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Abstract 

 
Since its inception in 2009, the Internet of Things (IoT) has grown dramatically in both size and 

complexity. One of the areas that has seen significant developments is that of resource-

constrained devices. Such devices clearly require careful engineering in order to manage 

resources such as energy and memory, whilst still ensuring acceptable performance. A number 

of aspects play a critical role in the engineering of such systems. One such aspect is the choice 

of software architecture. The microservices architecture appears to be a promising approach for 

IoT, as suggested by a number of researchers. However, limited research has been done on the 

implementation of microservices in IoT and resource-constrained devices, and even less research 

has been done to compare the microservices architecture to the monolithic architecture in such 

deployments. 

 

The aim of this research thesis was to compare these two architectures in the context of IoT and 

constrained devices. The two architectures were compared by: energy consumption, runtime 

performance and memory consumption. To ensure that the results are not specific to a single 

programming language, each architecture was developed in three different languages: Go, Python 

and C++. Following a review of different asynchronous messaging protocols, Message Queuing 

Telemetry Transport was selected. The  experiments were conducted on a Raspberry Pi 4, and a 

number of other hardware devices were used, including sensors, an actuator and a type C USB 

Tester. Two metrics were used to measure power consumption: maximum instantaneous power 

consumption and total power consumption. Whilst three metrics were used to measure memory 

consumption: maximum Resident Set Size (RSS), total RSS and central processing unit (CPU) 

resource usage. Each experiment was carried out 10 times in order to ensure data validity. 

 

The power consumption results showed that the microservices architecture had, on average, 

14,9% higher maximum instantaneous power consumption, whilst the total power consumption 

of the microservices architecture was only 3,0% greater than that of the monolithic architecture. 

The runtime results indicated that the microservices architecture had a longer runtime than the 

monolithic architecture for Go and C++, whilst the inverse was true for Python. When 

considering memory consumption, it was found that the maximum RSS was 37,1% greater for 

the microservices architecture. The total RSS results for both architectures were very similar for 

Go and C++, whilst microservices performed much better for Python. Lastly, the results for CPU 

usage showed that the monolithic architecture had, on average, 14,9% greater CPU usage than 

the microservices architecture. It was concluded that, for small-scale applications, the monolithic 

architecture had better performance across most metrics and languages. It was, however, 
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recommended that additional research be conducted on larger scale applications to determine the 

applicability of these results beyond the scope of small-scale applications. In general, there is 

still much room for research in this area. 

 

Keywords:  Internet of Things, resource-constrained devices, software architecture, 

microservices, monolithic 
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Resumo 

 
A Web e a Internet das Coisas (WoT/IoT) são áreas empolgantes que, sem dúvida, continuarão 

a desenvolver-se nos próximos anos. À medida que vão sendo feitos novos desenvolvimentos 

nestas áreas, e vários tipos de objetos se tornam “Coisas”, é expectável que a limitação de 

recursos seja cada vez mais uma preocupação. Atualmente já existem muitos dispositivos que 

possuem recursos limitados por vários motivos, como a sua localização em locais difíceis ou 

remotos (ex: sensores implantáveis ou sensores de erupção vulcânica) ou necessidade de 

trabalhar enquanto estão em movimento (ex: dispositivos vestíveis). Assim sendo, a necessidade 

de usar-se os recursos de forma eficiente será cada ver maior. 

 

O objetivo primordial desta tese foi o de analisar a utilização de recursos por parte de uma 

aplicação IoT, considerando duas arquiteturas de software diferentes, implementada num 

dispositivo com poucos recursos. O dispositivo escolhido é um Raspberry Pi 4, dado ser um 

dispositivo embarcado bastante adequado para realização de testes. As arquiteturas que foram 

comparadas neste estudo foram: microsserviços e monolítica. Para garantir que os resultados não 

fossem específicos da linguagem utilizada, o desenvolvimento foi feito em três linguagens de 

programação: Go, Python e C++. Embora seja possível encontrar estudos que analisam como as 

linguagens de programação utilizam os recursos, apenas foi encontrado um estudo cujo foco é a 

eficiência energética, memória e tempo de execução em dispositivos com recursos limitados, não 

tendo sido encontrado nenhum estudo que compare o desempenho das arquiteturas de software 

em dispositivos com recursos limitados. 

 

A adoção de uma arquitetura de microsserviços em ambientes WoT/IoT tem vantagens, como 

modularidade, flexibilidade e facilidade de manutenção. Vários estudos referem que esta 

arquitetura é adequada para WoT/IoT, pois compartilha muitos dos mesmos objetivos. WoT/IoT 

é inerentemente dinâmico e tem muitos pontos de extremidade, o que pode apresentar desafios 

de desenho e implementação. Uma arquitetura como microsserviços pode explorar estas 

caracteristicas, transformando estes desafios em vantagens. No entanto, não foi encontrada 

investigação que compare o desempenho da arquitetura de microsserviços com a arquitetura 

monolítica, especialmente no contexto 

IoT, tendo sido este o foco desta tese. 

 

A escolha do protocolo de transferência  de mensagens, para comunicação entre os vários 

microsserviços, foi também analisada. Um protocolo de transferência leve será o mais adequado, 

para dispositivos que têm recursos limitados, e três opções foram consideradas em mais 
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profundidade: MQTT (Message Queuing Telemetry Transport), AMQP (Advanced Message 

Queuing Protocol) e CoAP (Constrained Application Protocol). Da análise feita, verificou-se que 

o MQTT é limitado na qualidade de serviço, seguranca e confiabilidade que oferece, isto quando 

comparado com o AMQP, sendo por isso um protocolo mais leve. Ao comparar-se MQTT e 

CoAP, verificou-se que ambos os protocolos oferecem vários benefícios, tendo o MQTT sido 

escolhido para os testes realizados. 

 

A abordagem técnica que foi adotada é descrita em detalhe, incluindo os componentes de 

hardware necessários para o projeto e o software necessário para a recolha de medições. Foi ainda 

delineada uma metodologia experimental, a qual foi seguida de perto. Foram obtidos resultados 

que permitem analisar em detalhe o consumo de energia, o tempo de execução e o consumo de 

memória. Quanto ao consumo de energia, em específico, recolhe-se o consumo de energia 

instantâneo máximo e o consumo de energia total. Desta análise verificou-se que o consumo de 

energia instantâneo máximo da arquitetura de microserviços foi, em média, e em todas as 

linguagens, 14.9% maior do que o consumo obtido para a arquitetura monolítica. Verificou-se 

também que a linguagem Go tem o maior consumo de energia instantâneo máximo, para ambas 

as arquiteturas, enquanto que o Python e o C++ tiveram medidas semelhantes.  

 

Os resultados para o consumo total de energia (durante o tempo de execução total) foram 

ligeiramente diferentes. Ao comparar-se as duas arquiteturas, deduziu-se que os valores de 

consumo de energia eram muito semelhantes e, em média, e em todas as linguagens, a arquitetura 

de microsserviços consumia apenas 3.0% a mais que a arquitetura monolítica. Também foi 

verificado que ao usar-se a arquitetura monolítica, o consumo total de energia era quase idêntico 

em todos as linguagens. Com a arquitetura de microserviços, o Python teve o maior consumo, 

seguido do Go e C++, embora os valores não tenham diferido muito. Também ficou claro 

que, embora o consumo de energia instantâneo máximo possa ser útil para entender os requisitos 

de energia de pico, não é diretamente proporcional ao consumo de energia total. Por exemplo, o 

Python teve o menor consumo de energia instantâneo máximo, mas o maior consumo de energia 

total. 

 

A segunda parte dos resultados considerou o desempenho no que diz respeito ao tempo de 

execução. Considerando apenas a arquitetura, verificou-se que a quitetura de microsserviços 

tinha um tempo de execução maior do que a arquitetura monolítica para Go e C++, enquanto o 

inverso era verdadeiro para o Python, o que pode estar relacionado com a otimizacao de 

simultaneidade vinculada à unidade central de processamento (CPU), pelas diferentes 

linguagens. Ao comparar o tempo de execução das linguagens de programacao, os resultados 
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ficaram amplamente em linha com as expetativas. C++ teve o menor tempo de execução, seguido 

de perto pelo Go. O Python teve um tempo de execução significativamente mais longo, o que faz 

sentido já que o Python é a única linguagem interpretada que foi usada neste projeto. Foi 

interessante notar que o tempo de execução do Python foi muito maior ao usar-se uma arquitetura 

monolítica do que ao usar-se uma arquitetura de microserviços, o que não foi o caso do C++ ou 

Go. Com a arquitetura de microserviços, o Python teve um tempo de execução médio 319.4% 

maior do que o do C++, enquanto que o tempo de execuçao médio do Go foi 31.5% maior do 

que o do C++. Diferenças semelhantes foram observadas para a arquitetura monolítica. 

