

SHANI DU PLESSIS

A COMPARATIVE STUDY OF SOFTWARE
ARCHITECTURES IN CONSTRAINED-DEVICE

IOT DEPLOYMENTS

2021

 ii

Shani du Plessis

A Comparative Study of Software Architectures in
Constrained-Device IoT Deployments

MSc. in Computer Engineering

Supervisor:
Prof. Dra. Noélia Correia

 iii

Statement of Originality

A Comparative Study of Software Architectures in Constrained-
Device IoT Deployments

Declaration of authorship of work: I declare to be the author of this
work, which is original and unpublished. Authors and works consulted

are properly cited in the text and appear in the list of references
included.

Candidate:

(Shani du Plessis)

Copyright ©Shani du Plessis

 The University of Algarve has the right, perpetual and without geographical boundaries, to
archive and make public this work through printed copies reproduced in paper or digital form,
or by any other means known or to be invented, to broadcast it through scientific repositories

and allow its copy and distribution with educational or research purposes, noncommercial
purposes, provided that credit is given to the author and Publisher.

 iv

Work done at the Research Center of Electronics, Optoelectronics and
Telecommunications (CEOT)

 v

Acknowledgements

First and foremost, I would like to thank Dra. Noélia Correia for her continuous support. Her

support, advice and encouragement proved invaluable, not only for the completion of this

research thesis, but throughout my master’s degree. I am very grateful that I have had the chance

to work with her and I finish this degree feeling inspired for the future.

I would like to thank my colleagues at CEOT for always lending an ear when I was faced with

problems or setbacks. I am also grateful to all of the professors that have played an integral part

during my time at UAlg, such as Dr. Pedro Guerreiro for his programming enthusiasm and Dr.

António Ruano for his support as coordinator and director of this degree.

Lastly, I would like to thank my family for all of their support, my partner for always coming to

my aid and my friends, both at UAlg and at home, who are my second family.

 vi

Abstract

Since its inception in 2009, the Internet of Things (IoT) has grown dramatically in both size and

complexity. One of the areas that has seen significant developments is that of resource-

constrained devices. Such devices clearly require careful engineering in order to manage

resources such as energy and memory, whilst still ensuring acceptable performance. A number

of aspects play a critical role in the engineering of such systems. One such aspect is the choice

of software architecture. The microservices architecture appears to be a promising approach for

IoT, as suggested by a number of researchers. However, limited research has been done on the

implementation of microservices in IoT and resource-constrained devices, and even less research

has been done to compare the microservices architecture to the monolithic architecture in such

deployments.

The aim of this research thesis was to compare these two architectures in the context of IoT and

constrained devices. The two architectures were compared by: energy consumption, runtime

performance and memory consumption. To ensure that the results are not specific to a single

programming language, each architecture was developed in three different languages: Go, Python

and C++. Following a review of different asynchronous messaging protocols, Message Queuing

Telemetry Transport was selected. The experiments were conducted on a Raspberry Pi 4, and a

number of other hardware devices were used, including sensors, an actuator and a type C USB

Tester. Two metrics were used to measure power consumption: maximum instantaneous power

consumption and total power consumption. Whilst three metrics were used to measure memory

consumption: maximum Resident Set Size (RSS), total RSS and central processing unit (CPU)

resource usage. Each experiment was carried out 10 times in order to ensure data validity.

The power consumption results showed that the microservices architecture had, on average,

14,9% higher maximum instantaneous power consumption, whilst the total power consumption

of the microservices architecture was only 3,0% greater than that of the monolithic architecture.

The runtime results indicated that the microservices architecture had a longer runtime than the

monolithic architecture for Go and C++, whilst the inverse was true for Python. When

considering memory consumption, it was found that the maximum RSS was 37,1% greater for

the microservices architecture. The total RSS results for both architectures were very similar for

Go and C++, whilst microservices performed much better for Python. Lastly, the results for CPU

usage showed that the monolithic architecture had, on average, 14,9% greater CPU usage than

the microservices architecture. It was concluded that, for small-scale applications, the monolithic

architecture had better performance across most metrics and languages. It was, however,

 vii

recommended that additional research be conducted on larger scale applications to determine the

applicability of these results beyond the scope of small-scale applications. In general, there is

still much room for research in this area.

Keywords: Internet of Things, resource-constrained devices, software architecture,

microservices, monolithic

 viii

Resumo

A Web e a Internet das Coisas (WoT/IoT) são áreas empolgantes que, sem dúvida, continuarão

a desenvolver-se nos próximos anos. À medida que vão sendo feitos novos desenvolvimentos

nestas áreas, e vários tipos de objetos se tornam “Coisas”, é expectável que a limitação de

recursos seja cada vez mais uma preocupação. Atualmente já existem muitos dispositivos que

possuem recursos limitados por vários motivos, como a sua localização em locais difíceis ou

remotos (ex: sensores implantáveis ou sensores de erupção vulcânica) ou necessidade de

trabalhar enquanto estão em movimento (ex: dispositivos vestíveis). Assim sendo, a necessidade

de usar-se os recursos de forma eficiente será cada ver maior.

O objetivo primordial desta tese foi o de analisar a utilização de recursos por parte de uma

aplicação IoT, considerando duas arquiteturas de software diferentes, implementada num

dispositivo com poucos recursos. O dispositivo escolhido é um Raspberry Pi 4, dado ser um

dispositivo embarcado bastante adequado para realização de testes. As arquiteturas que foram

comparadas neste estudo foram: microsserviços e monolítica. Para garantir que os resultados não

fossem específicos da linguagem utilizada, o desenvolvimento foi feito em três linguagens de

programação: Go, Python e C++. Embora seja possível encontrar estudos que analisam como as

linguagens de programação utilizam os recursos, apenas foi encontrado um estudo cujo foco é a

eficiência energética, memória e tempo de execução em dispositivos com recursos limitados, não

tendo sido encontrado nenhum estudo que compare o desempenho das arquiteturas de software

em dispositivos com recursos limitados.

A adoção de uma arquitetura de microsserviços em ambientes WoT/IoT tem vantagens, como

modularidade, flexibilidade e facilidade de manutenção. Vários estudos referem que esta

arquitetura é adequada para WoT/IoT, pois compartilha muitos dos mesmos objetivos. WoT/IoT

é inerentemente dinâmico e tem muitos pontos de extremidade, o que pode apresentar desafios

de desenho e implementação. Uma arquitetura como microsserviços pode explorar estas

caracteristicas, transformando estes desafios em vantagens. No entanto, não foi encontrada

investigação que compare o desempenho da arquitetura de microsserviços com a arquitetura

monolítica, especialmente no contexto

IoT, tendo sido este o foco desta tese.

A escolha do protocolo de transferência de mensagens, para comunicação entre os vários

microsserviços, foi também analisada. Um protocolo de transferência leve será o mais adequado,

para dispositivos que têm recursos limitados, e três opções foram consideradas em mais

 ix

profundidade: MQTT (Message Queuing Telemetry Transport), AMQP (Advanced Message

Queuing Protocol) e CoAP (Constrained Application Protocol). Da análise feita, verificou-se que

o MQTT é limitado na qualidade de serviço, seguranca e confiabilidade que oferece, isto quando

comparado com o AMQP, sendo por isso um protocolo mais leve. Ao comparar-se MQTT e

CoAP, verificou-se que ambos os protocolos oferecem vários benefícios, tendo o MQTT sido

escolhido para os testes realizados.

A abordagem técnica que foi adotada é descrita em detalhe, incluindo os componentes de

hardware necessários para o projeto e o software necessário para a recolha de medições. Foi ainda

delineada uma metodologia experimental, a qual foi seguida de perto. Foram obtidos resultados

que permitem analisar em detalhe o consumo de energia, o tempo de execução e o consumo de

memória. Quanto ao consumo de energia, em específico, recolhe-se o consumo de energia

instantâneo máximo e o consumo de energia total. Desta análise verificou-se que o consumo de

energia instantâneo máximo da arquitetura de microserviços foi, em média, e em todas as

linguagens, 14.9% maior do que o consumo obtido para a arquitetura monolítica. Verificou-se

também que a linguagem Go tem o maior consumo de energia instantâneo máximo, para ambas

as arquiteturas, enquanto que o Python e o C++ tiveram medidas semelhantes.

Os resultados para o consumo total de energia (durante o tempo de execução total) foram

ligeiramente diferentes. Ao comparar-se as duas arquiteturas, deduziu-se que os valores de

consumo de energia eram muito semelhantes e, em média, e em todas as linguagens, a arquitetura

de microsserviços consumia apenas 3.0% a mais que a arquitetura monolítica. Também foi

verificado que ao usar-se a arquitetura monolítica, o consumo total de energia era quase idêntico

em todos as linguagens. Com a arquitetura de microserviços, o Python teve o maior consumo,

seguido do Go e C++, embora os valores não tenham diferido muito. Também ficou claro

que, embora o consumo de energia instantâneo máximo possa ser útil para entender os requisitos

de energia de pico, não é diretamente proporcional ao consumo de energia total. Por exemplo, o

Python teve o menor consumo de energia instantâneo máximo, mas o maior consumo de energia

total.

A segunda parte dos resultados considerou o desempenho no que diz respeito ao tempo de

execução. Considerando apenas a arquitetura, verificou-se que a quitetura de microsserviços

tinha um tempo de execução maior do que a arquitetura monolítica para Go e C++, enquanto o

inverso era verdadeiro para o Python, o que pode estar relacionado com a otimizacao de

simultaneidade vinculada à unidade central de processamento (CPU), pelas diferentes

linguagens. Ao comparar o tempo de execução das linguagens de programacao, os resultados

 x

ficaram amplamente em linha com as expetativas. C++ teve o menor tempo de execução, seguido

de perto pelo Go. O Python teve um tempo de execução significativamente mais longo, o que faz

sentido já que o Python é a única linguagem interpretada que foi usada neste projeto. Foi

interessante notar que o tempo de execução do Python foi muito maior ao usar-se uma arquitetura

monolítica do que ao usar-se uma arquitetura de microserviços, o que não foi o caso do C++ ou

Go. Com a arquitetura de microserviços, o Python teve um tempo de execução médio 319.4%

maior do que o do C++, enquanto que o tempo de execuçao médio do Go foi 31.5% maior do

que o do C++. Diferenças semelhantes foram observadas para a arquitetura monolítica.

O consumo de memória foi medido usando três métricas diferentes: tamanho do conjunto

residente (RSS) máximo, RSS total e uso de CPU. A comparação do RSS máximo, em cada

arquitetura, mostrou que o RSS máximo para a arquitetura de microserviços foi 37.1% maior do

que para a arquitetura monolítica. A diferença foi especialmente significativa para Python (65.9%

de diferença). Verificou-se que o Go teve um RSS máximo significativamente maior do que as

outras linguagens, para ambas as arquiteturas. O Python teve o menor RSS máximo na arquitetura

monolítica, enquanto que o C++ teve o menor para a arquitetura de microserviços. Os resultados

para o RSS total foram muito diferentes do RSS máximo, tanto por

arquitetura como por linguagem usada. Mais concretamente, as medidas totais de RSS para Go

e C++ nao diferiam muito por arquitetura, embora houvesse uma grande diferença quando

comparado com o Python. Em média o RSS total foi 127.0% maior para a arquitetura monolítica

do que para a arquitetura de microserviços, ao usar-se Python. Comparando por linguagem, o

RSS total do Python foi significativamente maior do que para as outras duas linguagens,

especialmente para a arquitetura monolítica, enquanto o Go e C++ tiveram medições RSS totais

muito semelhantes.

