SHANI DU PLESSIS

A COMPARATIVE STUDY OF SOFTWARE
ARCHITECTURES IN CONSTRAINED-DEVICE
IOT DEPLOYMENTS

@ UAlg FCT

UNIVERSIDADE DO ALGARVE
D

2021

Shani du Plessis

A Comparative Study of Software Architectures in
Constrained-Device IoT Deployments

MSc. in Computer Engineering

Supervisor:
Prof. Dra. Noélia Correia

il

Statement of Originality

A Comparative Study of Software Architectures in Constrained-
Device IoT Deployments

Declaration of authorship of work: I declare to be the author of this
work, which 1s original and unpublished. Authors and works consulted
are properly cited in the text and appear in the list of references
included.

Candidate:

o

/

(Shani du Plessis)

Copyright ©Shani du Plessis

The University of Algarve has the right, perpetual and without geographical boundaries, to
archive and make public this work through printed copies reproduced in paper or digital form,
or by any other means known or to be invented, to broadcast it through scientific repositories

and allow its copy and distribution with educational or research purposes, noncommercial

purposes, provided that credit is given to the author and Publisher.

il

CEQT

Networks & Systems

Work done at the Research Center of Electronics, Optoelectronics and
Telecommunications (CEOT)

v

Acknowledgements

First and foremost, I would like to thank Dra. Noélia Correia for her continuous support. Her
support, advice and encouragement proved invaluable, not only for the completion of this
research thesis, but throughout my master’s degree. I am very grateful that I have had the chance

to work with her and I finish this degree feeling inspired for the future.

I would like to thank my colleagues at CEOT for always lending an ear when I was faced with
problems or setbacks. I am also grateful to all of the professors that have played an integral part
during my time at UAlg, such as Dr. Pedro Guerreiro for his programming enthusiasm and Dr.

Antonio Ruano for his support as coordinator and director of this degree.

Lastly, I would like to thank my family for all of their support, my partner for always coming to

my aid and my friends, both at UAlg and at home, who are my second family.

Abstract

Since its inception in 2009, the Internet of Things (IoT) has grown dramatically in both size and
complexity. One of the areas that has seen significant developments is that of resource-
constrained devices. Such devices clearly require careful engineering in order to manage
resources such as energy and memory, whilst still ensuring acceptable performance. A number
of aspects play a critical role in the engineering of such systems. One such aspect is the choice
of software architecture. The microservices architecture appears to be a promising approach for
IoT, as suggested by a number of researchers. However, limited research has been done on the
implementation of microservices in IoT and resource-constrained devices, and even less research
has been done to compare the microservices architecture to the monolithic architecture in such

deployments.

The aim of this research thesis was to compare these two architectures in the context of IoT and
constrained devices. The two architectures were compared by: energy consumption, runtime
performance and memory consumption. To ensure that the results are not specific to a single
programming language, each architecture was developed in three different languages: Go, Python
and C++. Following a review of different asynchronous messaging protocols, Message Queuing
Telemetry Transport was selected. The experiments were conducted on a Raspberry Pi 4, and a
number of other hardware devices were used, including sensors, an actuator and a type C USB
Tester. Two metrics were used to measure power consumption: maximum instantaneous power
consumption and total power consumption. Whilst three metrics were used to measure memory
consumption: maximum Resident Set Size (RSS), total RSS and central processing unit (CPU)

resource usage. Each experiment was carried out 10 times in order to ensure data validity.

The power consumption results showed that the microservices architecture had, on average,
14,9% higher maximum instantaneous power consumption, whilst the total power consumption
of the microservices architecture was only 3,0% greater than that of the monolithic architecture.
The runtime results indicated that the microservices architecture had a longer runtime than the
monolithic architecture for Go and C++, whilst the inverse was true for Python. When
considering memory consumption, it was found that the maximum RSS was 37,1% greater for
the microservices architecture. The total RSS results for both architectures were very similar for
Go and C++, whilst microservices performed much better for Python. Lastly, the results for CPU
usage showed that the monolithic architecture had, on average, 14,9% greater CPU usage than
the microservices architecture. It was concluded that, for small-scale applications, the monolithic

architecture had better performance across most metrics and languages. It was, however,
vi

recommended that additional research be conducted on larger scale applications to determine the
applicability of these results beyond the scope of small-scale applications. In general, there is

still much room for research in this area.

Keywords: Internet of Things, resource-constrained devices, software architecture,

microservices, monolithic

vii

Resumo

A Web e a Internet das Coisas (WoT/IoT) sdo areas empolgantes que, sem duvida, continuardo
a desenvolver-se nos proximos anos. A medida que vio sendo feitos novos desenvolvimentos
nestas areas, e varios tipos de objetos se tornam “Coisas”, ¢ expectdvel que a limitagcdo de
recursos seja cada vez mais uma preocupagdo. Atualmente ja existem muitos dispositivos que
possuem recursos limitados por varios motivos, como a sua localizacdo em locais dificeis ou
remotos (ex: sensores implantdveis ou sensores de erup¢do vulcanica) ou necessidade de
trabalhar enquanto estdo em movimento (ex: dispositivos vestiveis). Assim sendo, a necessidade

de usar-se os recursos de forma eficiente sera cada ver maior.

O objetivo primordial desta tese foi o de analisar a utilizacdo de recursos por parte de uma
aplicacdo loT, considerando duas arquiteturas de software diferentes, implementada num
dispositivo com poucos recursos. O dispositivo escolhido ¢ um Raspberry Pi 4, dado ser um
dispositivo embarcado bastante adequado para realizagdo de testes. As arquiteturas que foram
comparadas neste estudo foram: microsservigos € monolitica. Para garantir que os resultados ndo
fossem especificos da linguagem utilizada, o desenvolvimento foi feito em trés linguagens de
programagao: Go, Python e C++. Embora seja possivel encontrar estudos que analisam como as
linguagens de programacao utilizam os recursos, apenas foi encontrado um estudo cujo foco ¢ a
eficiéncia energética, memoria e tempo de execu¢do em dispositivos com recursos limitados, ndo
tendo sido encontrado nenhum estudo que compare o desempenho das arquiteturas de software

em dispositivos com recursos limitados.

A adocdo de uma arquitetura de microsservigos em ambientes WoT/IoT tem vantagens, como
modularidade, flexibilidade e facilidade de manutencdo. Varios estudos referem que esta
arquitetura ¢ adequada para WoT/IoT, pois compartilha muitos dos mesmos objetivos. WoT/loT
¢ inerentemente dindmico e tem muitos pontos de extremidade, o que pode apresentar desafios
de desenho e implementacdo. Uma arquitetura como microsservicos pode explorar estas
caracteristicas, transformando estes desafios em vantagens. No entanto, ndo foi encontrada
investigagdo que compare o desempenho da arquitetura de microsservicos com a arquitetura
monolitica, especialmente no contexto

10T, tendo sido este o foco desta tese.

A escolha do protocolo de transferéncia de mensagens, para comunicagdo entre os varios
microsservigos, foi também analisada. Um protocolo de transferéncia leve sera o mais adequado,

para dispositivos que tém recursos limitados, e trés op¢des foram consideradas em mais
viii

profundidade: MQTT (Message Queuing Telemetry Transport), AMQP (Advanced Message
Queuing Protocol) e CoAP (Constrained Application Protocol). Da analise feita, verificou-se que
o MQTT ¢ limitado na qualidade de servigo, seguranca e confiabilidade que oferece, isto quando
comparado com o AMQP, sendo por isso um protocolo mais leve. Ao comparar-se MQTT e
CoAP, verificou-se que ambos os protocolos oferecem varios beneficios, tendo o MQTT sido

escolhido para os testes realizados.

A abordagem técnica que foi adotada ¢ descrita em detalhe, incluindo os componentes de
hardware necessarios para o projeto e o software necessario para a recolha de medigdes. Foi ainda
delineada uma metodologia experimental, a qual foi seguida de perto. Foram obtidos resultados
que permitem analisar em detalhe o consumo de energia, o tempo de execugdo e o consumo de
memoria. Quanto ao consumo de energia, em especifico, recolhe-se o consumo de energia
instantaneo maximo e o consumo de energia total. Desta analise verificou-se que o consumo de
energia instantdneo maximo da arquitetura de microservigos foi, em média, e em todas as
linguagens, 14.9% maior do que o consumo obtido para a arquitetura monolitica. Verificou-se
também que a linguagem Go tem o maior consumo de energia instantaneo maximo, para ambas

as arquiteturas, enquanto que o Python e o C++ tiveram medidas semelhantes.