 

O consumo de memória foi medido usando três métricas diferentes: tamanho do conjunto 

residente (RSS) máximo, RSS total e uso de CPU. A comparação do RSS máximo, em cada 

arquitetura, mostrou que o RSS máximo para a arquitetura de microserviços foi 37.1% maior do 

que para a arquitetura monolítica. A diferença foi especialmente significativa para Python (65.9% 

de diferença). Verificou-se que o Go teve um RSS máximo significativamente maior do que as 

outras linguagens, para ambas as arquiteturas. O Python teve o menor RSS máximo na arquitetura 

monolítica, enquanto que o C++ teve o menor para a arquitetura de microserviços. Os resultados 

para o RSS total foram muito diferentes do RSS máximo, tanto por 

arquitetura como por linguagem usada. Mais concretamente, as medidas totais de RSS para Go 

e C++ nao diferiam muito por arquitetura, embora houvesse uma grande diferença quando 

comparado com o Python. Em média o RSS total foi 127.0% maior para a arquitetura monolítica 

do que para a arquitetura de microserviços, ao usar-se Python. Comparando por linguagem, o 

RSS total do Python foi  significativamente maior do que para as outras duas linguagens, 

especialmente para a arquitetura monolítica, enquanto o Go e C++ tiveram medições RSS totais 

muito semelhantes. 

 

A última métrica de consumo de memória considerada foi o uso médio da CPU. Verificou-se que 

a arquitetura monolítica teve, em média, 14.9% maior utilização de CPU do que a arquitetura de 

microserviços, e a maior diferença foi observada para o Python. Uma comparação por linguagem 

mostrou que o Go teve a maior utilização de 

CPU, para ambas as arquiteturas. O C++ teve a segunda maior utilização de CPU, e o Python 

teve a menor utilização. Estas conclusões foram de encontro às expectativas, já que o Go tem 

processos integrados leves (rotinas Go), podendo otimizar a utilização de CPU. 

 

Esta dissertação produziu, em geral, resultados muito interessantes, uns mais esperados que 

outros. Os resultados mostraram que a arquitetura monolítica teve melhor desempenho na 

maioria das métricas, ou seja, consumo de energia instantâneo máximo, consumo de energia total 
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(apenas para o Go e Python), tempo de execução geral (apenas para o Go e C++), RSS e CPU 

máximos. Deste modo, é possível concluir que ao implementar-se aplicações de pequena escala, 

em dispositivos IoT, a arquitetura monolítica pode oferecer mais benefícios. É bastante provável, 

no entanto, que a arquitetura de microserviços possa superar a arquitetura monolítica em 

aplicações de maior escala. A dimensão da aplicação deve, por isso, ser considerada ao escolher-

se uma arquitetura de software. 

Claramente, ainda existe muito espaço para contribuição nesta área de investigação. A 

investigação encontrada sobre o desempenho da arquitetura de microserviços, em comparação 

com a arquitetura monolítica, é limitafa e não foi encontrada investigação no contexto da IoT. 

Isto acaba por ser surpreendente, pois muitas empresas estão já a adotar microserviços e tem 

havido um aumento das pesquisas relacionadas com esta arquitetura. Assim sendo, compreender 

quais as vantagens e desvantagens desta arquitetura tornou-se muito pertinente. Embora esta 

dissertação tenha analisado a arquitetura de microsserviços, e tendo esta sido comparada com a 

arquitetura monolítica, considerando diferentes linguagens, a análise é feita numa escala 

relativamente pequena, quanto ao número de componentes de serviço, e num único dispositivo 

embarcado. A análise de aplicações de maior escala forneceria, certamente, perceções adicionais 

muito valiosas. 

 

Palavras-chave: IoT, dispositivos com restrição de recurso, arquitetura de software, 

microserviços, monolítico. 
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1.  Introduction and Research Objective 

 1.1  Introduction 
In 1960, the first known embedded system was used for developing the Apollo Guidance System, 

which marked the birth of a new world - the world of embedded devices. With the advent of the 

internet years later, embedded devices began to morph into what is now known as the Internet of 

Things (IoT) – a term coined in 1999 to describe objects that are able to communicate [Rungta, 

K., 2020][Lueth, K. L., 2014]. Today the term IoT encompasses a plethora of internet connected 

devices, from smart watches to smart fridges, from cars to eating utensils [Komiyama, N., 2017]. 

By 2008, there were already more "Things" connected to the internet than there were people, and 

it is estimated that by the end of 2021, there will be between 25 and 50 billion web-connected 

Things. This clearly shows the trend that has taken hold of IoT [Cook, S., 2020][Burhan, M. et 

al., 2018]. 

 

With the increase in number of IoT devices, comes the diversification of the types and uses of 

these devices. One such group/class of devices is referred to as "constrained devices". 

Constrained devices are devices that have limited resources, e.g. computational power, memory 

or energy. A number of factors affect the management and usage of these resources, such as the 

type of device, the operating system, the conditions of use, the choice of programming language 

and the software architecture. Once a device has been selected, some of these factors can be 

adjusted to improve resource management, e.g. choice of programming language, whilst others 

cannot be altered, such as the deployment conditions in many cases. Since resource management 

is critical to the efficacy of constrained devices, it is an area that is well worth exploring. 

 

 1.2  Research Objective and Expected Contribution 
The efficient use of resources is a critical aspect for many embedded devices. Therefore, the 

choice of software architecture is very important as it can have a significant impact on energy, 

memory and runtime performance. The aim of this research thesis was to analyse and compare 

the energy, memory and runtime performance of an embedded device application using two 

software architectures and three programming languages (to avoid language-specific results). 

The two software architectures that were compared are the microservices and monolithic 

architectures, whilst Go, C++ and Python are the three programming languages that were used. 

 

Given the nature of resource-constrained devices, the optimization of energy and memory use, 

as well as runtime, is a critical concern in IoT and the Web of Things (WoT). Hence, the choice 
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of software architecture, programming language and programming language implementation is 

an important decision. Thus far, limited research has been conducted on the impact of software 

architecture on resource-constrained device performance (see the Section on state of the art). It 

is therefore expected that this research will provide valuable insights for the choice of software 

architecture in the field of IoT and WoT. 

 

 1.3  Brief Overview of Report Content 
The remainder of this report will delve into a number of topics in more depth. Section 2 provides 

background on a number of key topics; Section 3 provides a literature review of the state of the 

art. Section 4 gives an overview of the technical approach that was taken. Section 5 discusses the 

methodology that was followed when conducting the experiments as well as the evaluation that 

was done. The results from this research thesis are shown and discussed in detail in Section 6. 

Finally, Sections 7 and 8 are dedicated to the conclusion and references, respectively. An 

appendix can be found at the end of this document.  



 3 

2.  Background 

 2.1  Constrained Devices 
Constrained devices include sensors (e.g. motion or temperature sensor), actuators (e.g. LED 

lights or motors), aggregators, microcontrollers and many more. Constrained devices are 

typically devices that are built to handle a specific application purpose and are usually connected 

to a gateway device, which acts as the intermediate for communication to the internet. The 

constraints on resources of sensors, microcontrollers, etc. can range from code complexity, i.e. 

read-only memory (ROM)/Flash, and available random-access memory (RAM) to processing 

capabilities and availability of power [Nagasai, M., 2017]. Given the vast array of resource 

constrained devices, IETF published RFC 7228 to classify these devices into 3 classes, as shown 

in Figure 1. 

 
Figure 1: IETF RFC 7228 showing classification of constrained devices (KiB = 1024 bytes) 

[Keranen, A., Ersue, M. and Bormann, C., 2014] 

 

Class 0 devices have severe constraints on memory and processing capabilities; hence they are 

not able to communicate directly with the internet and require some gateway node in order to 

connect. Class 1 devices are able to run low power IoT protocols, such as Constrained 

Application Protocol (CoAP) and Message Queuing Telemetry Transport for Sensor Networks 

(MQTT-SN) running over User Datagram Protocol (UDP). Class 2 devices have constraints 

similar to mobile phones and, therefore, are able to run similar protocols as mobile phones. As 

with mobile phones, power source availability is still a major concern. Therefore, low power 

protocols are still preferred [Nagasai, M., 2017]. This research thesis is aimed at devices that fall 

into classes 1 and 2. Although Raspberry Pi 4 falls into class 2, it serves as an ideal testing device 

as the relative energy consumption, runtime and memory performance will be valuable 

information for both classes. 

 

IETF published an additional RFC (RFC 6606), which differentiates between devices that have 

regular access to electricity and those that do not. The former is referred to as “power-affluent” 

and the latter is referred to as “power-constrained” [Gomez, C. et al., 2012]. Although the 
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Raspberry Pi used in this project has access to power, the experiments that were done to 

determine energy efficiency will primarily benefit energy-constrained devices. Energy and 

memory efficiency are clearly critical aspects for resource-constrained devices. However, 

runtime can also be a critical factor for these devices. For example, a fire sensor is required to 

have a very fast runtime so that a client/subscriber is informed of a fire as soon as possible. 