A última métrica de consumo de memória considerada foi o uso médio da CPU. Verificou-se que

a arquitetura monolítica teve, em média, 14.9% maior utilização de CPU do que a arquitetura de

microserviços, e a maior diferença foi observada para o Python. Uma comparação por linguagem

mostrou que o Go teve a maior utilização de

CPU, para ambas as arquiteturas. O C++ teve a segunda maior utilização de CPU, e o Python

teve a menor utilização. Estas conclusões foram de encontro às expectativas, já que o Go tem

processos integrados leves (rotinas Go), podendo otimizar a utilização de CPU.

Esta dissertação produziu, em geral, resultados muito interessantes, uns mais esperados que

outros. Os resultados mostraram que a arquitetura monolítica teve melhor desempenho na

maioria das métricas, ou seja, consumo de energia instantâneo máximo, consumo de energia total

 xi

(apenas para o Go e Python), tempo de execução geral (apenas para o Go e C++), RSS e CPU

máximos. Deste modo, é possível concluir que ao implementar-se aplicações de pequena escala,

em dispositivos IoT, a arquitetura monolítica pode oferecer mais benefícios. É bastante provável,

no entanto, que a arquitetura de microserviços possa superar a arquitetura monolítica em

aplicações de maior escala. A dimensão da aplicação deve, por isso, ser considerada ao escolher-

se uma arquitetura de software.

Claramente, ainda existe muito espaço para contribuição nesta área de investigação. A

investigação encontrada sobre o desempenho da arquitetura de microserviços, em comparação

com a arquitetura monolítica, é limitafa e não foi encontrada investigação no contexto da IoT.

Isto acaba por ser surpreendente, pois muitas empresas estão já a adotar microserviços e tem

havido um aumento das pesquisas relacionadas com esta arquitetura. Assim sendo, compreender

quais as vantagens e desvantagens desta arquitetura tornou-se muito pertinente. Embora esta

dissertação tenha analisado a arquitetura de microsserviços, e tendo esta sido comparada com a

arquitetura monolítica, considerando diferentes linguagens, a análise é feita numa escala

relativamente pequena, quanto ao número de componentes de serviço, e num único dispositivo

embarcado. A análise de aplicações de maior escala forneceria, certamente, perceções adicionais

muito valiosas.

Palavras-chave: IoT, dispositivos com restrição de recurso, arquitetura de software,

microserviços, monolítico.

Table of Contents

Acknowledgements ... v

Abstract .. vi

Resumo .. viii

List of Figures .. xiv

List of Tables .. xvi

Nomenclature ... xviii

1. Introduction and Research Objective .. 1

1.1 Introduction ... 1

1.2 Research Objective and Expected Contribution .. 1

1.3 Brief Overview of Report Content ... 2

2. Background ... 3

2.1 Constrained Devices .. 3

2.2 Web of Things and Internet of Things .. 4

2.3 Microservices Architecture, Monolithic Architecture and Messaging Protocol 5

2.4 Go, Python and C++ .. 7

3. Literature Review of the State of the Art ... 9

3.1 Microservices vs. Monolithic as an Architecture for IoT/WoT .. 9

3.2 Messaging Protocol ... 11

3.3 Programming Language Efficiency for Embedded Devices ... 15

4. Technical Approach ... 17

4.1 Software Architecture ... 17

4.2 Hardware Architecture .. 18

4.3 Data Collection .. 19

5. Methodology and Evaluation ... 24

5.1 Microservices Application Development ... 24

5.2 Data Collection .. 24

5.3 Evaluation and Comparison ... 25

6. Results and Discussion ... 26

6.1 Power Consumption .. 26

6.2 Runtime .. 29

6.3 Memory Consumption .. 33

7. Conclusion and Future Work .. 38

 13

8. References ... 42

Appendix A – Code ... 46

A.1 – Bash Code .. 46

A.2 – Microservices Code .. 48

A.3 – Monolithic Code ... 73

Appendix B – Results .. 91

B.1 – Power Results .. 91

B.2 – Runtime Results .. 92

B.3 – Memory Results .. 95

List of Figures

Figure 1: IETF RFC 7228 showing classification of constrained devices (KiB = 1024 bytes) [Keranen, A.,

Ersue, M. and Bormann, C., 2014] .. 3

Figure 2: Visual representation of the architectural difference between a monolithic application and a

microservices application [Fowler, M., 2014]. .. 6

Figure 3: Graphical representation of MQTT architecture [Paessler.com. 2018] 11

Figure 4: Graphical representation of AMQP architecture [Bahashwan, A. and Manickam, S., 2018]. 12

Figure 5: Graphical representation of MQTT and COAP architectures [Mishra, H., 2019]. 13

Figure 6: Graphical representation of the microservices architecture that was used in this project. 17

Figure 7: Graphical representation of the monolithic architecture that was used in this project. 18

Figure 8: Photograph showing the experimental setup of the breadboard and sensors 19

Figure 9: Photograph showing the experimental setup of the Type C USB Tester. 19

Figure 10: Snapshot of the runtime outputs when using the language specific time library (this is an

example of Go) ... 21

Figure 11: Snapshot of the output when running the GNU time command for peak memory usage 22

Figure 12: Snapshot of the Syrupy log that was used to capture memory consumption measurements at

regular intervals. .. 23

Figure 13: Bar chart showing the comparative maximum instantaneous power consumption of different

languages and architectures .. 27

Figure 14: Bar chart showing the comparative total power consumption of different languages and

architectures. .. 28

Figure 15: Bar chart showing the comparative overall runtime of different languages and architectures. . 30

Figure 16: Box plot showing the comparative overall runtime of Go and C++ when using a microservices

architecture. ... 31

Figure 17: Box plot showing the comparative overall runtime of Go and C++ when using a monolithic

architecture. ... 32

Figure 18: Bar chart showing the comparative maximum RSS of different languages and architectures. .. 34

Figure 19: Bar chart showing the comparative total RSS of different languages and architectures. 35

Figure 20: Bar chart showing the comparative CPU usage of different languages and architectures. 36

 xv

Figure A.1: Screenshot showing the bash script to launch the Go microservices application 46

Figure A.2: Screenshot showing the bash script to launch the Go monolithic application 46

Figure A.3: Screenshot showing the bash script to launch the Python microservices application 46

Figure A.4: Screenshot showing the bash script to launch the Python monolithic application 47

Figure A.5: Screenshot showing the bash script to launch the C++ microservices application 47

Figure A.6: Screenshot showing the bash script to launch the C++ monolithic application 47

List of Tables

Table 1: Summary of Maximum Instantaneous Power Consumption for different languages and

architectures. ... 26
Table 2: Table showing the percentage difference in maximum instantaneous power consumption

between different architectures. .. 27
Table 3: Summary of Total Power Consumption for different languages and architectures. 28
Table 4: Table showing the percentage difference in total power consumption between different

architectures. ... 29
Table 5: Table summarising the runtime measured for different languages and architectures. 30
Table 6: Table summarising the runtime differences between architectures. .. 33
Table 7: Table summarising the maximum RSS of different languages and architectures 33
Table 8: Table summarising the maximum RSS differences between architectures. 34
Table 9: Table summarising the total RSS of different languages and architectures 35
Table 10: Table summarising the total RSS differences between architectures. .. 36
Table 11: Table summarising the CPU usage of different languages and architectures 36
Table 12: Table summarising the CPU usage differences between architectures. 37
Table B.1: Table with full maximum instantaneous power results for Microservices Architecture 91
Table B.2: Table with full maximum instantaneous power results for Monolithic Architecture 91
Table B.3: Table with full total power results for Microservices Architecture .. 91
Table B.4: Table with full total power results for Monolithic Architecture ... 92
Table B.5: Table with full DHT runtime results for Microservices Architecture 92
Table B.6: Table with full LED runtime results for Microservices Architecture 92
Table B.7: Table with full PIR runtime results for Microservices Architecture ... 93
Table B.8: Table with full overall runtime results for Microservices Architecture – concurrent 93
Table B.9: Table with full overall runtime results for Microservices Architecture – cumulative 93
Table B.10: Table with full DHT runtime results for Monolithic Architecture .. 94
Table B.11: Table with full LED runtime results for Monolithic Architecture .. 94
Table B.12: Table with full PIR runtime results for Monolithic Architecture .. 94
Table B.13: Table with full overall runtime results for Monolithic Architecture 95

 xvii

Table B.14: Table with full Maximum RSS results for Microservices Architecture 95
Table B.15: Table with full Maximum RSS results for Monolithic Architecture .. 95
Table B.16: Table with full Total RSS results for Microservices Architecture .. 96
Table B.17: Table with full Total RSS results for Monolithic Architecture .. 96
Table B.18: Table with full CPU results for Microservices Architecture .. 96
Table B.19: Table with full CPU results for Monolithic Architecture ... 97

Nomenclature

Abbreviations

Amazon SQS : Amazon Simple Queue Service

AMQP : Advanced Message Queuing Protocol

API : Application Programming Interface

CMQ : Cloud Message Queue

CoAP : Constrained Application Protocol

CPU : Central Processing Unit

DHT : Digital Humidity and Temperature

GPIO : General Purpose Input/Output

HTTP : Hypertext Transfer Protocol

IETF : Internet Engineering Task Force

IoT : Internet of Things

IP : Internet Protocol

JSON : JavaScript Object Notation

kB : Kilobyte

LED : Light Emitting Diode

MB : Megabyte

MQTT : Message Queuing Telemetry Transport

MQTT-SN : Message Queuing Telemetry Transport for Sensor Networks

QoS : Quality of Service

RAM : Random Access Memory

RAPL : Running Average Power Limit

REST : Representational State Transfer

RFC : Request for Comment

ROM : Read-Only Memory

RSS : Resident Set Size

TCP : Transmission Control Protocol

UDP : User Datagram Protocol

WoT : Web of Things

 1

1. Introduction and Research Objective

 1.1 Introduction
In 1960, the first known embedded system was used for developing the Apollo Guidance System,

which marked the birth of a new world - the world of embedded devices. With the advent of the

internet years later, embedded devices began to morph into what is now known as the Internet of

Things (IoT) – a term coined in 1999 to describe objects that are able to communicate [Rungta,

K., 2020][Lueth, K. L., 2014]. Today the term IoT encompasses a plethora of internet connected

devices, from smart watches to smart fridges, from cars to eating utensils [Komiyama, N., 2017].

By 2008, there were already more "Things" connected to the internet than there were people, and

it is estimated that by the end of 2021, there will be between 25 and 50 billion web-connected

Things. This clearly shows the trend that has taken hold of IoT [Cook, S., 2020][Burhan, M. et

al., 2018].

