Distefano, Giovanni Merlino, and Antonio Puliafito:
“A Utility Paradigm for IoT: The Sensing Cloud”, Pervasive and
Mobile Computing, Vol. 20 (2015).

[7] Joel Guerreiro, Luis Rodrigues, and Noélia Correia: “Resource

https://w3c.github.io/wot-architecture/
https://w3c.github.io/wot-architecture/

0.6 b

0.4 1

Avg No. Flows per Mashup Element

Elements per mashup=10 —+— |
E‘Iements‘per mas‘hup=5 ‘—X—

O L L L L
20 40 60 80 100 120 140 160 180 200

Total Number of Mashup Elements

Fig. 13. Avg number of flows per mashup element for mashup sizes
of 5 and 10: MashupQOutsideCloud.

Allocation Model for Sensor Clouds under the Sensing as a
Service Paradigm”, Computers, Vol. 8, No. 1 (2019).

[8] Yucong Duan, et al.: “Everything as a Service (XaaS) on the
Cloud: Origins, Current and Future Trends”, IEEE Interna-
tional Conference on Cloud Computing (2015).

[9] Shyam Patidar, Dheeraj Rane, and Pritesh Jain: “Survey Paper
on Cloud Computing”, International Conference on Advanced
Computing & Communication Technologies (2012).

[10] Sudip Misra, Subarna Chatterjee, and Mohammad S. Obaidat:
“On Theoretical Modeling of Sensor Cloud: A Paradigm Shift
From Wireless Sensor Network”, IEEE Systems Journal, Vol.
11, No. 2 (2017).

[11] Tian Wang, et. al.: “Sustainable and Efficient Data Collection
from WSNs to Cloud”, IEEE Transactions on Sustainable Com-
puting, Vol. 4, No. 2 (2019)

[12] L.P. Dinesh Kumar, et al.: “Data Filtering in Wireless Sensor
Networks using Neural Networks for Storage in Cloud”, Inter-
national Conference ICRTIT (2012).

[13] T. Dinh and Y. Kim: “An Efficient Sensor-Cloud Interactive
Model for On-Demand Latency Requirement Guarantee” IEEE
International Conference on Communications (2017).

[14] A. Deshwal, S. Kohli, and K. P. Chethan: “Information as a Ser-
vice based Architectural Solution for WSN”, IEEE International
Conference on Communications in China (2012).

[15] Riccardo Petrolo, Valeria Loscri and Nathalie Mitton: “Towards
a Smart City Based on Cloud of Things, a Survey on the
Smart City Vision and Paradigms”, Transactions on Emerging
Telecommunications Technologies, Wiley Online (2015).

[16] Sudip Misra, et al.: “Optimal Gateway Selection in Sensor-
Cloud Framework for Health Monitoring”, IET Wireless Sensor
Systems, Vol. 4, No. 2 (2014).

[17] Yao-Chung Hsu, Chi-Han Lin, and Wen-Tsuen Chen: “Design
of a Sensing Service Architecture for Internet of Things with Se-
mantic Sensor Selection”, International Conference UTC-ATC-
ScalCom (2014).

[18] Chin-Feng Lai, Han-Chieh Chao, Ying-Xun Lai, and Jiafu Wan:
“Cloud-Assisted Real-Time Transrating for HTTP Live Stream-
ing”, IEEE Wireless Communications, Vol. 20, No. 3 (2013).

[19] Chin-Feng Lai, Honggang Wang, Han-Chieh Chao, and Guo-
fang Nan: “A Network and Device Aware QoS Approach for
Cloud-Based Mobile Streaming”, IEEE Transactions on Multi-
media, Vol. 15, No. 4 (2013).

[20] Wei Wang, Qin Wang, and Kazem Sohraby: “Multimedia Sens-
ing as a Service (MSaaS): Exploring Resource Saving Potentials
of at Cloud-Edge IoTs and Fogs”, IEEE Internet of Things
Journal, Vol. 4, No. 2 (2017).

[21] Y. Xu and S. Mao: “A Survey of Mobile Cloud Computing for
Rich Media Applications”, IEEE Wireless Communications, Vol.
20, No. 3 (2013).

[22] Xiang Sheng, Jian Tang, Xuejie Xiao, and Guoliang Xue: “Sens-
ing as a Service: Challenges, Solutions and Future Directions”,
IEEE Sensors Journal, Vol. 13, No. 10 (2013).