Os resultados para o consumo total de energia (durante o tempo de execugdo total) foram
ligeiramente diferentes. Ao comparar-se as duas arquiteturas, deduziu-se que os valores de
consumo de energia eram muito semelhantes e, em média, e em todas as linguagens, a arquitetura
de microsservigos consumia apenas 3.0% a mais que a arquitetura monolitica. Também foi
verificado que ao usar-se a arquitetura monolitica, o consumo total de energia era quase idéntico
em todos as linguagens. Com a arquitetura de microservigos, o Python teve o maior consumo,
seguido do Go e C++, embora os valores ndo tenham diferido muito. Também ficou claro

que, embora o consumo de energia instantdneo maximo possa ser Util para entender os requisitos
de energia de pico, ndo ¢ diretamente proporcional ao consumo de energia total. Por exemplo, o
Python teve o menor consumo de energia instantineo maximo, mas o maior consumo de energia

total.

A segunda parte dos resultados considerou o desempenho no que diz respeito ao tempo de
execucdo. Considerando apenas a arquitetura, verificou-se que a quitetura de microsservigos
tinha um tempo de execugdo maior do que a arquitetura monolitica para Go e C++, enquanto o
inverso era verdadeiro para o Python, o que pode estar relacionado com a otimizacao de
simultaneidade vinculada a unidade central de processamento (CPU), pelas diferentes

linguagens. Ao comparar o tempo de execu¢do das linguagens de programacao, os resultados

1X

ficaram amplamente em linha com as expetativas. C++ teve o menor tempo de execugdo, seguido
de perto pelo Go. O Python teve um tempo de execucao significativamente mais longo, o que faz
sentido j4 que o Python ¢ a tUnica linguagem interpretada que foi usada neste projeto. Foi
interessante notar que o tempo de execugdo do Python foi muito maior ao usar-se uma arquitetura
monolitica do que ao usar-se uma arquitetura de microservigos, o que ndo foi o caso do C++ ou
Go. Com a arquitetura de microservigos, o Python teve um tempo de execu¢do médio 319.4%
maior do que o do C++, enquanto que o tempo de execucao médio do Go foi 31.5% maior do

que o do C++. Diferengas semelhantes foram observadas para a arquitetura monolitica.

O consumo de memodria foi medido usando trés métricas diferentes: tamanho do conjunto
residente (RSS) maximo, RSS total e uso de CPU. A comparagdao do RSS méximo, em cada
arquitetura, mostrou que o RSS méximo para a arquitetura de microservigos foi 37.1% maior do
que para a arquitetura monolitica. A diferenca foi especialmente significativa para Python (65.9%
de diferenga). Verificou-se que o Go teve um RSS maximo significativamente maior do que as
outras linguagens, para ambas as arquiteturas. O Python teve o menor RSS maximo na arquitetura
monolitica, enquanto que o C++ teve o menor para a arquitetura de microservigos. Os resultados
para o RSS total foram muito diferentes do RSS méximo, tanto por

arquitetura como por linguagem usada. Mais concretamente, as medidas totais de RSS para Go
e C++ nao diferiam muito por arquitetura, embora houvesse uma grande diferenca quando
comparado com o Python. Em média o RSS total foi 127.0% maior para a arquitetura monolitica
do que para a arquitetura de microservigos, ao usar-se Python. Comparando por linguagem, o
RSS total do Python foi significativamente maior do que para as outras duas linguagens,
especialmente para a arquitetura monolitica, enquanto o Go e C++ tiveram medigdes RSS totais

muito semelhantes.

A ultima métrica de consumo de memoria considerada foi o uso médio da CPU. Verificou-se que
a arquitetura monolitica teve, em média, 14.9% maior utilizagdo de CPU do que a arquitetura de
microservicos, e a maior diferenca foi observada para o Python. Uma comparacao por linguagem
mostrou que o Go teve a maior utilizagdo de

CPU, para ambas as arquiteturas. O C++ teve a segunda maior utilizacdo de CPU, e o Python
teve a menor utiliza¢do. Estas conclusdes foram de encontro as expectativas, ja que o Go tem

processos integrados leves (rotinas Go), podendo otimizar a utilizacdo de CPU.

Esta dissertacdo produziu, em geral, resultados muito interessantes, uns mais esperados que
outros. Os resultados mostraram que a arquitetura monolitica teve melhor desempenho na

maioria das métricas, ou seja, consumo de energia instantdneo maximo, consumo de energia total

(apenas para o Go e Python), tempo de execucdo geral (apenas para o Go e C++), RSS e CPU
maximos. Deste modo, ¢ possivel concluir que ao implementar-se aplicagdes de pequena escala,
em dispositivos IoT, a arquitetura monolitica pode oferecer mais beneficios. E bastante provavel,
no entanto, que a arquitetura de microservigos possa superar a arquitetura monolitica em
aplicagdes de maior escala. A dimensdo da aplicacdo deve, por isso, ser considerada ao escolher-
se uma arquitetura de software.

Claramente, ainda existe muito espagco para contribuicdo nesta area de investigagdo. A
investigacdo encontrada sobre o desempenho da arquitetura de microservi¢os, em comparagao
com a arquitetura monolitica, ¢ limitafa e ndo foi encontrada investigacdo no contexto da IoT.
Isto acaba por ser surpreendente, pois muitas empresas estdo ja a adotar microservigos e tem
havido um aumento das pesquisas relacionadas com esta arquitetura. Assim sendo, compreender
quais as vantagens e desvantagens desta arquitetura tornou-se muito pertinente. Embora esta
dissertacdo tenha analisado a arquitetura de microsservigos, € tendo esta sido comparada com a
arquitetura monolitica, considerando diferentes linguagens, a andlise ¢ feita numa escala
relativamente pequena, quanto ao nimero de componentes de servico, € num tnico dispositivo
embarcado. A andlise de aplicagdes de maior escala forneceria, certamente, percegdes adicionais

muito valiosas.

Palavras-chave: 10T, dispositivos com restricdo de recurso, arquitetura de software,

microservicos, monolitico.

X1

Table of Contents

ACKNOWICAZGOMERLS ..nuueeneeevonneviosnnenossarnsssrsssssissssisssssisssssisssssssssssssssssessssessssssssssssssssssssssssssssssssnss v
ABSITACE aunnaenneennenneenvensreennensninssenssisssessssesssessssesssessssssssssssassssessssssssssssassssessssssssssssassssesssnssssassns vi
RESUIMO..cnnnnennaenneecnnennneinreiinrinniisnensesssessseisssesssessssessssisssesssassssessssssssssssassssessssssssssssassssessanss viii
LIST Of FIUFES.uuueevnueroseuerossrerossssiossssesssessssssssssssssssssssssssssns xiy
LEST Of TADIES..uunueennnenonnneronneionneinsnnnnsnnssssssssssssssssssssssssssssssssssssssesssssssssssessssssssssssssssssssssssssns xvi
INOMEHCIATUTE «.nnneennennneennennneenrnenrenirnensnnissessseecsessssesssessssssssessssssssessssssssssssassssssssssssassssasnss xviii
1. Introduction and ReSearch ODBJECHIVEuuueeeeueevoneeossuvissssvnsssanissssresssssssssssosssssssssssossssssssnss 1
1.1 Introduction 1
1.2 Research Objective and Expected Contribution 1
1.3 Brief Overview of Report Content 2
2. BACKZIOUR . cuunnnaannnnanonnneninvnnsnsnsssurisssssssssssissnssss 3
2.1 Constrained Devices 3
2.2 Web of Things and Internet of Things 4
2.3 Microservices Architecture, Monolithic Architecture and Messaging Protocol..................... 5
2.4 Go, Python and C++ 7
3. Literature Review of the State Of the ATtuuuneneeosnneivsuensssurisssersssssrsssssnssssnssssssssssssssssssses 9
3.1 Microservices vs. Monolithic as an Architecture for IoT/WoT 9
3.2 Messaging Protocol 11
3.3 Programming Language Efficiency for Embedded Devices 15
4. TeCHRICAL APPTOACH c..cnuanennaennnnaennnnnninnenninvnnssnsisssnsisssssisssssiss 17
4.1 Software Architecture 17
4.2 Hardware Architecture 18
4.3 Data Collection 19
5. Methodology And EVAIUATIIONeneeeenneeoonneensnvenssnvnnsssensssssissses 24
5.1 Microservices Application Development 24
5.2 Data Collection 24
5.3 Evaluation and Comparison 25
6. ReSUILS ANA DISCUSSION cuuueneenneenreeeseeisuersaessrensssecsnisssesssessssessssssssssssassssessssssssssssassssessassssassss 26
6.1 Power Consumption 26
6.2 Runtime 29
6.3 Memory Consumption 33