With the increase in number of IoT devices, comes the diversification of the types and uses of

these devices. One such group/class of devices is referred to as "constrained devices".

Constrained devices are devices that have limited resources, e.g. computational power, memory

or energy. A number of factors affect the management and usage of these resources, such as the

type of device, the operating system, the conditions of use, the choice of programming language

and the software architecture. Once a device has been selected, some of these factors can be

adjusted to improve resource management, e.g. choice of programming language, whilst others

cannot be altered, such as the deployment conditions in many cases. Since resource management

is critical to the efficacy of constrained devices, it is an area that is well worth exploring.

 1.2 Research Objective and Expected Contribution
The efficient use of resources is a critical aspect for many embedded devices. Therefore, the

choice of software architecture is very important as it can have a significant impact on energy,

memory and runtime performance. The aim of this research thesis was to analyse and compare

the energy, memory and runtime performance of an embedded device application using two

software architectures and three programming languages (to avoid language-specific results).

The two software architectures that were compared are the microservices and monolithic

architectures, whilst Go, C++ and Python are the three programming languages that were used.

Given the nature of resource-constrained devices, the optimization of energy and memory use,

as well as runtime, is a critical concern in IoT and the Web of Things (WoT). Hence, the choice

 2

of software architecture, programming language and programming language implementation is

an important decision. Thus far, limited research has been conducted on the impact of software

architecture on resource-constrained device performance (see the Section on state of the art). It

is therefore expected that this research will provide valuable insights for the choice of software

architecture in the field of IoT and WoT.

 1.3 Brief Overview of Report Content
The remainder of this report will delve into a number of topics in more depth. Section 2 provides

background on a number of key topics; Section 3 provides a literature review of the state of the

art. Section 4 gives an overview of the technical approach that was taken. Section 5 discusses the

methodology that was followed when conducting the experiments as well as the evaluation that

was done. The results from this research thesis are shown and discussed in detail in Section 6.

Finally, Sections 7 and 8 are dedicated to the conclusion and references, respectively. An

appendix can be found at the end of this document.

 3

2. Background

 2.1 Constrained Devices
Constrained devices include sensors (e.g. motion or temperature sensor), actuators (e.g. LED

lights or motors), aggregators, microcontrollers and many more. Constrained devices are

typically devices that are built to handle a specific application purpose and are usually connected

to a gateway device, which acts as the intermediate for communication to the internet. The

constraints on resources of sensors, microcontrollers, etc. can range from code complexity, i.e.

read-only memory (ROM)/Flash, and available random-access memory (RAM) to processing

capabilities and availability of power [Nagasai, M., 2017]. Given the vast array of resource

constrained devices, IETF published RFC 7228 to classify these devices into 3 classes, as shown

in Figure 1.

Figure 1: IETF RFC 7228 showing classification of constrained devices (KiB = 1024 bytes)

[Keranen, A., Ersue, M. and Bormann, C., 2014]

Class 0 devices have severe constraints on memory and processing capabilities; hence they are

not able to communicate directly with the internet and require some gateway node in order to

connect. Class 1 devices are able to run low power IoT protocols, such as Constrained

Application Protocol (CoAP) and Message Queuing Telemetry Transport for Sensor Networks

(MQTT-SN) running over User Datagram Protocol (UDP). Class 2 devices have constraints

similar to mobile phones and, therefore, are able to run similar protocols as mobile phones. As

with mobile phones, power source availability is still a major concern. Therefore, low power

protocols are still preferred [Nagasai, M., 2017]. This research thesis is aimed at devices that fall

into classes 1 and 2. Although Raspberry Pi 4 falls into class 2, it serves as an ideal testing device

as the relative energy consumption, runtime and memory performance will be valuable

information for both classes.

IETF published an additional RFC (RFC 6606), which differentiates between devices that have

regular access to electricity and those that do not. The former is referred to as “power-affluent”

and the latter is referred to as “power-constrained” [Gomez, C. et al., 2012]. Although the

 4

Raspberry Pi used in this project has access to power, the experiments that were done to

determine energy efficiency will primarily benefit energy-constrained devices. Energy and

memory efficiency are clearly critical aspects for resource-constrained devices. However,

runtime can also be a critical factor for these devices. For example, a fire sensor is required to

have a very fast runtime so that a client/subscriber is informed of a fire as soon as possible.

Similarly, a medical or security sensor/actuator should be able to execute code quickly in order

to meet functional requirements. As such, runtime performance has also been selected as a key

parameter to be analysed in this project. It is important to note that real-time performance

behaviours, such as runtime, depend on a number of factors, such as the operating system and

any obscure background processes that may introduce noise into the measurements. In order to

limit this noise, all background processes were shut off, as recommended by Hindle et al. [Hindle,

A. et al., 2014].

 2.2 Web of Things and Internet of Things
Connectivity is an important factor within the area of Internet of Things. If devices are unable to

communicate with one another over the internet, they are simply isolated Things. However,

within the world of IoT, the billions of Things use a vast array of protocols, software and

hardware, therefore connectivity is very challenging. The fact that there is such heterogeneity in

connectivity of devices can in part be explained by the fact that in the early years of IoT, most of

the attention was paid to the lower layers of the network stack in order to find ways for devices,

such as wearables and kitchen items, to sense and send data.

In those early days, little attention was paid to interconnectivity and interoperability between

devices, and this lack of interoperability has only increased over time as a wider range of

standards and protocols has been introduced in an attempt to standardize IoT, which ironically

only exacerbated the problem. One of the promising approaches/solutions to this problem is

known as the Web of Things (WoT). WoT was proposed as a way to interconnect devices using

the already widely implemented web. Given the wide adoption of the web, as well as the fact that

the web is, for the most part, simple and open source, it appeared to be an ideal candidate for the

standardization of the top layer of IoT [Bolar, T., 2020].

In addition to improved interoperability, WoT offers many benefits over its IoT counterpart, such

as open and extensible standards, maintainability, loose coupling and security [Guinard, D. and

Trifa, V., 2016]. Arguably one of the most important aspects of WoT is the use of machine-

 5

understandable metadata, such as JavaScript Object Notation (JSON)1 to describe and store

information about a Thing. This concept was initially proposed in the "Building the Web of

Things" book [Guinard, D. and Trifa, V., 2016] in 2016 and has since evolved into a much bigger

and more well-defined concept, reflected, for example, in the W3C Thing Description [W3.org.

2019]. Within the WoT, a Thing is an abstract representation of a physical device, and the Thing

Description provides information on physical device properties and statuses (e.g. temperature),

possible actions, and other more complex aspects like security configurations [Parwej, Dr. Firoj

& Akhtar, Nikhat & Perwej, Dr. Yusuf., 2019]. Since the research in this thesis was aimed at

analysing the performance of the device itself and not on internet connectivity, the data model

proposed by Guinard and Trifa (2016) was used due to its simplicity. The choice of adoption of

a particular data model does not affect the usefulness and applicability of the conclusions drawn

in this research thesis.

2.3 Microservices Architecture, Monolithic Architecture and
Messaging Protocol

The choice of architecture is a critical consideration for embedded devices. Given the loose

coupling of the WoT approach and the high volatility within WoT/IoT, microservices is clearly

a standout option for software architecture. By definition, WoT has a huge deployment ecosystem

and a large number of end points. Additionally, the Things are inherently dynamic whether it is

spatially (e.g. wearables), in terms of time (e.g. switching on and off), in terms of purpose (e.g.

what is being monitored may change) or interchangeability (e.g. one device may be changed to

a different, more advanced one). This leads to very complex networks that are difficult to

implement and even more difficult to maintain [Babaria, U., 2018]. These are all compelling

reasons for the use of the microservices architecture.

Microservices is a software application development approach that makes use of independently

deployable, modular services. The concept of a microservice is well explained by Thones, who

stated that a microservice is a small application that can be deployed independently, scaled

independently, tested independently and has only one responsibility [Thones, J. 2015]. Typically,

each of these services is organized around a specific business or technical capability, is loosely

coupled and, due to the size and modularity, highly maintainable, testable and scalable

[Richardson, C., 2019].

1 Widely used lightweight data interchange format

 6

By comparison, the monolithic architecture is often considered to be the traditional approach for

building applications and comprises a single code base for all its services and functionalities.

This approach is often easier to develop and deploy at the outset but becomes difficult to manage

as any updates or changes require accessing the whole code base [Gnatyk, R., 2018]. However,

for smaller applications, end-to-end testing and debugging are often much easier for monolithic

applications than for microservices applications since all application logic is contained in a single

unit. Figure 2 provides a good visual explanation of the differences between a traditional

monolithic application and a microservices application.

Figure 2: Visual representation of the architectural difference between a monolithic

application and a microservices application [Fowler, M., 2014].

It is clear from Figure 2 that the microservices approach enables flexibility, modularity and

scalability, whilst the monolithic approach offers distinct boundaries and set functionalities. The

modularity of the microservices approach means that different programming languages can be

used in different modules/components and that different modules/components can be distributed

across different locations (embedded device, cloud, server, etc.).

Although the microservices architecture offers many clear benefits, there are also a few potential

disadvantages. Individual microservice components are typically simple but the microservices

ecosystem as a whole can become complex due to the number of moving parts and

communication between these parts. The size of each component can also be a difficult decision

as components that are too large tend towards monolithic behaviour, whilst components that are

 7

too small may just transfer complexity from the component to the intercommunication. There are

some other potential draw backs like hackability, third party dependencies, etc. [Atchison, L.,

Wieldt, T. and Paul, F., 2018]. Evidently, the monolithic architecture also has a few

disadvantages such as scalability, which can only be done for the entire application, not

individual functionalities. Large monolithic applications also become very difficult to understand

and it can be difficult to anticipate the impact of an update/change on the application. Overall,

the microservices architecture appears to be a promising option for IoT/WoT and embedded

devices. However, further research is required to verify this.

An obvious question that arises after inspection of Figure 2 is about how the components

communicate in the microservices architecture. Components communicate using "messages",

which is a broad term for any inter-process communication protocol such as Hypertext Transfer

Protocol (HTTP), Transmission Control Protocol (TCP), Advanced Message Queuing Protocol

(AMQP), etc. Most frequently, communication between microservice components is designed to

be flexible and event driven. The two most common types of protocols are HTTP and lightweight

asynchronous messaging protocols, e.g. AMQP [De la Torre, C., Wagner, B. and Rousos, M.,

2020]. Due to the resource constrained nature of many embedded devices, it was decided that a

lightweight messaging protocol, instead of HTTP, would be used in this project.

Asynchronous messaging protocols are generally event driven. With this approach,

microservices communicate by exchanging messages via a bus. This approach further enables

loose coupling and also means that service discovery is not needed. There are a number of

different asynchronous messaging protocols, such as Amazon Simple Queue Service (Amazon

SQS), CoAP, which can also operate in synchronous mode, Cloud Message Queue (CMQ),

AMQP and Message Queuing Telemetry Transport (MQTT). Although each of these protocols

have their own merits, CoAP, AMQP and MQTT are three of the most widely used publish-

subscribe messaging protocols and, therefore, the choice of messaging protocol for this project

was limited to these three protocols. CoAP, AMQP and MQTT are discussed in further detail in

Section 3.2.