Similarly, a medical or security sensor/actuator should be able to execute code quickly in order 

to meet functional requirements. As such, runtime performance has also been selected as a key 

parameter to be analysed in this project. It is important to note that real-time performance 

behaviours, such as runtime, depend on a number of factors, such as the operating system and 

any obscure background processes that may introduce noise into the measurements. In order to 

limit this noise, all background processes were shut off, as recommended by Hindle et al. [Hindle, 

A. et al., 2014]. 

 

 2.2  Web of Things and Internet of Things 
Connectivity is an important factor within the area of Internet of Things. If devices are unable to 

communicate with one another over the internet, they are simply isolated Things. However, 

within the world of IoT, the billions of Things use a vast array of protocols, software and 

hardware, therefore connectivity is very challenging. The fact that there is such heterogeneity in 

connectivity of devices can in part be explained by the fact that in the early years of IoT, most of 

the attention was paid to the lower layers of the network stack in order to find ways for devices, 

such as wearables and kitchen items, to sense and send data.  

 

In those early days, little attention was paid to interconnectivity and interoperability between 

devices, and this lack of interoperability has only increased over time as a wider range of 

standards and protocols has been introduced in an attempt to standardize IoT, which ironically 

only exacerbated the problem. One of the promising approaches/solutions to this problem is 

known as the Web of Things (WoT). WoT was proposed as a way to interconnect devices using 

the already widely implemented web. Given the wide adoption of the web, as well as the fact that 

the web is, for the most part, simple and open source, it appeared to be an ideal candidate for the 

standardization of the top layer of IoT [Bolar, T., 2020].  

 

In addition to improved interoperability, WoT offers many benefits over its IoT counterpart, such 

as open and extensible standards, maintainability, loose coupling and security [Guinard, D. and 

Trifa, V., 2016]. Arguably one of the most important aspects of WoT is the use of machine-
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understandable metadata, such as JavaScript Object Notation (JSON)1 to describe and store 

information about a Thing. This concept was initially proposed in the "Building the Web of 

Things" book [Guinard, D. and Trifa, V., 2016] in 2016 and has since evolved into a much bigger 

and more well-defined concept, reflected, for example, in the W3C Thing Description [W3.org. 

2019]. Within the WoT, a Thing is an abstract representation of a physical device, and the Thing 

Description provides information on physical device properties and statuses (e.g. temperature), 

possible actions, and other more complex aspects like security configurations [Parwej, Dr. Firoj 

& Akhtar, Nikhat & Perwej, Dr. Yusuf., 2019]. Since the research in this thesis was aimed at 

analysing the performance of the device itself and not on internet connectivity, the data model 

proposed by Guinard and Trifa (2016) was used due to its simplicity. The choice of adoption of 

a particular data model does not affect the usefulness and applicability of the conclusions drawn 

in this research thesis.  

 

2.3  Microservices Architecture, Monolithic Architecture and 
Messaging Protocol 

The choice of architecture is a critical consideration for embedded devices. Given the loose 

coupling of the WoT approach and the high volatility within WoT/IoT, microservices is clearly 

a standout option for software architecture. By definition, WoT has a huge deployment ecosystem 

and a large number of end points. Additionally, the Things are inherently dynamic whether it is 

spatially (e.g. wearables), in terms of time (e.g. switching on and off), in terms of purpose (e.g. 

what is being monitored may change) or interchangeability (e.g. one device may be changed to 

a different, more advanced one). This leads to very complex networks that are difficult to 

implement and even more difficult to maintain [Babaria, U., 2018]. These are all compelling 

reasons for the use of the microservices architecture. 

 

Microservices is a software application development approach that makes use of independently 

deployable, modular services. The concept of a microservice is well explained by Thones, who 

stated that a microservice is a small application that can be deployed independently, scaled 

independently, tested independently and has only one responsibility [Thones, J. 2015]. Typically, 

each of these services is organized around a specific business or technical capability, is loosely 

coupled and, due to the size and modularity, highly maintainable, testable and scalable 

[Richardson, C., 2019].  

 

 
 

1 Widely used lightweight data interchange format 
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By comparison, the monolithic architecture is often considered to be the traditional approach for 

building applications and comprises a single code base for all its services and functionalities. 

This approach is often easier to develop and deploy at the outset but becomes difficult to manage 

as any updates or changes require accessing the whole code base [Gnatyk, R., 2018]. However, 

for smaller applications, end-to-end testing and debugging are often much easier for monolithic 

applications than for microservices applications since all application logic is contained in a single 

unit. Figure 2 provides a good visual explanation of the differences between a traditional 

monolithic application and a microservices application. 

 

 
Figure 2: Visual representation of the architectural difference between a monolithic 

application and a microservices application [Fowler, M., 2014]. 

 

It is clear from Figure 2 that the microservices approach enables flexibility, modularity and 

scalability, whilst the monolithic approach offers distinct boundaries and set functionalities. The 

modularity of the microservices approach means that different programming languages can be 

used in different modules/components and that different modules/components can be distributed 

across different locations (embedded device, cloud, server, etc.).  

 

Although the microservices architecture offers many clear benefits, there are also a few potential 

disadvantages. Individual microservice components are typically simple but the microservices 

ecosystem as a whole can become complex due to the number of moving parts and 

communication between these parts. The size of each component can also be a difficult decision 

as components that are too large tend towards monolithic behaviour, whilst components that are 
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too small may just transfer complexity from the component to the intercommunication. There are 

some other potential draw backs like hackability, third party dependencies, etc. [Atchison, L., 

Wieldt, T. and Paul, F., 2018]. Evidently, the monolithic architecture also has a few 

disadvantages such as scalability, which can only be done for the entire application, not 

individual functionalities. Large monolithic applications also become very difficult to understand 

and it can be difficult to anticipate the impact of an update/change on the application. Overall, 

the microservices architecture appears to be a promising option for IoT/WoT and embedded 

devices. However, further research is required to verify this. 

 

An obvious question that arises after inspection of Figure 2 is about how the components 

communicate in the microservices architecture. Components communicate using "messages", 

which is a broad term for any inter-process communication protocol such as Hypertext Transfer 

Protocol (HTTP), Transmission Control Protocol (TCP), Advanced Message Queuing Protocol 

(AMQP), etc. Most frequently, communication between microservice components is designed to 

be flexible and event driven. The two most common types of protocols are HTTP and lightweight 

asynchronous messaging protocols, e.g. AMQP [De la Torre, C., Wagner, B. and Rousos, M., 

2020]. Due to the resource constrained nature of many embedded devices, it was decided that a 

lightweight messaging protocol, instead of HTTP, would be used in this project. 

 

Asynchronous messaging protocols are generally event driven. With this approach, 

microservices communicate by exchanging messages via a bus. This approach further enables 

loose coupling and also means that service discovery is not needed. There are a number of 

different asynchronous messaging protocols, such as Amazon Simple Queue Service (Amazon 

SQS), CoAP, which can also operate in synchronous mode, Cloud Message Queue (CMQ), 

AMQP and Message Queuing Telemetry Transport (MQTT). Although each of these protocols 

have their own merits, CoAP, AMQP and MQTT are three of the most widely used publish-

subscribe messaging protocols and, therefore, the choice of messaging protocol for this project 

was limited to these three protocols. CoAP, AMQP and MQTT are discussed in further detail in 

Section 3.2. 

 

2.4  Go, Python and C++ 
The following three programming languages were selected for comparison in this research thesis: 

Go, Python and C++. These languages were selected as two are compiled languages (Go and 

C++) and one is an interpreted language (Python). Go is a compiled language but is programmed 

similarly to a dynamic-typed interpreted language [Go Documentation., 2016]. Compiled 

languages have the advantage that the source code is translated into machine code by a compiler. 
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This results in very efficient machine code that can be executed many times. By comparison, 

interpreted languages must be parsed, interpreted, and executed every time that the program is 

run. Hence the overhead of translating from source code to machine code is incurred every time. 

Interpreted languages are, however, usually more flexible and offer some advantages such as 

dynamic typing and less lines of code [Blokdyk, G., 2018].  

 
C++ is a general-purpose programming language that was released in 1985 and is an extension 

of the C programming language. C++ was designed with a focus on system programming and 

embedded/resource-constrained systems, hence performance, efficiency and flexibility were key 

design considerations [Stroustrup, B., 2013]. Go was first released in 2009 and was designed by 

Google engineers as a modern approach to today’s software engineering paradigm, i.e. scalable 

and cloud-based. Go is built for concurrency, can be compiled on most machines and is simple 

to learn [Biggs, J., & Popper, B., 2020]. Python is an interpreted high-level, general-purpose 

programming language that was released in 1991. It was designed with an emphasis on code 

readability and simplicity. It fully supports object-oriented and structured programming and is 

dynamically typed [Kuhlman, D., 2011]. Although the primary focus of this thesis was on 

comparing software architectures, this research should also provide some interesting insights into 

the comparison of runtime performance, energy consumption and memory consumption of these 

languages.  
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3.  Literature Review of the State of the Art   

3.1  Microservices vs. Monolithic as an Architecture for IoT/WoT 
As discussed in the introduction, given the distributed and dynamic nature of IoT and WoT, the 

microservices architecture stands out as a highly promising approach in many contexts. In fact, 

as early as 2005 the term “Micro-Web-Services” was introduced by Peter Rodgers (2005) at the 

Web Services Edge conference [Rodgers, P., 2005]. Over recent years, substantial research has 

been done to determine the aptness of the microservices architecture for IoT and WoT. Santana, 

Alencar and Prazeres (2018) conducted a thorough review of the use of the microservices 

architecture to solve many of the problems faced in the field of IoT. The authors carried out a 

systematic mapping of 18 studies and produced an overview of the state of the art of application 

of the microservices architecture in IoT and WoT. They found that across all of the analysed 

works, the primary focus was on the design phase and that there was still a need for investigation 

into implementation, evaluation and operation [Santana, C., Alencar, B. and Prazeres, C., 2018]. 