7. CONCIUSION ANA FULUFE WOFK oveeeaaanneeeneereereeenneesseesesseesses 38

8. REfCIOICES uuueeneernnneresneresnercrneicssrscsssnissesssssssssssssssssssssssossssssses 42
APPENAIX A — COE c.nnunnnannnenneennenneinrvensnrnnrrenssninsensssesssessssssssessssssssesssssssssssssssssasssassssesssssssassss 46
A.1—Bash Code 46
A.2 — Microservices Code 48
A.3 — Monolithic Code 73
APPENAIX B — RESUILS..cuueenneennneeinnenneiinnennrennennnninsenssnissesssassssessssssssessssssssessssssssasssassssesssssssasss 91
B.1 — Power Results 91
B.2 — Runtime Results 92
B.3 — Memory Results 95

13

List of Figures

Figure 1: IETF RFC 7228 showing classification of constrained devices (KiB = 1024 bytes) [Keranen, A.,
Ersue, M. and Bormann, C., 2014]ccooooeeooeeoee oo 3
Figure 2: Visual representation of the architectural difference between a monolithic application and a
microservices application [Fowler, M., 2014].........cc.cccooeiiiiiiiiiiieeie ettt 6
Figure 3: Graphical representation of MOTT architecture [Paessler.com. 2018]..........ccccovvvvvvvicennnninnnn 11

Figure 4: Graphical representation of AMQP architecture [Bahashwan, A. and Manickam, S., 2018]......12

Figure 5: Graphical representation of MOTT and COAP architectures [Mishra, H., 2019]....................... 13
Figure 6. Graphical representation of the microservices architecture that was used in this project. 17
Figure 7: Graphical representation of the monolithic architecture that was used in this project. 18
Figure 8: Photograph showing the experimental setup of the breadboard and sensors............................... 19
Figure 9: Photograph showing the experimental setup of the Type C USB Tester.c...ccoevvveecvenenninnnn 19

Figure 10: Snapshot of the runtime outputs when using the language specific time library (this is an
EXAMPIC OF (FO) ..ttt ettt ettt n ettt ne e ens 21
Figure 11: Snapshot of the output when running the GNU time command for peak memory usage............. 22
Figure 12: Snapshot of the Syrupy log that was used to capture memory consumption measurements at
FEGUIAT THECTVALS. ...ttt ettt et s et ettt ettt n et e et e e teene et e et ene e e e e 23
Figure 13: Bar chart showing the comparative maximum instantaneous power consumption of different
1ANGUAZES AN AFCRILECIUFESo.eeeieeeee ettt ettt ettt ettt ees 27
Figure 14: Bar chart showing the comparative total power consumption of different languages and
AFCRILECIUFS. ...ttt e et e e et e et e et e et e et e e et e e eateeeaseeeaseeeseeeaeeeeaeeans 28
Figure 15: Bar chart showing the comparative overall runtime of different languages and architectures..30
Figure 16: Box plot showing the comparative overall runtime of Go and C++ when using a microservices
AFCRILECIUF@. ... et e et e e et e et e et e et e et e e et e e et e e e aseeeaaeesseeeaeeeeneeans 31
Figure 17: Box plot showing the comparative overall runtime of Go and C++ when using a monolithic
AFCRILECIUF@. ... et e e et e et e et e et e et e e et e e eateeeaseesateeeneeeaeeeeaeeans 32
Figure 18: Bar chart showing the comparative maximum RSS of different languages and architectures. .. 34
Figure 19: Bar chart showing the comparative total RSS of different languages and architectures............. 35

Figure 20: Bar chart showing the comparative CPU usage of different languages and architectures. 36

Figure A.1: Screenshot showing the bash script to launch the Go microservices application..................... 46

Figure A.2: Screenshot showing the bash script to launch the Go monolithic application........................... 46
Figure A.3: Screenshot showing the bash script to launch the Python microservices application............... 46
Figure A.4: Screenshot showing the bash script to launch the Python monolithic application.................... 47
Figure A.5: Screenshot showing the bash script to launch the C++ microservices application.................. 47
Figure A.6: Screenshot showing the bash script to launch the C++ monolithic application....................... 47

XV

List of Tables

Table 1: Summary of Maximum Instantaneous Power Consumption for different languages and
AFCRILECIUFS. ...ttt e e e et e et e et e et e e et e et eeeateeeateeereeereeeens 26
Table 2: Table showing the percentage difference in maximum instantaneous power consumption

betWeen different AUCRITECIHUTES.c..ocueieeiieeieeeeee ettt ettt et et e e it et e st e etaasseessaensaeneeas 27
Table 3: Summary of Total Power Consumption for different languages and architectures. 28

Table 4: Table showing the percentage difference in total power consumption between different

AFCRILECIUFS. ...ttt e e et e et e et e et e e et e e et e e eateeeaaeeeteeereeeens 29
Table 5: Table summarising the runtime measured for different languages and architectures. 30
Table 6: Table summarising the runtime differences between architeCtures.c.cccoeevevvevvevvennnnn. 33
Table 7: Table summarising the maximum RSS of different languages and architectures 33
Table 8: Table summarising the maximum RSS differences between architectures.c.cccoeeven... 34
Table 9: Table summarising the total RSS of different languages and architectures......................cc......... 35
Table 10: Table summarising the total RSS differences between architectures.cccocoecevcevceeeennn. 36
Table 11: Table summarising the CPU usage of different languages and architectures.......................... 36
Table 12: Table summarising the CPU usage differences between architeCtures................c.cccoecvevvennne. 37
Table B.1: Table with full maximum instantaneous power results for Microservices Architecture........... 91
Table B.2: Table with full maximum instantaneous power results for Monolithic Architecture................ 91
Table B.3: Table with full total power results for Microservices ArchiteCture...............cccocovevvevvevvannnnnn. 91
Table B.4: Table with full total power results for Monolithic ArchiteCturec.ccoevvevvevvecveniennnn, 92
Table B.5: Table with full DHT runtime results for Microservices Architecture.............ccc.ccoecevevrcveeennen. 92
Table B.6: Table with full LED runtime results for Microservices ArchiteCtureccccoevevvennnne. 92
Table B.7: Table with full PIR runtime results for Microservices Architecture...................ccccoeevevvennne. 93
Table B.8: Table with full overall runtime results for Microservices Architecture — concurrent.............. 93
Table B.9: Table with full overall runtime results for Microservices Architecture — cumulative.............. 93
Table B.10: Table with full DHT runtime results for Monolithic Architecture...............ccccooevcevcvrcvnecnnen. 94
Table B.11: Table with full LED runtime results for Monolithic Architecturecccccoceecevcvrcvneennen. 94
Table B.12: Table with full PIR runtime results for Monolithic Architecture..............c..cccooovevvevvenvannnnnn. 94

Table B.13: Table with full overall runtime results for Monolithic Architecture...............cc.ccoccovevrcvnnnne. 95

Table B.14: Table with full Maximum RSS results for Microservices Architecture...............ccccocevcueuenne.. 95

Table B.15: Table with full Maximum RSS results for Monolithic Architecture.............ccccccoecevvvrcenennnen. 95
Table B.16: Table with full Total RSS results for Microservices Architectureccccooeecevcercenennnns 96
Table B.17: Table with full Total RSS results for Monolithic Avchitecture.................ccocuvvioveecenocicenennns 96
Table B.18: Table with full CPU results for Microservices ArchiteCtureccoevveevvevvecraveaneennnn, 96
Table B.19: Table with full CPU results for Monolithic ArchiteCturecccccooveoeveioeioeeeeneieeennns 97

Xvil

Nomenclature

Abbreviations
Amazon SOS : Amazon Simple Queue Service
AMQP : Advanced Message Queuing Protocol
API : Application Programming Interface
CMQ : Cloud Message Queue
CoAP : Constrained Application Protocol
CPU : Central Processing Unit
DHT : Digital Humidity and Temperature
GPIO : General Purpose Input/Output
HTTP : Hypertext Transfer Protocol
IETF : Internet Engineering Task Force
loT : Internet of Things
IP : Internet Protocol
JSON : JavaScript Object Notation
kB : Kilobyte
LED : Light Emitting Diode
MB : Megabyte
MQIT : Message Queuing Telemetry Transport
MQOTT-SN : Message Queuing Telemetry Transport for Sensor Networks
QoS : Quality of Service
RAM : Random Access Memory
RAPL : Running Average Power Limit
REST : Representational State Transfer
RFC : Request for Comment
ROM : Read-Only Memory
RSS : Resident Set Size
CP : Transmission Control Protocol
UDP : User Datagram Protocol

WoT : Web of Things

1. Introduction and Research Objective

1.1 Introduction

In 1960, the first known embedded system was used for developing the Apollo Guidance System,
which marked the birth of a new world - the world of embedded devices. With the advent of the
internet years later, embedded devices began to morph into what is now known as the Internet of
Things (IoT) — a term coined in 1999 to describe objects that are able to communicate [Rungta,
K., 2020][Lueth, K. L., 2014]. Today the term IoT encompasses a plethora of internet connected
devices, from smart watches to smart fridges, from cars to eating utensils [Komiyama, N., 2017].
By 2008, there were already more "Things" connected to the internet than there were people, and
it is estimated that by the end of 2021, there will be between 25 and 50 billion web-connected
Things. This clearly shows the trend that has taken hold of IoT [Cook, S., 2020][Burhan, M. et
al., 2018].