2.4 Go, Python and C++
The following three programming languages were selected for comparison in this research thesis:

Go, Python and C++. These languages were selected as two are compiled languages (Go and

C++) and one is an interpreted language (Python). Go is a compiled language but is programmed

similarly to a dynamic-typed interpreted language [Go Documentation., 2016]. Compiled

languages have the advantage that the source code is translated into machine code by a compiler.

 8

This results in very efficient machine code that can be executed many times. By comparison,

interpreted languages must be parsed, interpreted, and executed every time that the program is

run. Hence the overhead of translating from source code to machine code is incurred every time.

Interpreted languages are, however, usually more flexible and offer some advantages such as

dynamic typing and less lines of code [Blokdyk, G., 2018].

C++ is a general-purpose programming language that was released in 1985 and is an extension

of the C programming language. C++ was designed with a focus on system programming and

embedded/resource-constrained systems, hence performance, efficiency and flexibility were key

design considerations [Stroustrup, B., 2013]. Go was first released in 2009 and was designed by

Google engineers as a modern approach to today’s software engineering paradigm, i.e. scalable

and cloud-based. Go is built for concurrency, can be compiled on most machines and is simple

to learn [Biggs, J., & Popper, B., 2020]. Python is an interpreted high-level, general-purpose

programming language that was released in 1991. It was designed with an emphasis on code

readability and simplicity. It fully supports object-oriented and structured programming and is

dynamically typed [Kuhlman, D., 2011]. Although the primary focus of this thesis was on

comparing software architectures, this research should also provide some interesting insights into

the comparison of runtime performance, energy consumption and memory consumption of these

languages.

 9

3. Literature Review of the State of the Art

3.1 Microservices vs. Monolithic as an Architecture for IoT/WoT
As discussed in the introduction, given the distributed and dynamic nature of IoT and WoT, the

microservices architecture stands out as a highly promising approach in many contexts. In fact,

as early as 2005 the term “Micro-Web-Services” was introduced by Peter Rodgers (2005) at the

Web Services Edge conference [Rodgers, P., 2005]. Over recent years, substantial research has

been done to determine the aptness of the microservices architecture for IoT and WoT. Santana,

Alencar and Prazeres (2018) conducted a thorough review of the use of the microservices

architecture to solve many of the problems faced in the field of IoT. The authors carried out a

systematic mapping of 18 studies and produced an overview of the state of the art of application

of the microservices architecture in IoT and WoT. They found that across all of the analysed

works, the primary focus was on the design phase and that there was still a need for investigation

into implementation, evaluation and operation [Santana, C., Alencar, B. and Prazeres, C., 2018].

In-line with the findings of Santana et al. (2018), very few studies could be found that compared

the implementation and performance, on a technical level, of the monolithic architecture to the

microservices architecture in the context of IoT/WoT. One study, conducted by Al-Debagey and

Martinek (2018), compared the two architectures for a web application, although no resource

constrained devices were used. The study aimed at comparing the throughput2 and response time3

of the two architectures. The results indicated that the two architectures had a similar

performance in both metrics. However, when there were only a small number of requests/clients

(1000 or less threads), the monolithic architecture had a better throughput. With 2000 threads or

more, the microservices architecture performed slightly better. The response times of the two

architectures were almost identical regardless of the number of threads [Al-Debagy, O. and

Martinek, P., 2018].

Another study, conducted by Tapia et al. (2020), was not related to IoT but provided some

valuable insights into the performance of the monolithic and microservices architectures.

Following a number of tests, a comparative analysis was done of the results. It was found that

the monolithic architecture used less central processing unit (CPU) resources, whilst the

microservices architecture consumed less memory. It was also discussed that a monolithic

architecture can be more efficient, and incur less overhead, but primarily for small-scale

2 Number of requests that the application could handle per second
3 Time that elapses between the request and the response

 10

applications [Tapia, F. et al., 2020]. It can be concluded from these two studies that, in terms of

non-IoT applications, both architectures have benefits and drawbacks. In the context of IoT/WoT,

a number of studies were conducted that provided some insights into the architectures, albeit in

a non-technical sense. These studies are outlined below.

Zeiner, Goller, Jiménez, Salmhofer and Haas (2016) conducted a study that focused on a WoT

platform based on the microservices architecture. In this study, the authors built a Web of Things

platform that implemented a REST interface using a JSON data format, with the aim of building

a responsive, resilient, flexible and message driven system. The findings from the study indicated

that the use of the microservices architecture allows the flexibility and scalability that is required

for a WoT platform. They also found that maintenance of and changes to the platform were much

simpler (compared to a monolithic architecture) and did not compromise the performance of the

platform due to the modularity of the microservice components [Zeiner, H. et al. 2016].

Another study, conducted by Mena, Criado, Iribarne and Corral (2020), investigated the use of a

digital representation of a device based on microservices and the WoT framework, named Digital

Dice, to solve the problems faced by resource-limited embedded devices. The authors of this

study discussed the advantages of using WoT, such as the Thing Description that is used to define

Things in a standard way. They also discussed the advantages of using a microservices

architecture, such as the ability to break down complex interactions so that there is one

microservice for each interaction. The authors concluded that the use of microservices within the

WoT framework enabled the system to achieve flexibility and robustness, and also allowed for

easier maintenance and development [Mena, M. et al. 2020].

In a study by Butzin, Golatowski and Timmermann (2016), the authors discussed the similarities

in goals of microservices and IoT, which included lightweight communication, independently

deployable software and minimizing centralized management. The authors concluded that,

although microservices and IoT approach their goals from different directions, they share many

common goals [Butzin, B., Golatowski, F. and Timmermann, D., 2016]. A study by Santana et

al. (2019) proposed the use of microservices to improve the reliability of IoT applications

[Santana, C. et al., 2019]. Huang, Lu, Walenstein and Medhi (2017) proposed reconceiving IoT’s

fundamental unit of construction (a “Thing”) as a microservice and argued that the microservices

approach for IoT can improve many aspects such as API gateways, distribution of services,

uniform service discovery and access control [Lu, D. et al., 2017]. Overall, the use of

microservices in the field of IoT and WoT gave favourable results in all of the studies that were

reviewed. However, there is no technical evidence to support the use of the microservices

 11

architecture over the monolithic architecture in the context of IoT and resource-constrained

devices. Hence it was decided that the performance of the two architectures would be compared

on a technical level in this research thesis.

3.2 Messaging Protocol
As mentioned in the Introduction Section, there is an abundance of potential messaging protocols.

Given that this project aimed to implement an IoT application on a resource constrained device,

only lightweight messaging protocols were explored. Three messaging protocols were identified

as options for this project: MQTT, AMQP and CoAP. Since MQTT and AMQP are the most

closely related protocols out of the three, they are discussed and compared first. A number of

comparative reviews have been done between different messaging protocols for IoT, and in

particular about the differences between MQTT and AMQP.

MQTT was first authored in 1999 by Andy Stanford-Clark and Arlen Nipper and was later

standardised by OASIS, in 2013. MQTT is a standard messaging protocol for IoT and is designed

as an extremely lightweight publish-subscribe messaging transport [Mqtt.org. 2020]. MQTT is

described well by Figure 3. Essentially, each resource is an individual and separate component

and each of these components communicates directly with an MQTT-Broker. The publisher

component publishes any relevant information, e.g. temperature, to the MQTT queue and the

subscriber component then subscribes to relevant information from the queue. Although only 1-

way communication is shown on the publisher side in Figure 3, 2-way communication with the

MQTT-broker is possible for all components [Paessler.com. 2018].

Figure 3: Graphical representation of MQTT architecture [Paessler.com. 2018]

 12

Originally, MQTT was designed for use in devices with unreliable network resources, e.g. in

remote locations, but it is now more widely adopted. MQTT runs on top of TCP/IP and was

designed to be an event-driven protocol, hence there is no ongoing data transmission

[Paessler.com. 2018]. In addition to minimizing number of transmissions, the transmitted

messages are also small and tightly defined. Each message has a header of only 2 bytes and there

are three possible quality of service (QoS) levels based on the desired balance between data

transmission minimization and reliability maximization.

AMQP is an open standard protocol by OASIS that was released in 2011. AMQP also follows

the publish-subscribe paradigm and was initially designed to enable interoperability between

different devices that have different internal systems [Dizdarević, J., Carpio, F., Jukan, A. and

Masip-Bruin, X., 2019]. AMQP has substantially more functionality than MQTT. It allows for

message orientation, security, routing and switching reliability. The top-level architecture of

AMQP is quite similar to that of MQTT, as can be seen in Figure 4.

Figure 4: Graphical representation of AMQP architecture [Bahashwan, A. and Manickam,

S., 2018].

In comparison to the MQTT architecture, it can be seen that the AMQP broker is split into two

parts: exchange and queues. The exchange receives messages from the publisher and routes each

message to the correct subscriber queue. There are a number of other key differences as well,

which are outlined in a number of comparative studies. The message overhead is one such

example. MQTT has a smaller message header size (2 bytes vs 8 bytes) and MQTT has a small

and defined payload, whilst AMQP's payload is more flexible. AMQP has full cache and proxy

support and substantially more security standards. Additionally, the QoS offered by AMQP is

 13

superior to that of MQTT [Dizdarević, J. et al., 2019] [Bahashwan, A. and Manickam, S., 2018]

[Al-Masri, E. et al., 2020] [MQTT, A., 2019].

Although AMQP has many benefits and is widely adopted in IoT devices that prioritise flexibility

and reliability, all of the studies concur that this protocol is not well suited to constrained

environments. According to Dizdarević et al. (2019), with all of the features that AMQP offers,

it has relatively high power, processing and memory requirements. Hence it is better suited to a

system that is not bandwidth, power or latency restricted [Dizdarević, J. et al., 2019]. Al-Masri

et al. also found in their study that MQTT had much lower memory, CPU and power consumption

than AMQP [Al-Masri, E. et al., 2020]. Based on these findings, and the fact that this project

aimed to optimize resource usage in constrained devices, MQTT is better suited to this project

than AMQP. Therefore, the next comparison to be made is between MQTT and CoAP.

MQTT and CoAP have a number of fundamental differences. MQTT is a many-to-many

communication protocol for passing messages through a central broker, to and from multiple

clients. MQTT is ideally used as a communications bus for live data. Although CoAP can operate

in different modes, it is primarily a one-to-one protocol that allows direct communication

between devices on the same constrained network. Hence it is better suited for resource creation

and management on devices. Additionally, CoAP is commonly referred to as a request-response

protocol, whilst MQTT is a publish-subscribe protocol [Jaffey, T., 2014]. Figure 5 provides a

good visual representation of the architectural differences.

Figure 5: Graphical representation of MQTT and COAP architectures [Mishra, H., 2019].

Some additional benefits offered by MQTT include time, space and synchronization decoupling.