[23] M. A. E. Al-Fagih, F. M. Al-Turjman, W. M. Alsalih, and H.
S. Hassanein: “Priced Public Sensing Framework for Hetero-

12

geneous IoT Architectures”, IEEE Transactions on Emerging
Topics in Computing, Vol. 1, No. 1 (2013).

[24] Chongwu Dong, et. al., “A Novel Distribution Service Policy
for Crowdsourced Live Streaming in Cloud Platform” IEEE
Transactions on Network and Service Management, Vol. 15, No.
2 (2018)

[25] Jaeho Kim and Jang-Won Lee: “OpenloT: An Open Service
Framework for the Internet of Things”, IEEE World Forum on
Internet of Things (2015)

[26] Mihui Kim, Mihir Asthana, Siddhartha Bhargava, Kartik Kr-
ishnan Iyyer, Rohan Tangadpalliwar and Jerry Gao: “Developing
an On-Demand Cloud-Based Sensing-as-a-Service System for
Internet of Things”, Journal of Computer Networks and Com-
munications, Vol. 2016, Article ID 3292783.

[27] E. AL-Hawri, N.Correia, and A.Barradas: “Design of Network
Coding Based Reliable Sensor Networks” Ad Hoc Networks,
Elsevier, Vol. 91 (2019)

[28] Francesco Longo, et.al.: “Stack4Things: an OpenStack-based
Framework for IoT”, International Conference on Future Inter-
net of Things and Cloud (2015)

[29] Hyeontaek Oh, et. al.: “Web Intent based Service Mashups for
IoT Platform”, IEEE Global Conference on Consumer Electron-
ics (2014)

[30] Sehyeon Heo, Sungpil Woo, Janggwan Im, and Daeyoung Kim:
“IoT-MAP: IoT Mashup Application Platform for the Flexible IoT
Ecosystem”, International Conference on the Internet of Things
(2015)

[31] Xiongnan Jin, et. al.: “Automated Mashup of CoAP Services
on the Internet of Things”, IEEE World Forum on Internet of
Things (2015)

[32] Sungkwang Eom, Wonwoo Ro, and Kyong-Ho Lee: “A Semantic
Sensor Mashup Platform for Internet of Things”, IEEE World
Forum on Internet of Things (2018)

[33] Janggwan Im, Seonghoon Kim, and Daeyoung Kim: “IoT
Mashup as a Service: Cloud-Based Mashup Service for the
Internet of Thing”, IEEE International Conference on Services
Computing (2013)

[34] Bo Cheng, Shuai Zhao, Junyan Qian, Zhongyi Zhai, and Jun-
liang Chen: “Lightweight Service Mashup Middleware With
REST Style Architecture for IoT Applications”, IEEE Transac-
tions on Network and Service Management, Vol. 15, No. 3 (2018).

[35] Michael Compton, et al.: “The SSN Ontology of the W3C
Semantic Sensor Network Incubator Group”, Web Semantics:
Science, Services and Agents on the World Wide Web, Vol. 17
(2012).

[36] Maryam Pouryazdan, et al.: “Quantifying User Reputation
Scores, Data Trustworthiness, and User Incentives in Mobile
Crowd-Sensing”, IEEE Access, Vol. 5 (2017).

[37] W3C: “Semantic Web W3C”, https://www.w3.org/standards/
semanticweb/ [Accessed 02-12-2019].

[38] W3C: “SPARQL Query Language for RDF”, https:/www.w3.
org/TR/rdf-sparql-query/ [Accessed 02-12-2019].

[39] Alexandre Prusch Ziige and Renato Carmo: “On Comparing
Algorithms for the Maximum Clique Problem”, Discrete Applied
Mathematics, Vol. 247 (2018).

[40] F.A. Onat and I. Stojmenovic: “Generating Random Graphs for
Wireless Actuator Networks”, IEEE International Symposium
on a World of Wireless, Mobile and Multimedia Networks (2007).

https://www.w3.org/standards/semanticweb/
https://www.w3.org/standards/semanticweb/
https://www.w3.org/TR/rdf-sparql-query/
https://www.w3.org/TR/rdf-sparql-query/

	Introduction
	Sensing and Actuation as-a-Service
	Everything as a Service

	Related Work
	Resource Allocation Problem
	Assumptions and Definitions
	Mathematical Formulation of the SASM Problem
	Hardness of the Problem

	Algorithmic Approach
	Motivation
	Algorithm Details

	Analysis of Results
	Scenario Setup
	Evaluation
	Fulfilled Mashup Elements and Virtual Things
	Materialization Cost
	Flows at the Cloud
	Size of Mashups

	Conclusions
	References