With the increase in number of IoT devices, comes the diversification of the types and uses of
these devices. One such group/class of devices is referred to as "constrained devices".
Constrained devices are devices that have limited resources, e.g. computational power, memory
or energy. A number of factors affect the management and usage of these resources, such as the
type of device, the operating system, the conditions of use, the choice of programming language
and the software architecture. Once a device has been selected, some of these factors can be
adjusted to improve resource management, e.g. choice of programming language, whilst others
cannot be altered, such as the deployment conditions in many cases. Since resource management

is critical to the efficacy of constrained devices, it is an area that is well worth exploring.

1.2 Research Objective and Expected Contribution

The efficient use of resources is a critical aspect for many embedded devices. Therefore, the
choice of software architecture is very important as it can have a significant impact on energy,
memory and runtime performance. The aim of this research thesis was to analyse and compare
the energy, memory and runtime performance of an embedded device application using two
software architectures and three programming languages (to avoid language-specific results).
The two software architectures that were compared are the microservices and monolithic

architectures, whilst Go, C++ and Python are the three programming languages that were used.

Given the nature of resource-constrained devices, the optimization of energy and memory use,

as well as runtime, is a critical concern in IoT and the Web of Things (WoT). Hence, the choice

1

of software architecture, programming language and programming language implementation is
an important decision. Thus far, limited research has been conducted on the impact of software
architecture on resource-constrained device performance (see the Section on state of the art). It
is therefore expected that this research will provide valuable insights for the choice of software

architecture in the field of IoT and WoT.

1.3 Brief Overview of Report Content

The remainder of this report will delve into a number of topics in more depth. Section 2 provides
background on a number of key topics; Section 3 provides a literature review of the state of the
art. Section 4 gives an overview of the technical approach that was taken. Section 5 discusses the
methodology that was followed when conducting the experiments as well as the evaluation that
was done. The results from this research thesis are shown and discussed in detail in Section 6.
Finally, Sections 7 and 8 are dedicated to the conclusion and references, respectively. An

appendix can be found at the end of this document.

2. Background

2.1 Constrained Devices

Constrained devices include sensors (e.g. motion or temperature sensor), actuators (e.g. LED
lights or motors), aggregators, microcontrollers and many more. Constrained devices are
typically devices that are built to handle a specific application purpose and are usually connected
to a gateway device, which acts as the intermediate for communication to the internet. The
constraints on resources of sensors, microcontrollers, etc. can range from code complexity, i.e.
read-only memory (ROM)/Flash, and available random-access memory (RAM) to processing
capabilities and availability of power [Nagasai, M., 2017]. Given the vast array of resource

constrained devices, IETF published RFC 7228 to classify these devices into 3 classes, as shown

in Figure 1.

T e e +
| Name | data size (e.g., RAM) | code size (e.g., Flash) |
S e e +
Class 0, CO	<< 10 KiB	<< 100 KiB
class 1, C1	~ 10 KiB	~ 100 KiB
class 2, C2	~ 50 KiB	~ 250 KiB
Fom e e o e +

Figure 1: I[ETF RFC 7228 showing classification of constrained devices (KiB = 1024 bytes)
[Keranen, A., Ersue, M. and Bormann, C., 2014]

Class 0 devices have severe constraints on memory and processing capabilities; hence they are
not able to communicate directly with the internet and require some gateway node in order to
connect. Class 1 devices are able to run low power IoT protocols, such as Constrained
Application Protocol (CoAP) and Message Queuing Telemetry Transport for Sensor Networks
(MQTT-SN) running over User Datagram Protocol (UDP). Class 2 devices have constraints
similar to mobile phones and, therefore, are able to run similar protocols as mobile phones. As
with mobile phones, power source availability is still a major concern. Therefore, low power
protocols are still preferred [Nagasai, M., 2017]. This research thesis is aimed at devices that fall
into classes 1 and 2. Although Raspberry Pi 4 falls into class 2, it serves as an ideal testing device
as the relative energy consumption, runtime and memory performance will be valuable

information for both classes.

IETF published an additional RFC (RFC 6606), which differentiates between devices that have
regular access to electricity and those that do not. The former is referred to as “power-affluent”

and the latter is referred to as “power-constrained” [Gomez, C. et al., 2012]. Although the

3

Raspberry Pi used in this project has access to power, the experiments that were done to
determine energy efficiency will primarily benefit energy-constrained devices. Energy and
memory efficiency are clearly critical aspects for resource-constrained devices. However,
runtime can also be a critical factor for these devices. For example, a fire sensor is required to
have a very fast runtime so that a client/subscriber is informed of a fire as soon as possible.
Similarly, a medical or security sensor/actuator should be able to execute code quickly in order
to meet functional requirements. As such, runtime performance has also been selected as a key
parameter to be analysed in this project. It is important to note that real-time performance
behaviours, such as runtime, depend on a number of factors, such as the operating system and
any obscure background processes that may introduce noise into the measurements. In order to
limit this noise, all background processes were shut off, as recommended by Hindle et al. [Hindle,

A.etal.,2014].

2.2 Web of Things and Internet of Things

Connectivity is an important factor within the area of Internet of Things. If devices are unable to
communicate with one another over the internet, they are simply isolated Things. However,
within the world of IoT, the billions of Things use a vast array of protocols, software and
hardware, therefore connectivity is very challenging. The fact that there is such heterogeneity in
connectivity of devices can in part be explained by the fact that in the early years of IoT, most of
the attention was paid to the lower layers of the network stack in order to find ways for devices,

such as wearables and kitchen items, to sense and send data.

In those early days, little attention was paid to interconnectivity and interoperability between
devices, and this lack of interoperability has only increased over time as a wider range of
standards and protocols has been introduced in an attempt to standardize IoT, which ironically
only exacerbated the problem. One of the promising approaches/solutions to this problem is
known as the Web of Things (WoT). WoT was proposed as a way to interconnect devices using
the already widely implemented web. Given the wide adoption of the web, as well as the fact that
the web is, for the most part, simple and open source, it appeared to be an ideal candidate for the

standardization of the top layer of IoT [Bolar, T., 2020].

In addition to improved interoperability, WoT offers many benefits over its IoT counterpart, such
as open and extensible standards, maintainability, loose coupling and security [Guinard, D. and

Trifa, V., 2016]. Arguably one of the most important aspects of WoT is the use of machine-

understandable metadata, such as JavaScript Object Notation (JSON)! to describe and store
information about a Thing. This concept was initially proposed in the "Building the Web of
Things" book [Guinard, D. and Trifa, V., 2016] in 2016 and has since evolved into a much bigger
and more well-defined concept, reflected, for example, in the W3C Thing Description [W3.org.
2019]. Within the WoT, a Thing is an abstract representation of a physical device, and the Thing
Description provides information on physical device properties and statuses (e.g. temperature),
possible actions, and other more complex aspects like security configurations [Parwej, Dr. Firoj
& Akhtar, Nikhat & Perwej, Dr. Yusuf., 2019]. Since the research in this thesis was aimed at
analysing the performance of the device itself and not on internet connectivity, the data model
proposed by Guinard and Trifa (2016) was used due to its simplicity. The choice of adoption of
a particular data model does not affect the usefulness and applicability of the conclusions drawn

in this research thesis.

2.3 Microservices Architecture, Monolithic Architecture and
Messaging Protocol

The choice of architecture is a critical consideration for embedded devices. Given the loose
coupling of the WoT approach and the high volatility within WoT/IoT, microservices is clearly
a standout option for software architecture. By definition, WoT has a huge deployment ecosystem
and a large number of end points. Additionally, the Things are inherently dynamic whether it is
spatially (e.g. wearables), in terms of time (e.g. switching on and off), in terms of purpose (e.g.
what is being monitored may change) or interchangeability (e.g. one device may be changed to
a different, more advanced one). This leads to very complex networks that are difficult to
implement and even more difficult to maintain [Babaria, U., 2018]. These are all compelling

reasons for the use of the microservices architecture.