Time decoupling is mentioned as nodes can publish information regardless of the state of other

nodes. Hence sleep or low power modes, which are often critical to power constrained devices,

can still be employed without affecting communication. Space decoupling is achieved as nodes

only need to know the IP-address of the broker node, not the addresses of all other nodes that

 14

publish or subscribe to information. Synchronization decoupling is achieved as messages are

only retrieved from the message queue once the subscriber node has completed all existing

operations. This improves resource management of devices and allows for sleepy states

[Stansberry, J., 2015].

CoAP does, however, offer a number of advantages over MQTT, such as message metadata.

MQTT can be used by any client for any purpose, but clients must know the correct message

formats to be able to communicate. By comparison, CoAP allows for content negotiation and

discovery. Another advantage of CoAP is that it uses UDP as the transport protocol, whilst

MQTT typically uses TCP as the transport protocol, although more recent developments have

allowed for operation over UDP e.g. MQTT-SN. UDP’s connectionless datagrams have less

overhead, which allows devices to remain in lower power modes for longer periods of time,

thereby conserving power. This advantage comes with a downside, however, as UDP is

inherently, and intentionally, much less reliable than TCP [Mishra, H., 2019][Stansberry, J.,

2015].

A number of studies have also been conducted to compare the technical performance of MQTT

and CoAP. One such study was conducted by Van der Westhuizen and Hancke (2018) to compare

communication delay and network traffic on both resource constrained devices and non-resource

constrained devices. The researchers found that MQTT and CoAP had very similar

communication delays when both the client and broker/server were on the same network. When

the client was connected to an external network, however, MQTT had smaller delays than CoAP,

and it was expected that the difference in delay would increase with increased packet size.

Additionally, it was found that the architecture of MQTT was better suited when the same

messages were forwarded to multiple clients/subscribers and that MQTT was generally simpler

to implement. However, it was found that, on average, CoAP had smaller packet sizes and no

keepalive messages, which led to lower power consumption [Van der Westhuizen, H. W. and

Hancke, G. P., 2018].

In a study conducted by Naik (2017), a comparative analysis of MQTT, CoAP, AMQP and HTTP

was done for IoT systems. The study found that CoAP incurs the lowest message overhead and

power consumption, followed by MQTT. The study also emphasized the fact that both CoAP

and MQTT are designed for low bandwidth and resource constrained devices; and can both be

used on an 8-bit controller with less than 1 kilobyte (kB) of memory. The author also highlighted

that, on average across different studies, CoAP consumes slightly less power and resources than

MQTT. Additionally, the study concluded that MQTT consumed slightly higher bandwidth than

CoAP and that MQTT offered greater reliability, whilst both MQTT and CoAP had the lowest

 15

interoperability scores. Finally, the protocols were also ranked on their usage4 in IoT, where

MQTT was ranked highest amongst the four, followed by AMQP [Naik, N., 2017].

It is clear from the available research that both MQTT and CoAP offer a number of advantages

and disadvantages, and that the choice of protocol is highly dependent on the usage scenario.

One additional factor played a pivotal role in deciding which protocol to use for this research

thesis, which was the language support for the protocols and the ease of implementation. Since

the primary objective of this thesis was to compare software architectures, not application layer

protocols, MQTT was selected by preference.

3.3 Programming Language Efficiency for Embedded Devices
Three different programming languages were used in this research thesis, primarily to ensure that

the results obtained from this comparative study were not language specific. However, the choice

of programming language can also have a significant impact on resource management. A number

of studies have been conducted to determine the impact of programming language on runtime,

memory and energy performance. However, to date no research has yet been conducted that

compares the three programming languages that have been selected across different software

architectures and on an embedded device. In fact, very limited research has been conducted on

the choice of programming language for resource constrained devices in general.

Two studies were identified as being relevant to the research topic in this project. The first study

was conducted by Pereira et al. (2017) to analyse energy efficiency across different programming

languages. The primary focus was on energy efficiency, but runtime and memory-usage were

also analysed by the authors and the analysis was carried out on a personal computer, i.e. a non-

resource constrained device. Twenty-seven programming languages were compared by running

ten benchmark problems from the Computer Language Benchmark Game framework on a

desktop in each language. Amongst the twenty-seven languages were Rust, C, C++, Java, Python

and Go. The energy consumption was measured using running average power limit (RAPL)

function calls, whilst the runtime and memory were measured using the time tool that is available

in all Unix-based systems [Pereira, R. et al., 2017].

The results obtained in the study led the authors to the conclusion that there is no concrete optimal

programming language from the perspective of runtime, energy efficiency and memory

4 In the referenced study, usage referred to the degree of adoption of each protocol in industry, i.e. is it commonly used
or not. This ranking is not specifically related to embedded devices, but rather to IoT systems in general.

 16

performance. When considering each metric individually, C, Rust and C++ performed the best

for both runtime and energy efficiency. However, Pascal, Go and C performed the best in terms

of memory efficiency. It is clear from the research that C++ and Go performed much better than

Python in all three metrics. This study provided some very interesting insights into programming

language performance for personal computers but did not touch on constrained devices. It did,

however, offer inspiration on how to conduct the experiments and, specifically, how to measure

experimental values [Pereira, R. et al., 2017].

The second study that was of particular interest was conducted by Georgiou et al. (2017) to

analyse the energy consumption of 14 programming languages on a portable personal computer

and on a Raspberry Pi 3b. The authors used data from Rosetta Code Repository, which is a

publicly available programming chrestomathy, to conduct an empirical study. The programming

languages that were chosen were a combination of compiled, semi-compiled and interpreted

programming languages that included C, C++, Java, Go, Rust and Python. Ultimately, the

languages that were chosen were a subset of the languages chosen for the study by Pereira et al.

(2017). The main difference was that the study by Georgiou et al. (2017) only analysed energy

efficiency (not memory or runtime) and analysed the languages on two hardware devices

(compared to one in the study by Pereira et al.) [Georgiou, S., Kechagia, M. and Spinellis, D.,

2017].

Georgiou et al. (2017) analysed the performance of the programming languages by running a

selection of well-known tasks in each programming language, such as array-concatenation, url-

encoding and sorting algorithms. The authors also discussed, in some detail, about the different

possible methods for measuring energy consumption. Two methods were presented: a direct

method using hardware components, which offers coarse-grained measurements and low

sampling rate, and an indirect method that uses software components, which often suffers from

inaccuracy. The authors opted to use the direct method, and prior to measurement of energy

consumption, the computer system was rebooted and allowed to reach stable condition. The

results from these experiments indicated that VB.NET and Swift were the most energy inefficient

programming languages, whilst Go was the most energy efficient, followed closely by C and

C++ [Georgiou, S., Kechagia, M. and Spinellis, D., 2017].

 17

4. Technical Approach

4.1 Software Architecture
As per the objective of this project (see Section 1.2), six applications were developed. Three

applications were developed using a microservices architecture (in three different languages),

which can be seen in Figure 6. The other three applications were developed using a monolithic

architecture. The microservices applications comprise four distinct microservices, which

communicate using MQTT, an event-driven lightweight messaging protocol. The first three

microservices ran on the Raspberry Pi and each microservice was responsible for a dedicated

sensor or actuator service.

Figure 6: Graphical representation of the microservices architecture that was used in this

project.

The MQTT broker, which was responsible for the message queue, ran on a personal computer

using Eclipse Mosquitto, although it can also be run on the cloud [Vmware, 2020][Eclipse

Mosquitto, 2018]. The fourth microservice was responsible for maintaining a data model of the

LED actuator, temperature/humidity sensor and PIR sensor. This last microservice ran on a

personal computer. Microservices 1, 2 and 3 were developed three times, using the three

programming languages outlined in Section 2.4. Microservice 4 was only written once using

Python since the first microservices application was developed using Python.

 18

The monolithic architecture can be seen in Figure 7. With this architecture, all of the server-side

logic (actuators and sensors) are contained in a single unit/component. The server application

and client application also communicated using MQTT and an MQTT broker.

Figure 7: Graphical representation of the monolithic architecture that was used in this

project.

4.2 Hardware Architecture
The following hardware was used for the experiments:

• Raspberry Pi 4 with 4GB RAM & 16GB MicroSD (2020 Model)

• MacBook Pro 13-inch, 2017 with a 2,3 GHz Dual-Core Intel Core i5 processor and 8GB

RAM

• Type C USB Tester DC Digital Voltmeter and Ammeter

• DHT22 5V DTL 2% MOD temperature and humidity sensor

• Passive Infrared (PIR) sensor 240’’

• LED 3mm red

• Arduino breadboard and wires

The setup of the breadboard and sensors is shown in Figure 8, whilst the Type C USB tester is

shown in Figure 9.

 19

Figure 8: Photograph showing the experimental setup of the breadboard and sensors

Figure 9: Photograph showing the experimental setup of the Type C USB Tester.

4.3 Data Collection
A relatively large amount of data was collected for this project. Each of the datasets described

below were collected six times, twice for each of the three languages. Additionally, each dataset

was collected 10 times to ensure data validity. Hence a total of 180 datasets were collected.

 20

4.3.1 Power Consumption
Two different power consumption measurements were taken. Both of these measurements were

taken using hardware (see Figure 9) since the software alternative (Powerstat) yielded inaccurate

results. The first measurement that was taken was the instantaneous maximum or peak power

consumption in Watt. The maximum power consumption was measured as this gives an idea of

potential load spikes, which can be a limiting factor when energy harvesting is used, as is the

case for many resource-constrained devices. The instantaneous maximum power consumption

was measured using the type C USB tester as depicted in Figure 9.

The second measurement that was taken was the overall power consumption in Watt. This was

measured by resetting the device readings to 0 and then executing the program. Upon completion

of the program, the total runtime and electric charge, in milliamp hours (mAh), were captured.

These readings were then converted to Watts using:

!! =	"!"#	×	%$

&'''	×	(#
		 (1)

 Where Ew is the energy consumption in Watts,

 QmAh is the electric charge in mAh,

 Vv is the voltage in Volts,

 th is the duration in hours

4.3.2 Runtime

Program runtime is an important performance metric as it gives an indication of the speed of

execution of a program. Runtime refers to the period of time from the moment that a program is

executed, until the program ends/is closed. During this time, the program is loaded into RAM

which includes both the executable file and any libraries or other files that are referenced by the

program. When the program ends, the memory used by the program is freed for use by other

programs/processes. In the area of IoT, runtime is an important consideration as low latency is

often a key application requirement, e.g. medical devices, fire sensors, etc. Additionally, program

runtime is often critical for resource-constrained devices as it dictates the duration during which

resources are used, and therefore the total resource usage. Some programs may have low

instantaneous power and memory consumptions, but long runtimes, or vice versa. Therefore, it

is important to consider runtime when comparing resource consumption. It is also important to

note that runtime is highly dependent on the operating system that is used by a device. Since the

 21

same device, and operating system5, was used for all experiments in this research thesis, runtimes

could be compared directly.

Runtime was measured for each IoT service, when using the microservices architecture, as well

as for overall program execution (time until all programs came to an end), for both architectures.

The measurements were taken using the time library that was available for each language, i.e. C

time library for C++, package time for Go and time module for Python. The measurements were

then recorded in a .txt file. To ensure that these times were accurate, they were compared to the

runtimes measured by the GNU time tool, and it was found that they were identical up to 100th

of a second. Figure 10 shows a snapshot of the individual microservices runtimes that were

captured.