 

In-line with the findings of Santana et al. (2018), very few studies could be found that compared 

the implementation and performance, on a technical level, of the monolithic architecture to the 

microservices architecture in the context of IoT/WoT. One study, conducted by Al-Debagey and 

Martinek (2018), compared the two architectures for a web application, although no resource 

constrained devices were used. The study aimed at comparing the throughput2 and response time3 

of the two architectures. The results indicated that the two architectures had a similar 

performance in both metrics. However, when there were only a small number of requests/clients 

(1000 or less threads), the monolithic architecture had a better throughput. With 2000 threads or 

more, the microservices architecture performed slightly better. The response times of the two 

architectures were almost identical regardless of the number of threads [Al-Debagy, O. and 

Martinek, P., 2018]. 

 

Another study, conducted by Tapia et al. (2020), was not related to IoT but provided some 

valuable insights into the performance of the monolithic and microservices architectures. 

Following a number of tests, a comparative analysis was done of the results. It was found that 

the monolithic architecture used less central processing unit (CPU) resources, whilst the 

microservices architecture consumed less memory. It was also discussed that a monolithic 

architecture can be more efficient, and incur less overhead, but primarily for small-scale 

 
 

2 Number of requests that the application could handle per second 
3 Time that elapses between the request and the response 
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applications [Tapia, F. et al., 2020]. It can be concluded from these two studies that, in terms of 

non-IoT applications, both architectures have benefits and drawbacks. In the context of IoT/WoT, 

a number of studies were conducted that provided some insights into the architectures, albeit in 

a non-technical sense. These studies are outlined below. 

 

Zeiner, Goller, Jiménez, Salmhofer and Haas (2016) conducted a study that focused on a WoT 

platform based on the microservices architecture. In this study, the authors built a Web of Things 

platform that implemented a REST interface using a JSON data format, with the aim of building 

a responsive, resilient, flexible and message driven system. The findings from the study indicated 

that the use of the microservices architecture allows the flexibility and scalability that is required 

for a WoT platform. They also found that maintenance of and changes to the platform were much 

simpler (compared to a monolithic architecture) and did not compromise the performance of the 

platform due to the modularity of the microservice components [Zeiner, H. et al. 2016].  

 

Another study, conducted by Mena, Criado, Iribarne and Corral (2020), investigated the use of a 

digital representation of a device based on microservices and the WoT framework, named Digital 

Dice, to solve the problems faced by resource-limited embedded devices. The authors of this 

study discussed the advantages of using WoT, such as the Thing Description that is used to define 

Things in a standard way. They also discussed the advantages of using a microservices 

architecture, such as the ability to break down complex interactions so that there is one 

microservice for each interaction. The authors concluded that the use of microservices within the 

WoT framework enabled the system to achieve flexibility and robustness, and also allowed for 

easier maintenance and development [Mena, M. et al. 2020]. 

 

In a study by Butzin, Golatowski and Timmermann (2016), the authors discussed the similarities 

in goals of microservices and IoT, which included lightweight communication, independently 

deployable software and minimizing centralized management. The authors concluded that, 

although microservices and IoT approach their goals from different directions, they share many 

common goals [Butzin, B., Golatowski, F. and Timmermann, D., 2016]. A study by Santana et 

al. (2019) proposed the use of microservices to improve the reliability of IoT applications 

[Santana, C. et al., 2019]. Huang, Lu, Walenstein and Medhi (2017) proposed reconceiving IoT’s 

fundamental unit of construction (a “Thing”) as a microservice and argued that the microservices 

approach for IoT can improve many aspects such as API gateways, distribution of services, 

uniform service discovery and access control [Lu, D. et al., 2017]. Overall, the use of 

microservices in the field of IoT and WoT gave favourable results in all of the studies that were 

reviewed. However, there is no technical evidence to support the use of the microservices 
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architecture over the monolithic architecture in the context of IoT and resource-constrained 

devices. Hence it was decided that the performance of the two architectures would be compared 

on a technical level in this research thesis. 

 

3.2  Messaging Protocol  
As mentioned in the Introduction Section, there is an abundance of potential messaging protocols. 

Given that this project aimed to implement an IoT application on a resource constrained device, 

only lightweight messaging protocols were explored. Three messaging protocols were identified 

as options for this project: MQTT, AMQP and CoAP. Since MQTT and AMQP are the most 

closely related protocols out of the three, they are discussed and compared first. A number of 

comparative reviews have been done between different messaging protocols for IoT, and in 

particular about the differences between MQTT and AMQP. 

 

MQTT was first authored in 1999 by Andy Stanford-Clark and Arlen Nipper and was later 

standardised by OASIS, in 2013. MQTT is a standard messaging protocol for IoT and is designed 

as an extremely lightweight publish-subscribe messaging transport [Mqtt.org. 2020]. MQTT is 

described well by Figure 3. Essentially, each resource is an individual and separate component 

and each of these components communicates directly with an MQTT-Broker. The publisher 

component publishes any relevant information, e.g. temperature, to the MQTT queue and the 

subscriber component then subscribes to relevant information from the queue. Although only 1-

way communication is shown on the publisher side in Figure 3, 2-way communication with the 

MQTT-broker is possible for all components [Paessler.com. 2018]. 

 

 
Figure 3: Graphical representation of MQTT architecture [Paessler.com. 2018] 
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Originally, MQTT was designed for use in devices with unreliable network resources, e.g. in 

remote locations, but it is now more widely adopted. MQTT runs on top of TCP/IP and was 

designed to be an event-driven protocol, hence there is no ongoing data transmission 

[Paessler.com. 2018]. In addition to minimizing number of transmissions, the transmitted 

messages are also small and tightly defined. Each message has a header of only 2 bytes and there 

are three possible quality of service (QoS) levels based on the desired balance between data 

transmission minimization and reliability maximization.  

 

AMQP is an open standard protocol by OASIS that was released in 2011. AMQP also follows 

the publish-subscribe paradigm and was initially designed to enable interoperability between 

different devices that have different internal systems [Dizdarević, J., Carpio, F., Jukan, A. and 

Masip-Bruin, X., 2019]. AMQP has substantially more functionality than MQTT. It allows for 

message orientation, security, routing and switching reliability. The top-level architecture of 

AMQP is quite similar to that of MQTT, as can be seen in Figure 4. 

 

 
Figure 4: Graphical representation of AMQP architecture [Bahashwan, A. and Manickam, 

S., 2018]. 

 

In comparison to the MQTT architecture, it can be seen that the AMQP broker is split into two 

parts: exchange and queues. The exchange receives messages from the publisher and routes each 

message to the correct subscriber queue. There are a number of other key differences as well, 

which are outlined in a number of comparative studies. The message overhead is one such 

example. MQTT has a smaller message header size (2 bytes vs 8 bytes) and MQTT has a small 

and defined payload, whilst AMQP's payload is more flexible. AMQP has full cache and proxy 

support and substantially more security standards. Additionally, the QoS offered by AMQP is 
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superior to that of MQTT [Dizdarević, J. et al., 2019] [Bahashwan, A. and Manickam, S., 2018] 

[Al-Masri, E. et al., 2020] [MQTT, A., 2019].  

 

Although AMQP has many benefits and is widely adopted in IoT devices that prioritise flexibility 

and reliability, all of the studies concur that this protocol is not well suited to constrained 

environments. According to Dizdarević et al. (2019), with all of the features that AMQP offers, 

it has relatively high power, processing and memory requirements. Hence it is better suited to a 

system that is not bandwidth, power or latency restricted [Dizdarević, J. et al., 2019]. Al-Masri 

et al. also found in their study that MQTT had much lower memory, CPU and power consumption 

than AMQP [Al-Masri, E. et al., 2020]. Based on these findings, and the fact that this project 

aimed to optimize resource usage in constrained devices, MQTT is better suited to this project 

than AMQP. Therefore, the next comparison to be made is between MQTT and CoAP. 

 
MQTT and CoAP have a number of fundamental differences. MQTT is a many-to-many 

communication protocol for passing messages through a central broker, to and from multiple 

clients. MQTT is ideally used as a communications bus for live data. Although CoAP can operate 

in different modes, it is primarily a one-to-one protocol that allows direct communication 

between devices on the same constrained network. Hence it is better suited for resource creation 

and management on devices. Additionally, CoAP is commonly referred to as a request-response 

protocol, whilst MQTT is a publish-subscribe protocol [Jaffey, T., 2014]. Figure 5 provides a 

good visual representation of the architectural differences.  