Microservices is a software application development approach that makes use of independently
deployable, modular services. The concept of a microservice is well explained by Thones, who
stated that a microservice is a small application that can be deployed independently, scaled
independently, tested independently and has only one responsibility [Thones, J. 2015]. Typically,
each of these services is organized around a specific business or technical capability, is loosely
coupled and, due to the size and modularity, highly maintainable, testable and scalable

[Richardson, C., 2019].

' Widely used lightweight data interchange format

By comparison, the monolithic architecture is often considered to be the traditional approach for
building applications and comprises a single code base for all its services and functionalities.
This approach is often easier to develop and deploy at the outset but becomes difficult to manage
as any updates or changes require accessing the whole code base [Gnatyk, R., 2018]. However,
for smaller applications, end-to-end testing and debugging are often much easier for monolithic
applications than for microservices applications since all application logic is contained in a single
unit. Figure 2 provides a good visual explanation of the differences between a traditional

monolithic application and a microservices application.

A monolithic application puts all its -’ A microservices architecture puts 9 '
functionality into a single process... & each element of functionality into a
oV separate service...
L
... and scales by replicating the ... and scales by distributing these services
monolith on multiple servers across servers, replicating as needed.
yd
"’ o’ v[(|*® |' °
o 4
oV oV o|lofl| [[®[e®
-’ -’ v
2 g
oV oV ofe® |0 v

Figure 2: Visual representation of the architectural difference between a monolithic
application and a microservices application [Fowler, M., 2014].

It is clear from Figure 2 that the microservices approach enables flexibility, modularity and
scalability, whilst the monolithic approach offers distinct boundaries and set functionalities. The
modularity of the microservices approach means that different programming languages can be
used in different modules/components and that different modules/components can be distributed

across different locations (embedded device, cloud, server, etc.).

Although the microservices architecture offers many clear benefits, there are also a few potential
disadvantages. Individual microservice components are typically simple but the microservices
ecosystem as a whole can become complex due to the number of moving parts and
communication between these parts. The size of each component can also be a difficult decision

as components that are too large tend towards monolithic behaviour, whilst components that are
6

too small may just transfer complexity from the component to the intercommunication. There are
some other potential draw backs like hackability, third party dependencies, etc. [Atchison, L.,
Wieldt, T. and Paul, F., 2018]. Evidently, the monolithic architecture also has a few
disadvantages such as scalability, which can only be done for the entire application, not
individual functionalities. Large monolithic applications also become very difficult to understand
and it can be difficult to anticipate the impact of an update/change on the application. Overall,
the microservices architecture appears to be a promising option for IoT/WoT and embedded

devices. However, further research is required to verify this.

An obvious question that arises after inspection of Figure 2 is about how the components
communicate in the microservices architecture. Components communicate using "messages",
which is a broad term for any inter-process communication protocol such as Hypertext Transfer
Protocol (HTTP), Transmission Control Protocol (TCP), Advanced Message Queuing Protocol
(AMQP), etc. Most frequently, communication between microservice components is designed to
be flexible and event driven. The two most common types of protocols are HTTP and lightweight
asynchronous messaging protocols, e.g. AMQP [De la Torre, C., Wagner, B. and Rousos, M.,
2020]. Due to the resource constrained nature of many embedded devices, it was decided that a

lightweight messaging protocol, instead of HTTP, would be used in this project.

Asynchronous messaging protocols are generally event driven. With this approach,
microservices communicate by exchanging messages via a bus. This approach further enables
loose coupling and also means that service discovery is not needed. There are a number of
different asynchronous messaging protocols, such as Amazon Simple Queue Service (Amazon
SQS), CoAP, which can also operate in synchronous mode, Cloud Message Queue (CMQ),
AMQP and Message Queuing Telemetry Transport (MQTT). Although each of these protocols
have their own merits, CoAP, AMQP and MQTT are three of the most widely used publish-
subscribe messaging protocols and, therefore, the choice of messaging protocol for this project
was limited to these three protocols. CoAP, AMQP and MQTT are discussed in further detail in
Section 3.2.

2.4 Go, Python and C++

The following three programming languages were selected for comparison in this research thesis:
Go, Python and C++. These languages were selected as two are compiled languages (Go and
C++) and one is an interpreted language (Python). Go is a compiled language but is programmed
similarly to a dynamic-typed interpreted language [Go Documentation., 2016]. Compiled

languages have the advantage that the source code is translated into machine code by a compiler.

7

This results in very efficient machine code that can be executed many times. By comparison,
interpreted languages must be parsed, interpreted, and executed every time that the program is
run. Hence the overhead of translating from source code to machine code is incurred every time.
Interpreted languages are, however, usually more flexible and offer some advantages such as

dynamic typing and less lines of code [Blokdyk, G., 2018].

C++ is a general-purpose programming language that was released in 1985 and is an extension
of the C programming language. C++ was designed with a focus on system programming and
embedded/resource-constrained systems, hence performance, efficiency and flexibility were key
design considerations [Stroustrup, B., 2013]. Go was first released in 2009 and was designed by
Google engineers as a modern approach to today’s software engineering paradigm, i.e. scalable
and cloud-based. Go is built for concurrency, can be compiled on most machines and is simple
to learn [Biggs, J., & Popper, B., 2020]. Python is an interpreted high-level, general-purpose
programming language that was released in 1991. It was designed with an emphasis on code
readability and simplicity. It fully supports object-oriented and structured programming and is
dynamically typed [Kuhlman, D., 2011]. Although the primary focus of this thesis was on
comparing software architectures, this research should also provide some interesting insights into
the comparison of runtime performance, energy consumption and memory consumption of these

languages.

3. Literature Review of the State of the Art

3.1 Microservices vs. Monolithic as an Architecture for loT/WoT

As discussed in the introduction, given the distributed and dynamic nature of IoT and WoT, the
microservices architecture stands out as a highly promising approach in many contexts. In fact,
as early as 2005 the term “Micro-Web-Services” was introduced by Peter Rodgers (2005) at the
Web Services Edge conference [Rodgers, P., 2005]. Over recent years, substantial research has
been done to determine the aptness of the microservices architecture for [oT and WoT. Santana,
Alencar and Prazeres (2018) conducted a thorough review of the use of the microservices
architecture to solve many of the problems faced in the field of IoT. The authors carried out a
systematic mapping of 18 studies and produced an overview of the state of the art of application
of the microservices architecture in IoT and WoT. They found that across all of the analysed
works, the primary focus was on the design phase and that there was still a need for investigation

into implementation, evaluation and operation [Santana, C., Alencar, B. and Prazeres, C., 2018].

In-line with the findings of Santana et al. (2018), very few studies could be found that compared
the implementation and performance, on a technical level, of the monolithic architecture to the
microservices architecture in the context of [ocT/WoT. One study, conducted by Al-Debagey and
Martinek (2018), compared the two architectures for a web application, although no resource
constrained devices were used. The study aimed at comparing the throughput? and response time?
of the two architectures. The results indicated that the two architectures had a similar
performance in both metrics. However, when there were only a small number of requests/clients
(1000 or less threads), the monolithic architecture had a better throughput. With 2000 threads or
more, the microservices architecture performed slightly better. The response times of the two
architectures were almost identical regardless of the number of threads [Al-Debagy, O. and

Martinek, P., 2018].

Another study, conducted by Tapia et al. (2020), was not related to IoT but provided some
valuable insights into the performance of the monolithic and microservices architectures.
Following a number of tests, a comparative analysis was done of the results. It was found that
the monolithic architecture used less central processing unit (CPU) resources, whilst the
microservices architecture consumed less memory. It was also discussed that a monolithic

architecture can be more efficient, and incur less overhead, but primarily for small-scale

2 Number of requests that the application could handle per second
3 Time that elapses between the request and the response

applications [Tapia, F. ef al., 2020]. It can be concluded from these two studies that, in terms of
non-loT applications, both architectures have benefits and drawbacks. In the context of [oT/WoT,
a number of studies were conducted that provided some insights into the architectures, albeit in

a non-technical sense. These studies are outlined below.

Zeiner, Goller, Jiménez, Salmhofer and Haas (2016) conducted a study that focused on a WoT
platform based on the microservices architecture. In this study, the authors built a Web of Things
platform that implemented a REST interface using a JSON data format, with the aim of building
a responsive, resilient, flexible and message driven system. The findings from the study indicated
that the use of the microservices architecture allows the flexibility and scalability that is required
for a WoT platform. They also found that maintenance of and changes to the platform were much
simpler (compared to a monolithic architecture) and did not compromise the performance of the

platform due to the modularity of the microservice components [Zeiner, H. ef al. 2016].