Figure 10: Snapshot of the runtime outputs when using the language specific time library

(this is an example of Go)

5 The Raspberry Pi used in this research thesis runs the Raspbian GNU/Linux version 10 operating system

 22

4.3.3 Memory Consumption
Three different memory consumption measurements were taken for this project. The first was

the maximum resident set size (RSS) in kB. RSS is the amount of main memory (resident RAM)

that a process is using at the time of measurement. This does not include swapped or otherwise

non-resident RAM. Therefore, the maximum RSS measurement indicates the peak RAM that

was used by a process, which provides valuable information as constrained devices usually have

limitations on available RAM. The maximum RSS was measured using the GNU time command

that is available in Linux. Figure 11 shows the output of the GNU time command that was saved

to a .txt file after each run.

Figure 11: Snapshot of the output when running the GNU time command for peak memory

usage

The second memory consumption measurement that was taken was the overall memory

consumption from the start to the end of the program execution. This was also measured by RSS

in kB but was done using Syrupy, which is a Python script that takes regular snapshots of the

memory to dynamically build a profile of the memory consumption of a program [Sukumaran,

J., 2020]. Snapshots are taken at intervals of 1 second, therefore the total RSS can be calculated

by summing RSS over the total runtime of the program. Figure 12 provides a snapshot of the

Syrupy log.

 23

Figure 12: Snapshot of the Syrupy log that was used to capture memory consumption

measurements at regular intervals.

The third memory consumption measurement that was taken was the average CPU usage (%)

that was required to execute a program. Since the Raspberry Pi that was used in this project has

4 cores, the CPU usage often exceeded 100%. It is also interesting to note that the CPU usage is

calculated by determining the total scheduling time as a percentage of the total runtime, e.g. if a

process was scheduled for 1ms and the overall runtime was 10ms, then the CPU usage was 10%.

The CPU usage output can be seen in Figure 11.

 24

5. Methodology and Evaluation

This research thesis was carried out in three parts, as outlined below.

5.1 Microservices Application Development
This phase accounted for the largest portion of time as the applications had to be developed in

three different languages, using two different architectures. The first application was developed

in Python using a microservices architecture and the next was developed in Python using a

monolithic architecture. The microservices and monolithic applications were then developed

using C++ and lastly using Go. Overall, C++ and Go proved the hardest to develop. This was

because there is very little information available for programming of embedded devices with

C++ and Go.

Embedded devices are usually programmed using C if very resource-constrained or Python

otherwise. The reading of temperature and humidity data from the digital humidity and

temperature (DHT) sensor was especially difficult as there are no C++ or Go libraries for this. In

the end, a C library (WiringPi) had to be used for signal processing6. Overall, the applications

were much easier to build using Python.

5.2 Data Collection
Once the source code was written for all applications, the data collection phase began. 6 sets of

data were collected 10 times for validation, as described in Section 4.3. Each dataset was only

collected 10 times since the power measurements were taken manually (the type C USB tester

does not have capabilities to store or send data). It is important to note that for compiled

languages (C++ and Go), the programs were compiled before running the experiments.

Each experiment was conducted using the following steps:

1. The Raspberry Pi was rebooted and then allowed 1 minute to reach stable condition.

6 Data from the DHT22 sensor is sent by transmitting signals of varying length (milliseconds or microseconds) to
indicate 8-bit values. The first 8 bits correspond to the integral humidity value, the second 8 bits to the decimal humidity
value, the third to the integral temperature value, the fourth to the decimal temperature value and the last 8 bits to the
checksum [UUGear, 2018].

 25

2. The type C USB tester was reset and then the program/s was/were executed. For

microservices, where there were a number of separate programs, the programs were executed

in parallel using a bash file (see Appendix A.1).

3. The power consumption, runtime and memory consumption were collected and stored in .txt

or .xslx files.

4. The above steps were then repeated ten times for data validation.

 5.3 Evaluation and Comparison
The last part of the project involved the evaluation and comparison of the data that was collected.

The processing of the data was primarily done using the Pandas library in Python [Pandas, 2021].

It was decided that the results would be presented in two formats: as bar charts and as tables.

Some box plots were also created where deemed useful.

The results that were obtained could be compared directly, i.e. no additional metrics, like root

mean squared error, were needed. For all readings (power consumption, runtime, and memory

consumption) except CPU usage, low values correspond to high performance. The results are

presented and discussed in the next Section.

 26

6. Results and Discussion

6.1 Power Consumption
As explained in Sections 4 and 5, power consumption measurements were taken using a type C

USB tester. Two types of power consumption readings were taken during each run: the maximum

instantaneous power consumption and the total power consumption for the program to finish

running. Both measurements are provided in Watts. It is important to note that the power

consumption measurements include the power required to operate the device. Although many of

the power readings were between 3,2 and 4,2 Watts, the idle power consumption of a Raspberry

Pi 4 is typically just over 3 Watts. However, the idle power consumption was near-identical for

each run, therefore the total power consumption values could be compared. The maximum

instantaneous power consumption results are summarized in Table 1 and Figure 13 below. The

full results can be seen in Appendix B.

Table 1: Summary of maximum instantaneous power consumption for different languages

and architectures.

 27

Figure 13: Bar chart showing the comparative maximum instantaneous power consumption

of different languages and architectures

It can be seen from Figure 13 that the microservices architecture consistently had a higher

maximum instantaneous power consumption than the monolithic architecture, for all languages.

This difference in power consumption can also be seen in Table 2, which shows that the average

difference between microservices and monolithic power consumption (across all languages) was

-14,9%.

Table 2: Table showing the percentage difference in maximum instantaneous power

consumption (Watt) between different architectures.

When considering power consumption by language, the difference is less remarkable. However,

Go had the highest maximum instantaneous power consumption, followed by C++ and then by

Python. C++ and Python had similar measurements for the microservices architecture.

Table 3 and Figure 14 show a summary of the total power consumption (over the entire runtime).

 28

Table 3: Summary of total power consumption for different languages and architectures.

Figure 14: Bar chart showing the comparative total power consumption of different

languages and architectures.

Compared to the maximum instantaneous power consumption, the total power consumption

measurements do not differ much by architecture or language, which can also be seen in Table

4. The microservices architecture consumed slightly more power for Go and Python but

consumed slightly less for C++. When considering the microservices architecture, Python

consumed the most, followed by Go and then by C++. For the monolithic architecture, the values

were almost the same.

 29

Table 4: Table showing the percentage difference in total power consumption (Watt)

between different architectures.

One of the most interesting findings was that the order of maximum instantaneous power

consumption (by language) was different to the order of total power consumption. For example,

Python had the lowest maximum instantaneous power consumption but the highest total power

consumption. This could be explained by the fact that Python has a much longer runtime than

Go and C++ (see Section 6.2), hence Python does not have a high peak consumption but rather

consumes at a stable level for a longer period of time. It is also interesting to note that there was

a much bigger difference between the two architectures for maximum instantaneous power

consumption than for total power consumption. On average, the monolithic architecture

consumed slightly less power for both metrics.

6.2 Runtime
Runtime (duration from start to end of program execution) was measured using language-specific

time libraries, e.g. C time library for C++, and the GNU time command. Four different runtimes

were measured for the microservices architecture - one for each sensor/actuator and one for

overall runtime. For the monolithic architecture, the overall runtime was measured. For

comparison, two overall microservices runtimes were used. The first is the cumulative

microservices runtime, which was calculated by summing the runtimes of all of the individual

microservices applications. The second was the overall “concurrent” runtime that was measured

from the execution of the bash script until the last microservice program came to an end. The

runtime results are summarized in Table 5 and Figure 15.

 30

Table 5: Table summarising the runtime measured for different languages and

architectures.

* “Microservices – Cumulative” indicates the total runtime as a sum of the individual microservices runtimes. “Microservices”
is the total runtime for all microservices concurrently.

Figure 15: Bar chart showing the comparative overall runtime of different languages and

architectures.

Table 5 and Figure 15 clearly show that Python had a substantially longer runtime than the other

languages, for both architectures and with both cumulative and concurrent runtimes. This is not

surprising since Python is an interpreted language (see Section 2.4). It was interesting to see that

the concurrent microservices runtime was substantially smaller than that of the monolithic

architecture for Python, which could be indicative of sub-optimal CPU-bound concurrency in

Python. However, further research would be needed to make any conclusions on this. The results

for Go and C++ were contrary to those of Python as the runtimes were slightly shorter with the

 31

monolithic architecture than with the microservices architecture. Comparing by language, it can

be seen that Go had a slightly longer runtime than C++. In order to compare these two languages

more closely, two box plots were generated – one for each architecture. These are shown in

Figures 16 and 17.

Figure 16: Box plot showing the comparative overall runtime of Go and C++ when using a

microservices architecture.

 32

Figure 17: Box plot showing the comparative overall runtime of Go and C++ when using a

monolithic architecture.

Figures 16 and 17 show that Go had a slightly longer runtime than C++ for both architectures.

When using a microservices architecture, Go had a median runtime of 119,0 seconds whilst C++

had a median runtime of 89,0 seconds, which gives a difference of -25,2%. For the monolithic

architecture, Go had a median runtime of 112,2 seconds whilst C++ had a median runtime of

81,9 seconds, which gives a difference of -27%. Additionally, the box plots show that Go had a

larger spread of runtime values than C++. The fact that Go had a longer runtime than C++ could

be explained by the fact that C code had to be wrapped in Go code in order to access the general-

purpose input/output (GPIO) pins for DHT22 readings. Compared to the Python runtime,

however, Go had a similar runtime to C++.

Table 6 summarizes the difference in mean runtimes between the different architectures. It can

be seen that the monolithic architecture had a shorter runtime for Go and C++, whilst the

microservices architecture had a shorter runtime for Python.

 33

Table 6: Table summarising the runtime differences between architectures.

As discussed in the literature review (Section 3.1), very limited research has been done to

compare the performance of the monolithic and microservices architectures on a technical level.

However, the research conducted by Al-Debagy and Martinek (2018), although not directly

related, yielded results that correlate to the results from this research thesis. The authors found

that, for a small number of threads, the monolithic architecture had a shorter response time than

the microservices architecture. For a larger number of threads (greater than 1000), the

microservices architecture had a shorter response time [Al-Debagy, O. and Martinek, P., 2018].

Although the impact of number of threads was not researched in this project, and response time

is not directly comparable to runtime, it is clear that with a small number of threads, the

monolithic architecture had a shorter runtime in this research thesis and therefore the runtime

findings are, at least in part, in line with the finding of Al-Debagy and Martinek (2018).

6.3 Memory Consumption
Memory consumption was measured using three different metrics. The first was the maximum

RSS in kB (see Section 4.3.3 for more information), which was measured through the GNU time

command. The results for maximum RSS are summarized in Table 7 and Figure 18.

Table 7: Table summarising the maximum RSS of different languages and architectures

 34

Figure 18: Bar chart showing the comparative maximum RSS of different languages and

architectures.