 

 
Figure 5: Graphical representation of MQTT and COAP architectures [Mishra, H., 2019]. 

 

Some additional benefits offered by MQTT include time, space and synchronization decoupling. 

Time decoupling is mentioned as nodes can publish information regardless of the state of other 

nodes. Hence sleep or low power modes, which are often critical to power constrained devices, 

can still be employed without affecting communication. Space decoupling is achieved as nodes 

only need to know the IP-address of the broker node, not the addresses of all other nodes that 
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publish or subscribe to information. Synchronization decoupling is achieved as messages are 

only retrieved from the message queue once the subscriber node has completed all existing 

operations. This improves resource management of devices and allows for sleepy states 

[Stansberry, J., 2015]. 

 

CoAP does, however, offer a number of advantages over MQTT, such as message metadata. 

MQTT can be used by any client for any purpose, but clients must know the correct message 

formats to be able to communicate. By comparison, CoAP allows for content negotiation and 

discovery. Another advantage of CoAP is that it uses UDP as the transport protocol, whilst 

MQTT typically uses TCP as the transport protocol, although more recent developments have 

allowed for operation over UDP e.g. MQTT-SN. UDP’s connectionless datagrams have less 

overhead, which allows devices to remain in lower power modes for longer periods of time, 

thereby conserving power. This advantage comes with a downside, however, as UDP is 

inherently, and intentionally, much less reliable than TCP [Mishra, H., 2019][Stansberry, J., 

2015].  

 
A number of studies have also been conducted to compare the technical performance of MQTT 

and CoAP. One such study was conducted by Van der Westhuizen and Hancke (2018) to compare 

communication delay and network traffic on both resource constrained devices and non-resource 

constrained devices. The researchers found that MQTT and CoAP had very similar 

communication delays when both the client and broker/server were on the same network. When 

the client was connected to an external network, however, MQTT had smaller delays than CoAP, 

and it was expected that the difference in delay would increase with increased packet size. 

Additionally, it was found that the architecture of MQTT was better suited when the same 

messages were forwarded to multiple clients/subscribers and that MQTT was generally simpler 

to implement. However, it was found that, on average, CoAP had smaller packet sizes and no 

keepalive messages, which led to lower power consumption [Van der Westhuizen, H. W. and 

Hancke, G. P., 2018].  

 

In a study conducted by Naik (2017), a comparative analysis of MQTT, CoAP, AMQP and HTTP 

was done for IoT systems. The study found that CoAP incurs the lowest message overhead and 

power consumption, followed by MQTT. The study also emphasized the fact that both CoAP 

and MQTT are designed for low bandwidth and resource constrained devices; and can both be 

used on an 8-bit controller with less than 1 kilobyte (kB) of memory. The author also highlighted 

that, on average across different studies, CoAP consumes slightly less power and resources than 

MQTT. Additionally, the study concluded that MQTT consumed slightly higher bandwidth than 

CoAP and that MQTT offered greater reliability, whilst both MQTT and CoAP had the lowest 
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interoperability scores. Finally, the protocols were also ranked on their usage4 in IoT, where 

MQTT was ranked highest amongst the four, followed by AMQP [Naik, N., 2017].  

 

It is clear from the available research that both MQTT and CoAP offer a number of advantages 

and disadvantages, and that the choice of protocol is highly dependent on the usage scenario. 

One additional factor played a pivotal role in deciding which protocol to use for this research 

thesis, which was the language support for the protocols and the ease of implementation. Since 

the primary objective of this thesis was to compare software architectures, not application layer 

protocols, MQTT was selected by preference. 

 

3.3  Programming Language Efficiency for Embedded Devices 
Three different programming languages were used in this research thesis, primarily to ensure that 

the results obtained from this comparative study were not language specific. However, the choice 

of programming language can also have a significant impact on resource management. A number 

of studies have been conducted to determine the impact of programming language on runtime, 

memory and energy performance. However, to date no research has yet been conducted that 

compares the three programming languages that have been selected across different software 

architectures and on an embedded device. In fact, very limited research has been conducted on 

the choice of programming language for resource constrained devices in general. 

 

Two studies were identified as being relevant to the research topic in this project. The first study 

was conducted by Pereira et al. (2017) to analyse energy efficiency across different programming 

languages. The primary focus was on energy efficiency, but runtime and memory-usage were 

also analysed by the authors and the analysis was carried out on a personal computer, i.e. a non-

resource constrained device. Twenty-seven programming languages were compared by running 

ten benchmark problems from the Computer Language Benchmark Game framework on a 

desktop in each language. Amongst the twenty-seven languages were Rust, C, C++, Java, Python 

and Go. The energy consumption was measured using running average power limit (RAPL) 

function calls, whilst the runtime and memory were measured using the time tool that is available 

in all Unix-based systems [Pereira, R. et al., 2017].  

 

The results obtained in the study led the authors to the conclusion that there is no concrete optimal 

programming language from the perspective of runtime, energy efficiency and memory 

 
 

4 In the referenced study, usage referred to the degree of adoption of each protocol in industry, i.e. is it commonly used 
or not. This ranking is not specifically related to embedded devices, but rather to IoT systems in general. 
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performance. When considering each metric individually, C, Rust and C++ performed the best 

for both runtime and energy efficiency. However, Pascal, Go and C performed the best in terms 

of memory efficiency. It is clear from the research that C++ and Go performed much better than 

Python in all three metrics. This study provided some very interesting insights into programming 

language performance for personal computers but did not touch on constrained devices. It did, 

however, offer inspiration on how to conduct the experiments and, specifically, how to measure 

experimental values [Pereira, R. et al., 2017]. 

 

The second study that was of particular interest was conducted by Georgiou et al. (2017) to 

analyse the energy consumption of 14 programming languages on a portable personal computer 

and on a Raspberry Pi 3b. The authors used data from Rosetta Code Repository, which is a 

publicly available programming chrestomathy, to conduct an empirical study. The programming 

languages that were chosen were a combination of compiled, semi-compiled and interpreted 

programming languages that included C, C++, Java, Go, Rust and Python. Ultimately, the 

languages that were chosen were a subset of the languages chosen for the study by Pereira et al. 

(2017). The main difference was that the study by Georgiou et al. (2017) only analysed energy 

efficiency (not memory or runtime) and analysed the languages on two hardware devices 

(compared to one in the study by Pereira et al.) [Georgiou, S., Kechagia, M. and Spinellis, D., 

2017].  

 

Georgiou et al. (2017) analysed the performance of the programming languages by running a 

selection of well-known tasks in each programming language, such as array-concatenation, url-

encoding and sorting algorithms. The authors also discussed, in some detail, about the different 

possible methods for measuring energy consumption. Two methods were presented: a direct 

method using hardware components, which offers coarse-grained measurements and low 

sampling rate, and an indirect method that uses software components, which often suffers from 

inaccuracy. The authors opted to use the direct method, and prior to measurement of energy 

consumption, the computer system was rebooted and allowed to reach stable condition. The 

results from these experiments indicated that VB.NET and Swift were the most energy inefficient 

programming languages, whilst Go was the most energy efficient, followed closely by C and 

C++ [Georgiou, S., Kechagia, M. and Spinellis, D., 2017].   
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4.  Technical Approach 

4.1  Software Architecture 
As per the objective of this project (see Section 1.2), six applications were developed. Three 

applications were developed using a microservices architecture (in three different languages), 

which can be seen in Figure 6. The other three applications were developed using a monolithic 

architecture. The microservices applications comprise four distinct microservices, which 

communicate using MQTT, an event-driven lightweight messaging protocol. The first three 

microservices ran on the Raspberry Pi and each microservice was responsible for a dedicated 

sensor or actuator service. 

 
 

 
Figure 6: Graphical representation of the microservices architecture that was used in this 

project. 

 

The MQTT broker, which was responsible for the message queue, ran on a personal computer 

using Eclipse Mosquitto, although it can also be run on the cloud [Vmware, 2020][Eclipse 

Mosquitto, 2018]. The fourth microservice was responsible for maintaining a data model of the 

LED actuator, temperature/humidity sensor and PIR sensor. This last microservice ran on a 

personal computer. Microservices 1, 2 and 3 were developed three times, using the three 

programming languages outlined in Section 2.4. Microservice 4 was only written once using 

Python since the first microservices application was developed using Python. 
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The monolithic architecture can be seen in Figure 7. With this architecture, all of the server-side 

logic (actuators and sensors) are contained in a single unit/component. The server application 

and client application also communicated using MQTT and an MQTT broker. 

 

 
Figure 7: Graphical representation of the monolithic architecture that was used in this 

project. 

 

4.2  Hardware Architecture 
The following hardware was used for the experiments: 

 

• Raspberry Pi 4 with 4GB RAM & 16GB MicroSD (2020 Model) 

• MacBook Pro 13-inch, 2017 with a 2,3 GHz Dual-Core Intel Core i5 processor and 8GB 

RAM 

• Type C USB Tester DC Digital Voltmeter and Ammeter 

• DHT22 5V DTL 2% MOD temperature and humidity sensor 

• Passive Infrared (PIR) sensor 240’’ 

• LED 3mm red  

• Arduino breadboard and wires 

 

The setup of the breadboard and sensors is shown in Figure 8, whilst the Type C USB tester is 

shown in Figure 9. 
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Figure 8: Photograph showing the experimental setup of the breadboard and sensors 

 

 
Figure 9: Photograph showing the experimental setup of the Type C USB Tester. 