Another study, conducted by Mena, Criado, Iribarne and Corral (2020), investigated the use of a
digital representation of a device based on microservices and the WoT framework, named Digital
Dice, to solve the problems faced by resource-limited embedded devices. The authors of this
study discussed the advantages of using WoT, such as the Thing Description that is used to define
Things in a standard way. They also discussed the advantages of using a microservices
architecture, such as the ability to break down complex interactions so that there is one
microservice for each interaction. The authors concluded that the use of microservices within the
WoT framework enabled the system to achieve flexibility and robustness, and also allowed for

easier maintenance and development [Mena, M. et al. 2020].

In a study by Butzin, Golatowski and Timmermann (2016), the authors discussed the similarities
in goals of microservices and IoT, which included lightweight communication, independently
deployable software and minimizing centralized management. The authors concluded that,
although microservices and loT approach their goals from different directions, they share many
common goals [Butzin, B., Golatowski, F. and Timmermann, D., 2016]. A study by Santana et
al. (2019) proposed the use of microservices to improve the reliability of IoT applications
[Santana, C. et al., 2019]. Huang, Lu, Walenstein and Medhi (2017) proposed reconceiving [0T’s
fundamental unit of construction (a “Thing”) as a microservice and argued that the microservices
approach for IoT can improve many aspects such as API gateways, distribution of services,
uniform service discovery and access control [Lu, D.et al, 2017]. Overall, the use of
microservices in the field of IoT and WoT gave favourable results in all of the studies that were

reviewed. However, there is no technical evidence to support the use of the microservices

10

architecture over the monolithic architecture in the context of IoT and resource-constrained
devices. Hence it was decided that the performance of the two architectures would be compared

on a technical level in this research thesis.

3.2 Messaging Protocol

As mentioned in the Introduction Section, there is an abundance of potential messaging protocols.
Given that this project aimed to implement an IoT application on a resource constrained device,
only lightweight messaging protocols were explored. Three messaging protocols were identified
as options for this project: MQTT, AMQP and CoAP. Since MQTT and AMQP are the most
closely related protocols out of the three, they are discussed and compared first. A number of
comparative reviews have been done between different messaging protocols for IoT, and in

particular about the differences between MQTT and AMQP.

MQTT was first authored in 1999 by Andy Stanford-Clark and Arlen Nipper and was later
standardised by OASIS, in 2013. MQTT is a standard messaging protocol for [oT and is designed
as an extremely lightweight publish-subscribe messaging transport [Mqtt.org. 2020]. MQTT is
described well by Figure 3. Essentially, each resource is an individual and separate component
and each of these components communicates directly with an MQTT-Broker. The publisher
component publishes any relevant information, e.g. temperature, to the MQTT queue and the
subscriber component then subscribes to relevant information from the queue. Although only 1-
way communication is shown on the publisher side in Figure 3, 2-way communication with the

MQTT-broker is possible for all components [Paessler.com. 2018].

A
(/b[/;9 4. 5

- 2po

(&

%

MQTT-Broker

=]
[—]
(—]
o
o
o
= @
o
[—]

Figure 3: Graphical representation of MOTT architecture [Paessler.com. 2018]

11

Originally, MQTT was designed for use in devices with unreliable network resources, e.g. in
remote locations, but it is now more widely adopted. MQTT runs on top of TCP/IP and was
designed to be an event-driven protocol, hence there is no ongoing data transmission
[Paessler.com. 2018]. In addition to minimizing number of transmissions, the transmitted
messages are also small and tightly defined. Each message has a header of only 2 bytes and there
are three possible quality of service (QoS) levels based on the desired balance between data

transmission minimization and reliability maximization.

AMQP is an open standard protocol by OASIS that was released in 2011. AMQP also follows
the publish-subscribe paradigm and was initially designed to enable interoperability between
different devices that have different internal systems [Dizdarevi¢, J., Carpio, F., Jukan, A. and
Masip-Bruin, X., 2019]. AMQP has substantially more functionality than MQTT. It allows for
message orientation, security, routing and switching reliability. The top-level architecture of

AMAQP is quite similar to that of MQTT, as can be seen in Figure 4.

/A,MQP Broker Queues \
[r

Qd, >-| Subscriber \

— -

O"- B Subscriber

Publisher
N

@D
-

| O.‘ | Subscriber
Figure 4: Graphical representation of AMQP architecture [Bahashwan, A. and Manickam,
S., 2018].

In comparison to the MQTT architecture, it can be seen that the AMQP broker is split into two
parts: exchange and queues. The exchange receives messages from the publisher and routes each
message to the correct subscriber queue. There are a number of other key differences as well,
which are outlined in a number of comparative studies. The message overhead is one such
example. MQTT has a smaller message header size (2 bytes vs 8 bytes) and MQTT has a small
and defined payload, whilst AMQP's payload is more flexible. AMQP has full cache and proxy
support and substantially more security standards. Additionally, the QoS offered by AMQP is

12

superior to that of MQTT [Dizdarevi¢, J. et al., 2019] [Bahashwan, A. and Manickam, S., 2018]
[Al-Masri, E. et al., 2020] [MQTT, A., 2019].

Although AMQP has many benefits and is widely adopted in IoT devices that prioritise flexibility
and reliability, all of the studies concur that this protocol is not well suited to constrained
environments. According to Dizdarevi¢ et al. (2019), with all of the features that AMQP offers,
it has relatively high power, processing and memory requirements. Hence it is better suited to a
system that is not bandwidth, power or latency restricted [Dizdarevi¢, J. et al., 2019]. Al-Masri
et al. also found in their study that MQTT had much lower memory, CPU and power consumption
than AMQP [Al-Masri, E. et al., 2020]. Based on these findings, and the fact that this project
aimed to optimize resource usage in constrained devices, MQTT is better suited to this project

than AMQP. Therefore, the next comparison to be made is between MQTT and CoAP.

MQTT and CoAP have a number of fundamental differences. MQTT is a many-to-many
communication protocol for passing messages through a central broker, to and from multiple
clients. MQTT is ideally used as a communications bus for live data. Although CoAP can operate
in different modes, it is primarily a one-to-one protocol that allows direct communication
between devices on the same constrained network. Hence it is better suited for resource creation
and management on devices. Additionally, CoAP is commonly referred to as a request-response
protocol, whilst MQTT is a publish-subscribe protocol [Jaffey, T., 2014]. Figure 5 provides a

good visual representation of the architectural differences.

MQTT CoAP
Client \ /— Client Client ¢ ? Server
Client Broker | ¢ Client Client J
Client / Server ¢ ? | Client

Figure 5: Graphical representation of MOTT and COAP architectures [Mishra, H., 2019].

Some additional benefits offered by MQTT include time, space and synchronization decoupling.
Time decoupling is mentioned as nodes can publish information regardless of the state of other
nodes. Hence sleep or low power modes, which are often critical to power constrained devices,
can still be employed without affecting communication. Space decoupling is achieved as nodes

only need to know the IP-address of the broker node, not the addresses of all other nodes that
13

publish or subscribe to information. Synchronization decoupling is achieved as messages are
only retrieved from the message queue once the subscriber node has completed all existing
operations. This improves resource management of devices and allows for sleepy states

[Stansberry, J., 2015].

CoAP does, however, offer a number of advantages over MQTT, such as message metadata.
MQTT can be used by any client for any purpose, but clients must know the correct message
formats to be able to communicate. By comparison, CoAP allows for content negotiation and
discovery. Another advantage of CoAP is that it uses UDP as the transport protocol, whilst
MQTT typically uses TCP as the transport protocol, although more recent developments have
allowed for operation over UDP e.g. MQTT-SN. UDP’s connectionless datagrams have less
overhead, which allows devices to remain in lower power modes for longer periods of time,
thereby conserving power. This advantage comes with a downside, however, as UDP is
inherently, and intentionally, much less reliable than TCP [Mishra, H., 2019][Stansberry, J.,
2015].

A number of studies have also been conducted to compare the technical performance of MQTT
and CoAP. One such study was conducted by Van der Westhuizen and Hancke (2018) to compare
communication delay and network traffic on both resource constrained devices and non-resource
constrained devices. The researchers found that MQTT and CoAP had very similar
communication delays when both the client and broker/server were on the same network. When
the client was connected to an external network, however, MQTT had smaller delays than CoAP,
and it was expected that the difference in delay would increase with increased packet size.
Additionally, it was found that the architecture of MQTT was better suited when the same
messages were forwarded to multiple clients/subscribers and that MQTT was generally simpler
to implement. However, it was found that, on average, CoAP had smaller packet sizes and no
keepalive messages, which led to lower power consumption [Van der Westhuizen, H. W. and

Hancke, G. P., 2018].