It is clear from both Table 7 and Figure 18 that, for all 3 languages, the monolithic architecture

had a significantly smaller maximum RSS. Table 8 shows that the average difference in

maximum RSS between the microservices architecture and the monolithic architecture was

-37,12%. When comparing by language, it can be seen that the mean maximum RSS for Go was

much larger that for Python and C++. This result was surprising as it was expected that Go and

C++ would have similar memory consumption measurements. In order to gain a better

understanding, the total RSS should also be considered.

Table 8: Table summarising the maximum RSS differences between architectures.

The second memory consumption metric was the total RSS, which was measured using a Syrupy

script (see Section 4.3.3 for more information). Using Syrupy memory snapshots, a profile was

built of the memory consumption of each program. The results are summarized in Table 9 and

Figure 19.

 35

Table 9: Table summarising the total RSS of different languages and architectures

Figure 19: Bar chart showing the comparative total RSS of different languages and

architectures.

The total RSS results were more in line with expectations (in contrast to the maximum RSS

results). Figure 19 shows that Go and C++ had similar mean total RSS measurements, whereas

Python had a greater mean total RSS for both architectures. It is also interesting to note that,

when using Python, the microservices architecture had a much smaller mean total RSS than the

monolithic architecture, whilst the total RSS values for Go and C++ did not differ much by

architecture. This deduction is reinforced by the differences shown in Table 10, which shows that

the total RSS for Python was 127% greater when using the monolithic architecture than with the

microservices architecture. For the other two languages, the differences were negligible.

 36

Table 10: Table summarising the total RSS differences between architectures.

The third, and last, memory consumption metric was the average CPU usage in percentage. This

was also measured using the GNU time command. Table 11 and Figure 20 summarize the results

that were obtained.

Table 11: Table summarising the CPU usage of different languages and architectures

Figure 20: Bar chart showing the comparative CPU usage of different languages and

architectures.

 37

The results shown in Table 11 and Figure 20 show that, regardless of language, the monolithic

architecture had higher CPU usage than the microservices architecture. On average the

monolithic architecture had 14,9% higher CPU usage. When comparing by languages, it was

found that Go had the highest average CPU usage, followed by C++ and then by Python. This

result is in line with expectations since Go has built in light-weight threads (called go routines)

and, with more recent versions of Go, Go routines automatically use all CPU cores that are

available, if required by the process. Since the Raspberry Pi used in this research thesis has 4

cores, higher CPU usage, e.g. 110%, may indicate better use of resources. However, this would

need to be studied further to make any conclusions.

Table 12: Table summarising the CPU usage differences between architectures.

 38

7. Conclusion and Future Work

The Web and Internet of Things (WoT/IoT) is an exciting field that will no doubt continue to

develop over the years to come. As further developments are made, and more strange and

wonderful objects become “Things”, the limitations on resources will likely grow. In 2021 there

are already many devices that face these constraints due to a variety of reasons such as their

remote placement (e.g. implantable sensors or volcanic eruption sensors) or the need to work

whilst in motion (e.g. wearable sensors). Hence there is a great need for efficient resource usage

in resource-constrained devices.

The aim of this research thesis was to compare the impact on resource usage of two different

software architectures when implementing an IoT application on a resource-constrained device.

The device that was chosen for this thesis is a Raspberry Pi 4 as it is an excellent embedded

device on which to conduct experiments. The two different architectures that were compared in

this study were: microservices and monolithic. In order to ensure that the results were not

language specific, the architectures were developed in three programming languages: Go, Python

and C++. Although a number of studies were found that compare the resource usage of different

programming languages, only one study could be found that focused on resource usage in

resource-constrained devices and no studies could be found that compared the performance of

the two different architectures in resource-constrained devices.

The microservices architecture offers many benefits for WoT and IoT, such as modularity,

flexibility and maintainability. A number of studies were found that concluded that the

microservices architecture is well suited for WoT and IoT as it shares many of the same goals.

WoT/IoT is inherently dynamic and has many endpoints, which can present a lot of challenges

to design and implementation. An architecture like microservices can exploit these

characteristics, turning the challenges into advantages. However, very little research has been

done to compare the technical performance of the microservices architecture to the monolithic

architecture, especially in the context of IoT. Therefore, a technical comparison of these two

architectures was made in this research thesis.

The choice of messaging protocol for communication between microservices/components was

also reviewed and discussed. It was found that a lightweight non-HTTP messaging protocol was

best suited to resource-constrained devices. Three options were considered in depth: MQTT,

AMQP and CoAP. A number of studies were analysed, and it was found that MQTT offers less

features (e.g. quality of service, security, reliability) than AMQP and is therefore more

 39

lightweight. When comparing MQTT and CoAP, it was found that both protocols offer many

benefits. It was decided that MQTT would be used for this thesis based on preference.

The technical approach was outlined in detail, including the hardware components that were

required for the project, and the software that was needed for the collection of measurements. A

three-part experimental methodology was also outlined, which was closely followed. The results

obtained during this research were summarized in a number of tables and charts and were

discussed in detail. The results Section was split into three main parts: power consumption,

runtime and memory consumption. Two different power consumption readings were taken for

the first part of the results: maximum instantaneous power consumption and total power

consumption. It was found that the maximum instantaneous power consumption of the

microservices architecture was, on average across all languages, 14,9% higher than for the

monolithic architecture. It was also found that Go had the highest maximum instantaneous power

consumption, for both architectures, whilst Python and C++ had similar measurements.

The results for total power consumption (over the full runtime) were slightly different. When

comparing the two architectures, it was found that the power consumption values were very

similar and on average, across all languages, the microservices architecture consumed only 3,0%

more than the monolithic architecture. It was also found that, when using the monolithic

architecture, total power consumption was almost identical for all languages. With the

microservices architecture, Python had the highest consumption, followed by Go and the C++,

although the values did not differ by much. It was also clear that, although maximum

instantaneous power consumption can be useful to understand peak power requirements, it is not

directly proportional to total power consumption, e.g. Python had the smallest maximum

instantaneous power consumption but the greatest total power consumption.

The second part of the results considered runtime performance. It was found that the

microservices architecture had a longer runtime than the monolithic architecture for Go and C++,

whilst the inverse was true for Python, which could be related to CPU-bound concurrency

optimization of the different languages. When comparing runtime performance of the

programming languages, the results were largely in line with expectations. C++ had the shortest

runtime, followed closely by Go. Python had a significantly longer runtime, which makes sense

since Python is the only interpreted language that was used in this project. It was interesting to

note that the Python runtime was much longer when using a monolithic architecture than when

using a microservices architecture, which was not the case for C++ or Go. With the microservices

architecture, Python had a mean runtime that was 319,4% greater than that of C++, whilst Go’s

 40

mean runtime was 31,5% greater than that of C++. Similar differences were observed for the

monolithic architecture.

Memory consumption was measured using three different metrics: maximum RSS, total RSS and

CPU usage. A comparison of maximum RSS by architecture showed that maximum RSS for the

microservices architecture was 37,1% greater than for the monolithic architecture. The difference

was especially significant for Python (65,9% difference). It was found that Go had a significantly

greater maximum RSS than the other languages, for both architectures. Python had the smallest

maximum RSS for the monolithic architecture, whilst C++ had the smallest for the microservices

architecture. The results for total RSS were very different from maximum RSS, both by

architecture and by language. The total RSS measurements for Go and C++ did not differ much

by architecture, whilst there was a big difference for Python. On average, the total RSS was

127,0% greater for the monolithic architecture than the microservices architecture when using

Python. Comparing by language, the total RSS of Python was significantly greater than for the

other two languages, especially for the monolithic architecture, whilst Go and C++ had very

similar total RSS measurements.

The last memory consumption metric that was considered was the average CPU usage. It was

found that the monolithic architecture had, on average, 14,9% higher CPU usage than the

microservices architecture and the biggest difference was observed for Python. A comparison by

language showed that Go had the greatest CPU usage, for both architectures. C++ had the second

highest CPU usage and Python had the lowest usage. These findings were in line with

expectations since Go has built-in light-weight threads (Go routines) and therefore can optimize

CPU usage.

Overall, this research thesis yielded some very interesting results, some of which were expected

whilst others were not. The results showed that the monolithic architecture had better

performance in most metrics, i.e. maximum instantaneous power consumption, total power

consumption (only for Go and Python), overall runtime (only for Go and C++), maximum RSS

and CPU. Therefore, it could be concluded that, when deploying small scale applications on IoT

devices, the monolithic architecture may offer more benefits. It is quite likely, however, that the

microservices architecture could outperform the monolithic architecture with larger scale

applications. The size of the application should therefore be considered when choosing a software

architecture.

 41

Clearly there is still substantial room for contribution in this area of research. Very limited

research has been done on the performance of the microservices architecture compared to the

monolithic architecture and no such research could be found in the context of IoT. This is

surprising since many corporations are moving towards microservices, and significant research

is being done on the use of this architecture. It is therefore important to understand what

advantages and disadvantages this architecture could introduce. Although this study made a

technical comparison of the two architectures and of different languages, it was done on small

scale and on a single embedded device. Additional research on a larger scale would provide

valuable insights.

 42

8. References

Al-Debagy, O. and Martinek, P. (2018) “A comparative review of microservices and monolithic
architectures,” in 2018 IEEE 18th International Symposium on Computational Intelligence and
Informatics (CINTI). IEEE.

Al-Masri, E., Kalyanam, K., Batts, J., Kim, J., Singh, S., Vo, T. and Yan, C., 2020. Investigating
Messaging Protocols for the Internet of Things (IoT). IEEE Access, 8, pp.94880-94911.

Atchison, L., Wieldt, T. and Paul, F., 2018. Microservices: What They Are And How They Work.
[online] New Relic Blog. Available at: <https://blog.newrelic.com/technology/microservices-
what-they-are-why-to-use-them/> [Accessed 16 January 2021].

Babaria, U., 2018. Why Iot Development Needs Microservices And Containerization. [online]
Einfochips.com. Available at: <https://www.einfochips.com/blog/why-iot-development-needs-
microservices-and-containerization/> [Accessed 8 January 2021].

Bahashwan, A. and Manickam, S., 2018. A Brief Review of Messaging Protocol Standards for
Internet of Things (IoT). Journal of Cyber Security and Mobility, 8(1), pp.1-14.

Biggs, J., & Popper, B. (2020). What’s so great about Go? [online] Stackoverflow.blog.
Available at: <https://stackoverflow.blog/2020/11/02/go-golang-learn-fast-programming-
languages/> [Accessed: 29 June 2021].

Blokdyk, G. (2018). IBM docs: Complete self-assessment guide. North Charleston, SC:
Createspace Independent Publishing Platform.

Bolar, T., 2020. Web Of Things Over Iot And Its Applications. [online] InfoQ. Available at:
<https://www.infoq.com/articles/web-of-things-iot-
apps/#:~:text=What%20is%20Internet%20of%20Things,and%2For%20other%20connected%2
0devices.> [Accessed 8 January 2021].

Burhan, M. et al. (2018) “IoT elements, layered architectures and security issues: A
comprehensive survey,” Sensors (Basel, Switzerland), 18(9). doi: 10.3390/s18092796.