 

4.3  Data Collection 
A relatively large amount of data was collected for this project. Each of the datasets described 

below were collected six times, twice for each of the three languages. Additionally, each dataset 

was collected 10 times to ensure data validity. Hence a total of 180 datasets were collected. 
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4.3.1 Power Consumption 
Two different power consumption measurements were taken. Both of these measurements were 

taken using hardware (see Figure 9) since the software alternative (Powerstat) yielded inaccurate 

results. The first measurement that was taken was the instantaneous maximum or peak power 

consumption in Watt. The maximum power consumption was measured as this gives an idea of 

potential load spikes, which can be a limiting factor when energy harvesting is used, as is the 

case for many resource-constrained devices. The instantaneous maximum power consumption 

was measured using the type C USB tester as depicted in Figure 9. 

 

The second measurement that was taken was the overall power consumption in Watt. This was 

measured by resetting the device readings to 0 and then executing the program. Upon completion 

of the program, the total runtime and electric charge, in milliamp hours (mAh), were captured. 

These readings were then converted to Watts using: 

 
!! =	"!"#	×	%$

&'''	×	(#
		              (1) 

 
      Where Ew is the energy consumption in Watts, 

         QmAh is the electric charge in mAh, 

         Vv is the voltage in Volts, 

         th is the duration in hours 

 
4.3.2 Runtime 

Program runtime is an important performance metric as it gives an indication of the speed of 

execution of a program. Runtime refers to the period of time from the moment that a program is 

executed, until the program ends/is closed. During this time, the program is loaded into RAM 

which includes both the executable file and any libraries or other files that are referenced by the 

program. When the program ends, the memory used by the program is freed for use by other 

programs/processes. In the area of IoT, runtime is an important consideration as low latency is 

often a key application requirement, e.g. medical devices, fire sensors, etc. Additionally, program 

runtime is often critical for resource-constrained devices as it dictates the duration during which 

resources are used, and therefore the total resource usage. Some programs may have low 

instantaneous power and memory consumptions, but long runtimes, or vice versa. Therefore, it 

is important to consider runtime when comparing resource consumption. It is also important to 

note that runtime is highly dependent on the operating system that is used by a device. Since the 
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same device, and operating system5, was used for all experiments in this research thesis, runtimes 

could be compared directly. 

 

Runtime was measured for each IoT service, when using the microservices architecture, as well 

as for overall program execution (time until all programs came to an end), for both architectures. 

The measurements were taken using the time library that was available for each language, i.e. C 

time library for C++, package time for Go and time module for Python. The measurements were 

then recorded in a .txt file. To ensure that these times were accurate, they were compared to the 

runtimes measured by the GNU time tool, and it was found that they were identical up to 100th 

of a second. Figure 10 shows a snapshot of the individual microservices runtimes that were 

captured. 

 

 
Figure 10: Snapshot of the runtime outputs when using the language specific time library 

(this is an example of Go) 

 

 
 

5 The Raspberry Pi used in this research thesis runs the Raspbian GNU/Linux version 10 operating system 
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4.3.3 Memory Consumption 
Three different memory consumption measurements were taken for this project. The first was 

the maximum resident set size (RSS) in kB. RSS is the amount of main memory (resident RAM) 

that a process is using at the time of measurement. This does not include swapped or otherwise 

non-resident RAM. Therefore, the maximum RSS measurement indicates the peak RAM that 

was used by a process, which provides valuable information as constrained devices usually have 

limitations on available RAM. The maximum RSS was measured using the GNU time command 

that is available in Linux. Figure 11 shows the output of the GNU time command that was saved 

to a .txt file after each run. 

 

 
Figure 11: Snapshot of the output when running the GNU time command for peak memory 

usage 

 

The second memory consumption measurement that was taken was the overall memory 

consumption from the start to the end of the program execution. This was also measured by RSS 

in kB but was done using Syrupy, which is a Python script that takes regular snapshots of the 

memory to dynamically build a profile of the memory consumption of a program [Sukumaran, 

J., 2020]. Snapshots are taken at intervals of 1 second, therefore the total RSS can be calculated 

by summing RSS over the total runtime of the program. Figure 12 provides a snapshot of the 

Syrupy log. 

 



 23 

 
Figure 12: Snapshot of the Syrupy log that was used to capture memory consumption 

measurements at regular intervals. 

 

The third memory consumption measurement that was taken was the average CPU usage (%) 

that was required to execute a program. Since the Raspberry Pi that was used in this project has 

4 cores, the CPU usage often exceeded 100%. It is also interesting to note that the CPU usage is 

calculated by determining the total scheduling time as a percentage of the total runtime, e.g. if a 

process was scheduled for 1ms and the overall runtime was 10ms, then the CPU usage was 10%. 

The CPU usage output can be seen in Figure 11. 
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5.  Methodology and Evaluation 

This research thesis was carried out in three parts, as outlined below. 
 

5.1  Microservices Application Development 
This phase accounted for the largest portion of time as the applications had to be developed in 

three different languages, using two different architectures. The first application was developed 

in Python using a microservices architecture and the next was developed in Python using a 

monolithic architecture. The microservices and monolithic applications were then developed 

using C++ and lastly using Go. Overall, C++ and Go proved the hardest to develop. This was 

because there is very little information available for programming of embedded devices with 

C++ and Go.  

 

Embedded devices are usually programmed using C if very resource-constrained or Python 

otherwise. The reading of temperature and humidity data from the digital humidity and 

temperature (DHT) sensor was especially difficult as there are no C++ or Go libraries for this. In 

the end, a C library (WiringPi) had to be used for signal processing6. Overall, the applications 

were much easier to build using Python. 

 

5.2  Data Collection 
Once the source code was written for all applications, the data collection phase began. 6 sets of 

data were collected 10 times for validation, as described in Section 4.3. Each dataset was only 

collected 10 times since the power measurements were taken manually (the type C USB tester 

does not have capabilities to store or send data). It is important to note that for compiled 

languages (C++ and Go), the programs were compiled before running the experiments. 

 

Each experiment was conducted using the following steps: 

  

1. The Raspberry Pi was rebooted and then allowed 1 minute to reach stable condition.  

 
 

6 Data from the DHT22 sensor is sent by transmitting signals of varying length (milliseconds or microseconds) to 
indicate 8-bit values. The first 8 bits correspond to the integral humidity value, the second 8 bits to the decimal humidity 
value, the third to the integral temperature value, the fourth to the decimal temperature value and the last 8 bits to the 
checksum [UUGear, 2018]. 
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2. The type C USB tester was reset and then the program/s was/were executed. For 

microservices, where there were a number of separate programs, the programs were executed 

in parallel using a bash file (see Appendix A.1).  

3. The power consumption, runtime and memory consumption were collected and stored in .txt 

or .xslx files.  

4. The above steps were then repeated ten times for data validation. 

 

 5.3  Evaluation and Comparison 
The last part of the project involved the evaluation and comparison of the data that was collected. 

The processing of the data was primarily done using the Pandas library in Python [Pandas, 2021]. 

It was decided that the results would be presented in two formats: as bar charts and as tables. 

Some box plots were also created where deemed useful. 

 

The results that were obtained could be compared directly, i.e. no additional metrics, like root 

mean squared error, were needed. For all readings (power consumption, runtime, and memory 

consumption) except CPU usage, low values correspond to high performance. The results are 

presented and discussed in the next Section. 
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6.  Results and Discussion 

6.1  Power Consumption 
As explained in Sections 4 and 5, power consumption measurements were taken using a type C 

USB tester. Two types of power consumption readings were taken during each run: the maximum 

instantaneous power consumption and the total power consumption for the program to finish 

running. Both measurements are provided in Watts. It is important to note that the power 

consumption measurements include the power required to operate the device. Although many of 

the power readings were between 3,2 and 4,2 Watts, the idle power consumption of a Raspberry 

Pi 4 is typically just over 3 Watts. However, the idle power consumption was near-identical for 

each run, therefore the total power consumption values could be compared. The maximum 

instantaneous power consumption results are summarized in Table 1 and Figure 13 below. The 

full results can be seen in Appendix B.  

 
Table 1: Summary of maximum instantaneous power consumption for different languages 

and architectures. 
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Figure 13: Bar chart showing the comparative maximum instantaneous power consumption 

of different languages and architectures 

 
It can be seen from Figure 13 that the microservices architecture consistently had a higher 

maximum instantaneous power consumption than the monolithic architecture, for all languages. 

This difference in power consumption can also be seen in Table 2, which shows that the average 

difference between microservices and monolithic power consumption (across all languages) was 

-14,9%.  

 
Table 2: Table showing the percentage difference in maximum instantaneous power 

consumption (Watt) between different architectures. 