In a study conducted by Naik (2017), a comparative analysis of MQTT, CoAP, AMQP and HTTP
was done for [oT systems. The study found that CoAP incurs the lowest message overhead and
power consumption, followed by MQTT. The study also emphasized the fact that both CoAP
and MQTT are designed for low bandwidth and resource constrained devices; and can both be
used on an 8-bit controller with less than 1 kilobyte (kB) of memory. The author also highlighted
that, on average across different studies, CoAP consumes slightly less power and resources than
MQTT. Additionally, the study concluded that MQTT consumed slightly higher bandwidth than

CoAP and that MQTT offered greater reliability, whilst both MQTT and CoAP had the lowest
14

interoperability scores. Finally, the protocols were also ranked on their usage* in IoT, where

MQTT was ranked highest amongst the four, followed by AMQP [Naik, N., 2017].

It is clear from the available research that both MQTT and CoAP offer a number of advantages
and disadvantages, and that the choice of protocol is highly dependent on the usage scenario.
One additional factor played a pivotal role in deciding which protocol to use for this research
thesis, which was the language support for the protocols and the ease of implementation. Since
the primary objective of this thesis was to compare software architectures, not application layer

protocols, MQTT was selected by preference.

3.3 Programming Language Efficiency for Embedded Devices

Three different programming languages were used in this research thesis, primarily to ensure that
the results obtained from this comparative study were not language specific. However, the choice
of programming language can also have a significant impact on resource management. A number
of studies have been conducted to determine the impact of programming language on runtime,
memory and energy performance. However, to date no research has yet been conducted that
compares the three programming languages that have been selected across different software
architectures and on an embedded device. In fact, very limited research has been conducted on

the choice of programming language for resource constrained devices in general.

Two studies were identified as being relevant to the research topic in this project. The first study
was conducted by Pereira et al. (2017) to analyse energy efficiency across different programming
languages. The primary focus was on energy efficiency, but runtime and memory-usage were
also analysed by the authors and the analysis was carried out on a personal computer, i.e. a non-
resource constrained device. Twenty-seven programming languages were compared by running
ten benchmark problems from the Computer Language Benchmark Game framework on a
desktop in each language. Amongst the twenty-seven languages were Rust, C, C++, Java, Python
and Go. The energy consumption was measured using running average power limit (RAPL)
function calls, whilst the runtime and memory were measured using the time tool that is available

in all Unix-based systems [Pereira, R. ef al., 2017].

The results obtained in the study led the authors to the conclusion that there is no concrete optimal

programming language from the perspective of runtime, energy efficiency and memory

4 In the referenced study, usage referred to the degree of adoption of each protocol in industry, i.e. is it commonly used
or not. This ranking is not specifically related to embedded devices, but rather to [oT systems in general.

15

performance. When considering each metric individually, C, Rust and C++ performed the best
for both runtime and energy efficiency. However, Pascal, Go and C performed the best in terms
of memory efficiency. It is clear from the research that C++ and Go performed much better than
Python in all three metrics. This study provided some very interesting insights into programming
language performance for personal computers but did not touch on constrained devices. It did,
however, offer inspiration on how to conduct the experiments and, specifically, how to measure

experimental values [Pereira, R. ef al., 2017].

The second study that was of particular interest was conducted by Georgiou et al. (2017) to
analyse the energy consumption of 14 programming languages on a portable personal computer
and on a Raspberry Pi 3b. The authors used data from Rosetta Code Repository, which is a
publicly available programming chrestomathy, to conduct an empirical study. The programming
languages that were chosen were a combination of compiled, semi-compiled and interpreted
programming languages that included C, C++, Java, Go, Rust and Python. Ultimately, the
languages that were chosen were a subset of the languages chosen for the study by Pereira et al.
(2017). The main difference was that the study by Georgiou et al. (2017) only analysed energy
efficiency (not memory or runtime) and analysed the languages on two hardware devices
(compared to one in the study by Pereira et al.) [Georgiou, S., Kechagia, M. and Spinellis, D.,
2017].

Georgiou et al. (2017) analysed the performance of the programming languages by running a
selection of well-known tasks in each programming language, such as array-concatenation, url-
encoding and sorting algorithms. The authors also discussed, in some detail, about the different
possible methods for measuring energy consumption. Two methods were presented: a direct
method using hardware components, which offers coarse-grained measurements and low
sampling rate, and an indirect method that uses software components, which often suffers from
inaccuracy. The authors opted to use the direct method, and prior to measurement of energy
consumption, the computer system was rebooted and allowed to reach stable condition. The
results from these experiments indicated that VB.NET and Swift were the most energy inefficient
programming languages, whilst Go was the most energy efficient, followed closely by C and

C++ [Georgiou, S., Kechagia, M. and Spinellis, D., 2017].

16

4. Technical Approach

4.1 Software Architecture

As per the objective of this project (see Section 1.2), six applications were developed. Three
applications were developed using a microservices architecture (in three different languages),
which can be seen in Figure 6. The other three applications were developed using a monolithic
architecture. The microservices applications comprise four distinct microservices, which
communicate using MQTT, an event-driven lightweight messaging protocol. The first three
microservices ran on the Raspberry Pi and each microservice was responsible for a dedicated

sensor or actuator service.

Device Index
. Raspberry Pi
. Cloud or Personal Computer

. Personal Computer

Figure 6: Graphical representation of the microservices architecture that was used in this

project.

The MQTT broker, which was responsible for the message queue, ran on a personal computer
using Eclipse Mosquitto, although it can also be run on the cloud [Vmware, 2020][Eclipse
Mosquitto, 2018]. The fourth microservice was responsible for maintaining a data model of the
LED actuator, temperature/humidity sensor and PIR sensor. This last microservice ran on a
personal computer. Microservices 1, 2 and 3 were developed three times, using the three
programming languages outlined in Section 2.4. Microservice 4 was only written once using

Python since the first microservices application was developed using Python.

17

The monolithic architecture can be seen in Figure 7. With this architecture, all of the server-side
logic (actuators and sensors) are contained in a single unit/component. The server application

and client application also communicated using MQTT and an MQTT broker.

Device Index
. Raspberry Pi
. Cloud or Personal Computer

. Personal Computer

.moﬂ>'doﬁ>. ------ 15 o

Figure 7: Graphical representation of the monolithic architecture that was used in this
project.

4.2 Hardware Architecture

The following hardware was used for the experiments:

e Raspberry Pi 4 with 4GB RAM & 16GB MicroSD (2020 Model)

e MacBook Pro 13-inch, 2017 with a 2,3 GHz Dual-Core Intel Core i5 processor and 8GB
RAM

e Type C USB Tester DC Digital Voltmeter and Ammeter

e DHT22 5V DTL 2% MOD temperature and humidity sensor

e Passive Infrared (PIR) sensor 240’

e LED 3mm red

e Arduino breadboard and wires

The setup of the breadboard and sensors is shown in Figure 8, whilst the Type C USB tester is

shown in Figure 9.

18

Breadboard

DHT22 sensor

LED actuator

T

Figure 8: Photograph showing the experimental setup of the breadboard and sensors

00:02:17T

5.08v o5 Gosw

0.792 00029mih
- A T

Figure 9: Photograph showing the experimental setup of the Type C USB Tester.

4.3 Data Collection

A relatively large amount of data was collected for this project. Each of the datasets described
below were collected six times, twice for each of the three languages. Additionally, each dataset

was collected 10 times to ensure data validity. Hence a total of 180 datasets were collected.

19

Two different power consumption measurements were taken. Both of these measurements were
taken using hardware (see Figure 9) since the software alternative (Powerstat) yielded inaccurate
results. The first measurement that was taken was the instantaneous maximum or peak power
consumption in Watt. The maximum power consumption was measured as this gives an idea of
potential load spikes, which can be a limiting factor when energy harvesting is used, as is the
case for many resource-constrained devices. The instantaneous maximum power consumption

was measured using the type C USB tester as depicted in Figure 9.

The second measurement that was taken was the overall power consumption in Watt. This was
measured by resetting the device readings to 0 and then executing the program. Upon completion
of the program, the total runtime and electric charge, in milliamp hours (mAh), were captured.