Butzin, B., Golatowski, F. and Timmermann, D. (2016) “Microservices approach for the internet
of things,” in 2016 IEEE 21st International Conference on Emerging Technologies and Factory
Automation (ETFA). IEEE.

Cook, S., 2020. 60+ Iot Statistics, Facts And Trends [2020 Edition] | Comparitech. [online]
Comparitech. Available at: <https://www.comparitech.com/internet-providers/iot-statistics/>
[Accessed 23 December 2020].

De la Torre, C., Wagner, B. and Rousos, M., 2020. NET Microservices: Architecture For
Containerized .NET Applications. 1st ed. Washington: Microsoft Developer Division.

Dizdarević, J., Carpio, F., Jukan, A. and Masip-Bruin, X., 2019. A Survey of Communication
Protocols for Internet of Things and Related Challenges of Fog and Cloud Computing
Integration. ACM Computing Surveys, 51(6), pp.1-29.

Eclipse Mosquitto (2018) [online] Mosquitto.org. Available at: <https://mosquitto.org/>
[Accessed: January 25, 2021].

 43

Fowler, M., 2014. Microservices. [online] martinfowler.com. Available at:
<https://martinfowler.com/articles/microservices.html> [Accessed 17 December 2020].

Georgiou, S., Kechagia, M. and Spinellis, D. (2017) “Analyzing programming languages’ energy
consumption: An empirical study,” in Proceedings of the 21st Pan-Hellenic Conference on
Informatics. New York, NY, USA: ACM.

Gnatyk, R. (2018). Microservices vs Monolith: which architecture is the best choice for your
business? [online] N-ix.com. Available at: <https://www.n-ix.com/microservices-vs-monolith-
which-architecture-best-choice-your-business/> [Accessed: 29 June 2021].

Go Documentation. (2016). [online] Golang.org. Available at: <https://golang.org/doc/>
[Accessed: 29 June 2021].

Gomez, C. et al. (2012) “Problem statement and requirements for IPv6 over low-power wireless
personal area network (6LoWPAN) routing.” [online] IETF.org. Available at:
https://tools.ietf.org/html/rfc6606 [Accessed: 25 January 2021].

Guinard, D. and Trifa, V., 2016. Building The Web Of Things. 1st ed. New York: Manning.

Hindle, A. et al. (2014) “GreenMiner: a hardware based mining software repositories software
energy consumption framework,” in Proceedings of the 11th Working Conference on Mining
Software Repositories - MSR 2014. New York, New York, USA: ACM Press.

Jaffey, T. (2014). MQTT and CoAP, IoT Protocols. [online] Eclipse.org. Available at:
<https://www.eclipse.org/community/eclipse_newsletter/2014/february/article2.php>
[Accessed: 15 June 2021].

Keranen, A., Ersue, M. and Bormann, C. (2014) “Terminology for constrained-node
networks,” Internet Engineering Task Force. [online] IETF.org. Available at:
<https://tools.ietf.org/html/rfc7228> [Accessed: 25 January 2021].

Komiyama, N., 2017. Fork Hides Noodle-Slurping Sounds. [online] The Japan Times. Available
at: <https://www.japantimes.co.jp/news/2017/10/28/national/media-national/fork-hides-noodle-
slurping-sounds/> [Accessed 23 December 2020].

Kuhlman, D. (2011). A python book: Beginning python, advanced python, and python exercises.
Platypus Global Media.

Lu, D. et al. (2017) “A Secure Microservice Framework for IoT,” in 2017 IEEE Symposium on
Service-Oriented System Engineering (SOSE). IEEE.

Lueth, K. L. (2014) Why it is called Internet of Things: Definition, history, disambiguation.
[online] Iot-analytics.com. Available at: <https://iot-analytics.com/internet-of-things-
definition/> [Accessed: 27 January 2021].

Mena, M. et al. (2020) “WoTnectivity: A communication pattern for different web of things
connection protocols,” in 2020 IEEE 44th Annual Computers, Software, and Applications
Conference (COMPSAC). IEEE.

Mishra, H. (2019) COAP vs MQTT. [online] Iotbyhvm.ooo. Available at:
<https://iotbyhvm.ooo/coap-vs-mqtt/> [Accessed: 5 February 2021].

 44

Morel, A., 2019. AMQP Vs MQTT | Top 14 Differences To Learn With Infographics. [online]
EDUCBA. Available at: <https://www.educba.com/amqp-vs-mqtt/> [Accessed 17 January
2021].

Mqtt.org. 2020. MQTT - The Standard For Iot Messaging. [online] Available at:
<https://mqtt.org> [Accessed 17 January 2021].

Nagasai, M. (2017) Classification of IoT Devices. [online] Cisoplatform.com. Available at:
<https://www.cisoplatform.com/profiles/blogs/classification-of-iot-devices> [Accessed: 25
January 2021].

Naik, N. (2017) “Choice of effective messaging protocols for IoT systems: MQTT, CoAP,
AMQP and HTTP,” in 2017 IEEE International Systems Engineering Symposium (ISSE). IEEE.

Paessler.com. 2018. What Is MQTT? Definition And Details. [online] Available at:
<https://www.paessler.com/it-explained/mqtt> [Accessed 17 January 2021].

Parwej, Dr. Firoj & Akhtar, Nikhat & Perwej, Dr. Yusuf. (2019). An Empirical Analysis of Web
of Things (WoT). Volume 10. Page 1-9. 10.26483/ijarcs.v10i3.

Pereira, R. et al. (2017) “Energy efficiency across programming languages: how do energy, time,
and memory relate?,” in Proceedings of the 10th ACM SIGPLAN International Conference on
Software Language Engineering. New York, NY, USA: ACM.

Richardson, C., 2019. What Are Microservices?. [online] microservices.io. Available at:
<https://microservices.io/> [Accessed 16 December 2020].

Rodgers, P., 2005. "Service-Oriented Development on NetKernel- Patterns, Processes &
Products to Reduce System Complexity Web Services Edge 2005 East: CS-
3". CloudComputingExpo 2005. SYS-CON TV.

Rungta, K. (2020) Embedded systems tutorial: What is, types, history & examples. [online]
Guru99.com. Available at: <https://www.guru99.com/embedded-systems-tutorial.html>
[Accessed: 27 January 2021].

Santana, C., Alencar, B. and Prazeres, C. (2018) “Microservices: A mapping study for internet
of things solutions,” in 2018 IEEE 17th International Symposium on Network Computing and
Applications (NCA). IEEE.

Santana, C. et al. (2019) “A reliable architecture based on reactive microservices for IoT
applications,” in Proceedings of the 25th Brazillian Symposium on Multimedia and the Web. New
York, NY, USA: ACM.

Stansberry, J. (2015) MQTT and CoAP: Underlying Protocols for the IoT.
[online] Electronicdesign.com. Available at:
<https://www.electronicdesign.com/technologies/iot/article/21800998/silicon-labs-mqtt-and-
coap-underlying-protocols-for-the-iot> [Accessed: 5 February 2021].

Stroustrup, B. (2013). The C++ programming language (4th ed.). Boston, MA: Addison-Wesley
Educational.

Sukumaran, J. (2020). Syrupy: System Resource Usage Profiler. [online] github.com. Available
at: <https://github.com/jeetsukumaran/Syrupy> [Accessed 21 February 2021].

 45

Tapia, F. et al. (2020) “From monolithic systems to microservices: A comparative study of
performance,” Applied sciences (Basel, Switzerland), 10(17), p. 5797.

Thones, J. (2015) “Microservices,” IEEE software, 32(1), pp. 116–116.

UUGear. (2018). DHT11 Humidity & Temperature Sensor Module. [online] Uugear.com.
Available at: <http://www.uugear.com/portfolio/dht11-humidity-temperature-sensor-module/>
[Accessed 15 July 2021].

Van der Westhuizen, H. W. and Hancke, G. P. (2018) “Practical comparison between COAP and
MQTT - sensor to server level,” in 2018 Wireless Advanced (WiAd). IEEE.

VMware (2020) Messaging that just works — RabbitMQ. [online] Rabbitmq.com. Available at:
<https://www.rabbitmq.com/> [Accessed: January 25 January 2021].

W3.org. 2019. Thing Description (TD) Ontology. [online] w3.org. Available at:
<https://www.w3.org/2019/wot/td> [Accessed 8 January 2021].

Zeiner, H. et al. (2016) “SeCoS: Web of Things platform based on a microservices architecture
and support of time-awareness,” E & I, 133(3), pp. 158–162.

 46

Appendix A – Code

The code that was used for this project is shown in this appendix.

A.1 – Bash Code
Bash scripts were used to launch Go, Python or C++ programs on the Raspberry Pi.

Figure A.1: Screenshot showing the bash script to launch the Go microservices application

Figure A.2: Screenshot showing the bash script to launch the Go monolithic application

Figure A.3: Screenshot showing the bash script to launch the Python microservices

application

 47

Figure A.4: Screenshot showing the bash script to launch the Python monolithic application

Figure A.5: Screenshot showing the bash script to launch the C++ microservices

application

Figure A.6: Screenshot showing the bash script to launch the C++ monolithic application

 48

A.2 – Microservices Code
Go Code – Temperature and Humidity Sensor

 49

 50

 51

The following code is the C code that has been wrapped in order to access the GPIO pins.

 52

 53

 54

Go Code – PIR

 55

 56

 57

Go Code – LE

 58

 59

 60

Python Code – Temperature and Humidity

Python Code – PIR

 61

Python Code – LED

 62

C++ Code – Temperature and Humidity

 63

 64

 65

 66

 67

C++ Code – PIR

 68

 69

 70

C++ Code – LED

 71

 72

 73

A.3 – Monolithic Code
Go Code

 74

 75

 76

 77

 78

 79

 80

 81

 82

Python Code

 83

 84

C++ Code:

 85

 86

 87

 88

 89

 90

 91

Appendix B – Results

B.1 – Power Results
Table B.1: Table with full maximum instantaneous power results for microservices

architecture

Table B.2: Table with full maximum instantaneous power results for monolithic

architecture

Table B.3: Table with full total power results for microservices architecture

 92

Table B.4: Table with full total power results for monolithic architecture

B.2 – Runtime Results
Table B.5: Table with full DHT runtime results for microservices architecture

Table B.6: Table with full LED runtime results for microservices architecture

 93

Table B.7: Table with full PIR runtime results for microservices architecture

Table B.8: Table with full overall runtime results for microservices architecture –

concurrent

Table B.9: Table with full overall runtime results for microservices architecture –

cumulative

 94

Table B.10: Table with full DHT runtime results for monolithic architecture

Table B.11: Table with full LED runtime results for monolithic architecture

Table B.12: Table with full PIR runtime results for monolithic architecture

 95

Table B.13: Table with full overall runtime results for monolithic architecture

B.3 – Memory Results

Table B.14: Table with full maximum RSS results for microservices architecture

Table B.15: Table with full maximum RSS results for monolithic architecture

 96

Table B.16: Table with full total RSS results for microservices architecture

Table B.17: Table with full total RSS results for monolithic architecture

Table B.18: Table with full CPU results for microservices architecture

 97

Table B.19: Table with full CPU results for monolithic architecture