 
 
When considering power consumption by language, the difference is less remarkable. However, 

Go had the highest maximum instantaneous power consumption, followed by C++ and then by 

Python. C++ and Python had similar measurements for the microservices architecture. 

 

Table 3 and Figure 14 show a summary of the total power consumption (over the entire runtime). 
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Table 3: Summary of total power consumption for different languages and architectures. 

 
 

 
Figure 14: Bar chart showing the comparative total power consumption of different 

languages and architectures. 

 

Compared to the maximum instantaneous power consumption, the total power consumption 

measurements do not differ much by architecture or language, which can also be seen in Table 

4. The microservices architecture consumed slightly more power for Go and Python but 

consumed slightly less for C++. When considering the microservices architecture, Python 

consumed the most, followed by Go and then by C++. For the monolithic architecture, the values 

were almost the same.  
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Table 4: Table showing the percentage difference in total power consumption (Watt) 

between different architectures. 

 
 
One of the most interesting findings was that the order of maximum instantaneous power 

consumption (by language) was different to the order of total power consumption. For example, 

Python had the lowest maximum instantaneous power consumption but the highest total power 

consumption. This could be explained by the fact that Python has a much longer runtime than 

Go and C++ (see Section 6.2), hence Python does not have a high peak consumption but rather 

consumes at a stable level for a longer period of time. It is also interesting to note that there was 

a much bigger difference between the two architectures for maximum instantaneous power 

consumption than for total power consumption. On average, the monolithic architecture 

consumed slightly less power for both metrics.  

 

6.2  Runtime 
Runtime (duration from start to end of program execution) was measured using language-specific 

time libraries, e.g. C time library for C++, and the GNU time command. Four different runtimes 

were measured for the microservices architecture - one for each sensor/actuator and one for 

overall runtime. For the monolithic architecture, the overall runtime was measured. For 

comparison, two overall microservices runtimes were used. The first is the cumulative 

microservices runtime, which was calculated by summing the runtimes of all of the individual 

microservices applications. The second was the overall “concurrent” runtime that was measured 

from the execution of the bash script until the last microservice program came to an end. The 

runtime results are summarized in Table 5 and Figure 15. 
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Table 5: Table summarising the runtime measured for different languages and 

architectures. 

 
* “Microservices – Cumulative” indicates the total runtime as a sum of the individual microservices runtimes. “Microservices” 
is the total runtime for all microservices concurrently. 
 

 
Figure 15: Bar chart showing the comparative overall runtime of different languages and 

architectures. 

 

Table 5 and Figure 15 clearly show that Python had a substantially longer runtime than the other 

languages, for both architectures and with both cumulative and concurrent runtimes. This is not 

surprising since Python is an interpreted language (see Section 2.4). It was interesting to see that 

the concurrent microservices runtime was substantially smaller than that of the monolithic 

architecture for Python, which could be indicative of sub-optimal CPU-bound concurrency in 

Python. However, further research would be needed to make any conclusions on this. The results 

for Go and C++ were contrary to those of Python as the runtimes were slightly shorter with the 
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monolithic architecture than with the microservices architecture. Comparing by language, it can 

be seen that Go had a slightly longer runtime than C++. In order to compare these two languages 

more closely, two box plots were generated – one for each architecture. These are shown in 

Figures 16 and 17. 

 
Figure 16: Box plot showing the comparative overall runtime of Go and C++ when using a 

microservices architecture. 
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Figure 17: Box plot showing the comparative overall runtime of Go and C++ when using a 

monolithic architecture. 

 
Figures 16 and 17 show that Go had a slightly longer runtime than C++ for both architectures. 

When using a microservices architecture, Go had a median runtime of 119,0 seconds whilst C++ 

had a median runtime of 89,0 seconds, which gives a difference of -25,2%. For the monolithic 

architecture, Go had a median runtime of 112,2 seconds whilst C++ had a median runtime of 

81,9 seconds, which gives a difference of -27%. Additionally, the box plots show that Go had a 

larger spread of runtime values than C++. The fact that Go had a longer runtime than C++ could 

be explained by the fact that C code had to be wrapped in Go code in order to access the general-

purpose input/output (GPIO) pins for DHT22 readings. Compared to the Python runtime, 

however, Go had a similar runtime to C++.  

 

Table 6 summarizes the difference in mean runtimes between the different architectures. It can 

be seen that the monolithic architecture had a shorter runtime for Go and C++, whilst the 

microservices architecture had a shorter runtime for Python. 
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Table 6: Table summarising the runtime differences between architectures. 

 
 
As discussed in the literature review (Section 3.1), very limited research has been done to 

compare the performance of the monolithic and microservices architectures on a technical level. 

However, the research conducted by Al-Debagy and Martinek (2018), although not directly 

related, yielded results that correlate to the results from this research thesis. The authors found 

that, for a small number of threads, the monolithic architecture had a shorter response time than 

the microservices architecture. For a larger number of threads (greater than 1000), the 

microservices architecture had a shorter response time [Al-Debagy, O. and Martinek, P., 2018]. 

Although the impact of number of threads was not researched in this project, and response time 

is not directly comparable to runtime, it is clear that with a small number of threads, the 

monolithic architecture had a shorter runtime in this research thesis and therefore the runtime 

findings are, at least in part, in line with the finding of Al-Debagy and Martinek (2018). 

 

6.3  Memory Consumption 
Memory consumption was measured using three different metrics. The first was the maximum 

RSS in kB (see Section 4.3.3 for more information), which was measured through the GNU time 

command. The results for maximum RSS are summarized in Table 7 and Figure 18. 

 
Table 7: Table summarising the maximum RSS of different languages and architectures 

 
 



 34 

 
Figure 18: Bar chart showing the comparative maximum RSS of different languages and 

architectures. 

It is clear from both Table 7 and Figure 18 that, for all 3 languages, the monolithic architecture 

had a significantly smaller maximum RSS. Table 8 shows that the average difference in 

maximum RSS between the microservices architecture and the monolithic architecture was              

-37,12%. When comparing by language, it can be seen that the mean maximum RSS for Go was 

much larger that for Python and C++. This result was surprising as it was expected that Go and 

C++ would have similar memory consumption measurements. In order to gain a better 

understanding, the total RSS should also be considered.  

 
Table 8: Table summarising the maximum RSS differences between architectures. 

 
 
The second memory consumption metric was the total RSS, which was measured using a Syrupy 

script (see Section 4.3.3 for more information). Using Syrupy memory snapshots, a profile was 

built of the memory consumption of each program. The results are summarized in Table 9 and 

Figure 19. 
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Table 9: Table summarising the total RSS of different languages and architectures 

 
 

 
Figure 19: Bar chart showing the comparative total RSS of different languages and 

architectures. 

 

The total RSS results were more in line with expectations (in contrast to the maximum RSS 

results). Figure 19 shows that Go and C++ had similar mean total RSS measurements, whereas 

Python had a greater mean total RSS for both architectures. It is also interesting to note that, 

when using Python, the microservices architecture had a much smaller mean total RSS than the 

monolithic architecture, whilst the total RSS values for Go and C++ did not differ much by 

architecture. This deduction is reinforced by the differences shown in Table 10, which shows that 

the total RSS for Python was 127% greater when using the monolithic architecture than with the 

microservices architecture. For the other two languages, the differences were negligible.  
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Table 10: Table summarising the total RSS differences between architectures. 

 
 
The third, and last, memory consumption metric was the average CPU usage in percentage. This 

was also measured using the GNU time command. Table 11 and Figure 20 summarize the results 

that were obtained. 

 
Table 11: Table summarising the CPU usage of different languages and architectures 

 
 

 
Figure 20: Bar chart showing the comparative CPU usage of different languages and 

architectures. 
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The results shown in Table 11 and Figure 20 show that, regardless of language, the monolithic 

architecture had higher CPU usage than the microservices architecture. On average the 

monolithic architecture had 14,9% higher CPU usage. When comparing by languages, it was 

found that Go had the highest average CPU usage, followed by C++ and then by Python. This 

result is in line with expectations since Go has built in light-weight threads (called go routines) 

and, with more recent versions of Go, Go routines automatically use all CPU cores that are 

available, if required by the process. Since the Raspberry Pi used in this research thesis has 4 

cores, higher CPU usage, e.g. 110%, may indicate better use of resources. However, this would 

need to be studied further to make any conclusions. 

 
Table 12: Table summarising the CPU usage differences between architectures. 
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7.  Conclusion and Future Work 

The Web and Internet of Things (WoT/IoT) is an exciting field that will no doubt continue to 

develop over the years to come. As further developments are made, and more strange and 

wonderful objects become “Things”, the limitations on resources will likely grow. In 2021 there 

are already many devices that face these constraints due to a variety of reasons such as their 

remote placement (e.g. implantable sensors or volcanic eruption sensors) or the need to work 

whilst in motion (e.g. wearable sensors). Hence there is a great need for efficient resource usage 

in resource-constrained devices. 

 

The aim of this research thesis was to compare the impact on resource usage of two different 

software architectures when implementing an IoT application on a resource-constrained device. 

The device that was chosen for this thesis is a Raspberry Pi 4 as it is an excellent embedded 

device on which to conduct experiments. The two different architectures that were compared in 

this study were: microservices and monolithic. In order to ensure that the results were not 

language specific, the architectures were developed in three programming languages: Go, Python 

and C++. Although a number of studies were found that compare the resource usage of different 

programming languages, only one study could be found that focused on resource usage in 

resource-constrained devices and no studies could be found that compared the performance of 

the two different architectures in resource-constrained devices. 

 

The microservices architecture offers many benefits for WoT and IoT, such as modularity, 

flexibility and maintainability. A number of studies were found that concluded that the 

microservices architecture is well suited for WoT and IoT as it shares many of the same goals. 

WoT/IoT is inherently dynamic and has many endpoints, which can present a lot of challenges 

to design and implementation. An architecture like microservices can exploit these 

characteristics, turning the challenges into advantages. However, very little research has been 

done to compare the technical performance of the microservices architecture to the monolithic 

architecture, especially in the context of IoT. Therefore, a technical comparison of these two 

architectures was made in this research thesis.  

 

The choice of messaging protocol for communication between microservices/components was 

also reviewed and discussed. It was found that a lightweight non-HTTP messaging protocol was 

best suited to resource-constrained devices. Three options were considered in depth: MQTT, 

AMQP and CoAP. A number of studies were analysed, and it was found that MQTT offers less 

features (e.g. quality of service, security, reliability) than AMQP and is therefore more 
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lightweight. When comparing MQTT and CoAP, it was found that both protocols offer many 

benefits. It was decided that MQTT would be used for this thesis based on preference. 

 

The technical approach was outlined in detail, including the hardware components that were 

required for the project, and the software that was needed for the collection of measurements. A 

three-part experimental methodology was also outlined, which was closely followed. The results 

obtained during this research were summarized in a number of tables and charts and were 

discussed in detail. The results Section was split into three main parts: power consumption, 

runtime and memory consumption. Two different power consumption readings were taken for 

the first part of the results: maximum instantaneous power consumption and total power 

consumption. It was found that the maximum instantaneous power consumption of the 

microservices architecture was, on average across all languages, 14,9% higher than for the 

monolithic architecture. It was also found that Go had the highest maximum instantaneous power 

consumption, for both architectures, whilst Python and C++ had similar measurements. 

 

The results for total power consumption (over the full runtime) were slightly different. When 

comparing the two architectures, it was found that the power consumption values were very 

similar and on average, across all languages, the microservices architecture consumed only 3,0% 

more than the monolithic architecture. It was also found that, when using the monolithic 

architecture, total power consumption was almost identical for all languages. With the 

microservices architecture, Python had the highest consumption, followed by Go and the C++, 

although the values did not differ by much. It was also clear that, although maximum 

instantaneous power consumption can be useful to understand peak power requirements, it is not 

directly proportional to total power consumption, e.g. Python had the smallest maximum 

instantaneous power consumption but the greatest total power consumption.  

 

The second part of the results considered runtime performance. It was found that the 

microservices architecture had a longer runtime than the monolithic architecture for Go and C++, 

whilst the inverse was true for Python, which could be related to CPU-bound concurrency 

optimization of the different languages. When comparing runtime performance of the 

programming languages, the results were largely in line with expectations. C++ had the shortest 

runtime, followed closely by Go. Python had a significantly longer runtime, which makes sense 

since Python is the only interpreted language that was used in this project. It was interesting to 

note that the Python runtime was much longer when using a monolithic architecture than when 

using a microservices architecture, which was not the case for C++ or Go. With the microservices 

architecture, Python had a mean runtime that was 319,4% greater than that of C++, whilst Go’s 
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mean runtime was 31,5% greater than that of C++. Similar differences were observed for the 

monolithic architecture. 

 

Memory consumption was measured using three different metrics: maximum RSS, total RSS and 

CPU usage. A comparison of maximum RSS by architecture showed that maximum RSS for the 

microservices architecture was 37,1% greater than for the monolithic architecture. The difference 

was especially significant for Python (65,9% difference).  It was found that Go had a significantly 

greater maximum RSS than the other languages, for both architectures. Python had the smallest 

maximum RSS for the monolithic architecture, whilst C++ had the smallest for the microservices 

architecture. The results for total RSS were very different from maximum RSS, both by 

architecture and by language. The total RSS measurements for Go and C++ did not differ much 

by architecture, whilst there was a big difference for Python. On average, the total RSS was 

127,0% greater for the monolithic architecture than the microservices architecture when using 

Python. Comparing by language, the total RSS of Python was significantly greater than for the 

other two languages, especially for the monolithic architecture, whilst Go and C++ had very 

similar total RSS measurements.  

 

The last memory consumption metric that was considered was the average CPU usage. It was 

found that the monolithic architecture had, on average, 14,9% higher CPU usage than the 

microservices architecture and the biggest difference was observed for Python. A comparison by 

language showed that Go had the greatest CPU usage, for both architectures. C++ had the second 

highest CPU usage and Python had the lowest usage. These findings were in line with 

expectations since Go has built-in light-weight threads (Go routines) and therefore can optimize 

CPU usage.  

 

Overall, this research thesis yielded some very interesting results, some of which were expected 

whilst others were not. The results showed that the monolithic architecture had better 

performance in most metrics, i.e. maximum instantaneous power consumption, total power 

consumption (only for Go and Python), overall runtime (only for Go and C++), maximum RSS 

and CPU. Therefore, it could be concluded that, when deploying small scale applications on IoT 

devices, the monolithic architecture may offer more benefits. It is quite likely, however, that the 

microservices architecture could outperform the monolithic architecture with larger scale 

applications. The size of the application should therefore be considered when choosing a software 

architecture.  
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Clearly there is still substantial room for contribution in this area of research. Very limited 

research has been done on the performance of the microservices architecture compared to the 

monolithic architecture and no such research could be found in the context of IoT. This is 

surprising since many corporations are moving towards microservices, and significant research 

is being done on the use of this architecture. It is therefore important to understand what 

advantages and disadvantages this architecture could introduce. Although this study made a 

technical comparison of the two architectures and of different languages, it was done on small 

scale and on a single embedded device. Additional research on a larger scale would provide 

valuable insights.  
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Appendix A – Code 

The code that was used for this project is shown in this appendix.  
 

A.1 – Bash Code 
Bash scripts were used to launch Go, Python or C++ programs on the Raspberry Pi. 
 

 
Figure A.1: Screenshot showing the bash script to launch the Go microservices application 

 

 
Figure A.2: Screenshot showing the bash script to launch the Go monolithic application 

 

 
Figure A.3: Screenshot showing the bash script to launch the Python microservices 

application 
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Figure A.4: Screenshot showing the bash script to launch the Python monolithic application 

 

 
Figure A.5: Screenshot showing the bash script to launch the C++ microservices 

application 

 

 
Figure A.6: Screenshot showing the bash script to launch the C++ monolithic application 
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A.2 – Microservices Code 
Go Code – Temperature and Humidity Sensor 
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The following code is the C code that has been wrapped in order to access the GPIO pins. 
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Go Code – PIR 
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Go Code – LE 
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Python Code – Temperature and Humidity 
 

 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
Python Code – PIR 
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Python Code – LED 
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C++ Code – Temperature and Humidity 
 



 63 

 
 

 
 
 
 



 64 

 
 



 65 

 
 



 66 

 
 



 67 

 
 
 
C++ Code – PIR 
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C++ Code – LED 
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A.3 – Monolithic Code 
Go Code 
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Python Code 
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C++ Code: 
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Appendix B – Results 

B.1 – Power Results 
Table B.1: Table with full maximum instantaneous power results for microservices 

architecture 

 
 

Table B.2: Table with full maximum instantaneous power results for monolithic 

architecture 

 
 

Table B.3: Table with full total power results for microservices architecture 
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Table B.4: Table with full total power results for monolithic architecture 

 
 

B.2 – Runtime Results 
Table B.5: Table with full DHT runtime results for microservices architecture 

 
 

Table B.6: Table with full LED runtime results for microservices architecture 
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Table B.7: Table with full PIR runtime results for microservices architecture 

 
 

Table B.8: Table with full overall runtime results for microservices architecture – 

concurrent 

 
 

Table B.9: Table with full overall runtime results for microservices architecture – 

cumulative 
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Table B.10: Table with full DHT runtime results for monolithic architecture 

 
 

Table B.11: Table with full LED runtime results for monolithic architecture 

 
 

Table B.12: Table with full PIR runtime results for monolithic architecture 
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Table B.13: Table with full overall runtime results for monolithic architecture 

 
 

B.3 – Memory Results 
 

Table B.14: Table with full maximum RSS results for microservices architecture 

 
 
 

Table B.15: Table with full maximum RSS results for monolithic architecture 
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Table B.16: Table with full total RSS results for microservices architecture 

 
 

Table B.17: Table with full total RSS results for monolithic architecture 

 
 

Table B.18: Table with full CPU results for microservices architecture 
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Table B.19: Table with full CPU results for monolithic architecture 

 
 