These readings were then converted to Watts using:

_ QmanxVy
Ew = 1000 X tp, (1)

Where E,, is the energy consumption in Watts,
Oman 1s the electric charge in mAh,
V', is the voltage in Volts,

t, is the duration in hours

Program runtime is an important performance metric as it gives an indication of the speed of
execution of a program. Runtime refers to the period of time from the moment that a program is
executed, until the program ends/is closed. During this time, the program is loaded into RAM
which includes both the executable file and any libraries or other files that are referenced by the
program. When the program ends, the memory used by the program is freed for use by other
programs/processes. In the area of IoT, runtime is an important consideration as low latency is
often a key application requirement, e.g. medical devices, fire sensors, etc. Additionally, program
runtime is often critical for resource-constrained devices as it dictates the duration during which
resources are used, and therefore the total resource usage. Some programs may have low
instantaneous power and memory consumptions, but long runtimes, or vice versa. Therefore, it
is important to consider runtime when comparing resource consumption. It is also important to

note that runtime is highly dependent on the operating system that is used by a device. Since the

20

same device, and operating system’, was used for all experiments in this research thesis, runtimes

could be compared directly.

Runtime was measured for each IoT service, when using the microservices architecture, as well
as for overall program execution (time until all programs came to an end), for both architectures.
The measurements were taken using the time library that was available for each language, i.e. C
time library for C++, package time for Go and time module for Python. The measurements were
then recorded in a .txt file. To ensure that these times were accurate, they were compared to the
runtimes measured by the GNU time tool, and it was found that they were identical up to 100™
of a second. Figure 10 shows a snapshot of the individual microservices runtimes that were

captured.

PIR runtime = 5.938340038

Humidity and temperature runtime = 15.23761147
LED subsriber runtime = 113.274438286

PIR runtime = 7.756507411

Humidity and temperature runtime = 15.750742348
LED subsriber runtime = 114.44261036

PIR runtime = 6.960154441

Humidity and temperature runtime = 15.626923645
LED subsriber runtime = 102.263831264

PIR runtime = 7.796252434

Humidity and temperature runtime = 15.438289957
LED subsriber runtime = 125.653936215

PIR runtime = 8.015682016

Humidity and temperature runtime = 16.005173121
LED subsriber runtime = 115.170467108

PIR runtime = 7.7427028700000005

Humidity and temperature runtime = 15.25102536
LED subsriber runtime = 109.757388464

PIR runtime = 7.38978775

Humidity and temperature runtime = 15.612205738
LED subsriber runtime = 122.572531051

PIR runtime = 8.015360485

Humidity and temperature runtime = 15.577662641
LED subsriber runtime = 102.362130863

PIR runtime = 8.675664908

Humidity and temperature runtime = 16.644856813
LED subsriber runtime = 88.945034573

PIR runtime = 8.051036707

Humidity and temperature runtime = 16.289538924
LED subsriber runtime = 82.220552331

Figure 10: Snapshot of the runtime outputs when using the language specific time library
(this is an example of Go)

5 The Raspberry Pi used in this research thesis runs the Raspbian GNU/Linux version 10 operating system
21

Three different memory consumption measurements were taken for this project. The first was
the maximum resident set size (RSS) in kB. RSS is the amount of main memory (resident RAM)
that a process is using at the time of measurement. This does not include swapped or otherwise
non-resident RAM. Therefore, the maximum RSS measurement indicates the peak RAM that
was used by a process, which provides valuable information as constrained devices usually have
limitations on available RAM. The maximum RSS was measured using the GNU time command
that is available in Linux. Figure 11 shows the output of the GNU time command that was saved

to a .txt file after each run.

Command being timed: "./pirPub 10.35.0.229"
User time (seconds): 0.29

System time (seconds): 0.07

Percent of CPU this job got: 75%

Elapsed (wall clock) time (h:mm:ss or m:ss): 0:00.48
Average shared text size (kbytes): @
Average unshared data size (kbytes): @
Average stack size (kbytes): 0

Average total size (kbytes): @

Maximum resident set size (kbytes): 3540
Average resident set size (kbytes): @
Major (requiring I/0) page faults: 4

Minor (reclaiming a frame) page faults: 249
Voluntary context switches: 13

Involuntary context switches: 4

Swaps: 0

File system inputs: 592

File system outputs: 8

Socket messages sent: @

Socket messages received: 0

Signals delivered: @

Page size (bytes): 4096

Exit status: @

Figure 11: Snapshot of the output when running the GNU time command for peak memory
usage

The second memory consumption measurement that was taken was the overall memory
consumption from the start to the end of the program execution. This was also measured by RSS
in kB but was done using Syrupy, which is a Python script that takes regular snapshots of the
memory to dynamically build a profile of the memory consumption of a program [Sukumaran,
J., 2020]. Snapshots are taken at intervals of 1 second, therefore the total RSS can be calculated

by summing RSS over the total runtime of the program. Figure 12 provides a snapshot of the

Syrupy log.

22

DATE RSS VSIZE
2021-05-23 :30: - 2448 7676
2021-05-23 :30: : 2448 7676
2021-05-23 :30: : 2448 7676
2021-05-23 :30: : 2448 7676
2021-05-23 :30: - 2448 7676
2021-05-23 :30: - pL L 7676
2021-05-23 :30: - 2448 7676
2021-05-23 :30: - 2448 7676
2021-05-23 :30: - 2448 7676
2021-05-23 :30: - 2448 7676
2021-05-23 :30: - 2448 7676
2021-05-23 :30: - 2448 7676
2021-05-23 :30: - 2448 7676
2021-05-23 :30: - 2448 7676
2021-05-23 :30: - 2448 7676
2021-05-23 :30: - 2448 7676
2021-05-23 :30: - 2448 7676
2021-05-23 :30: - 2448 7676
2021-05-23 :30: - 2448 7676
2021-05-23 :30: - 2448 7676
2021-05-23 :30: - 2448 7676
2021-05-23 :31: - 2448 7676

Figure 12: Snapshot of the Syrupy log that was used to capture memory consumption
measurements at regular intervals.

The third memory consumption measurement that was taken was the average CPU usage (%)
that was required to execute a program. Since the Raspberry Pi that was used in this project has
4 cores, the CPU usage often exceeded 100%. It is also interesting to note that the CPU usage is
calculated by determining the total scheduling time as a percentage of the total runtime, e.g. if a
process was scheduled for 1ms and the overall runtime was 10ms, then the CPU usage was 10%.

The CPU usage output can be seen in Figure 11.

23

5. Methodology and Evaluation

This research thesis was carried out in three parts, as outlined below.

5.1 Microservices Application Development

This phase accounted for the largest portion of time as the applications had to be developed in
three different languages, using two different architectures. The first application was developed
in Python using a microservices architecture and the next was developed in Python using a
monolithic architecture. The microservices and monolithic applications were then developed
using C++ and lastly using Go. Overall, C++ and Go proved the hardest to develop. This was
because there is very little information available for programming of embedded devices with

C++ and Go.

Embedded devices are usually programmed using C if very resource-constrained or Python
otherwise. The reading of temperature and humidity data from the digital humidity and
temperature (DHT) sensor was especially difficult as there are no C++ or Go libraries for this. In
the end, a C library (WiringPi) had to be used for signal processing®. Overall, the applications

were much easier to build using Python.

5.2 Data Collection

Once the source code was written for all applications, the data collection phase began. 6 sets of
data were collected 10 times for validation, as described in Section 4.3. Each dataset was only
collected 10 times since the power measurements were taken manually (the type C USB tester
does not have capabilities to store or send data). It is important to note that for compiled

languages (C++ and Go), the programs were compiled before running the experiments.
Each experiment was conducted using the following steps:

1. The Raspberry Pi was rebooted and then allowed 1 minute to reach stable condition.

® Data from the DHT22 sensor is sent by transmitting signals of varying length (milliseconds or microseconds) to
indicate 8-bit values. The first 8 bits correspond to the integral humidity value, the second 8 bits to the decimal humidity
value, the third to the integral temperature value, the fourth to the decimal temperature value and the last 8 bits to the
checksum [UUGear, 2018].

24

2. The type C USB tester was reset and then the program/s was/were executed. For
microservices, where there were a number of separate programs, the programs were executed
in parallel using a bash file (see Appendix A.1).

3. The power consumption, runtime and memory consumption were collected and stored in .txt
or .xslx files.

4. The above steps were then repeated ten times for data validation.

5.3 Evaluation and Comparison

The last part of the project involved the evaluation and comparison of the data that was collected.
The processing of the data was primarily done using the Pandas library in Python [Pandas, 2021].
It was decided that the results would be presented in two formats: as bar charts and as tables.

Some box plots were also created where deemed useful.

The results that were obtained could be compared directly, i.e. no additional metrics, like root
mean squared error, were needed. For all readings (power consumption, runtime, and memory
consumption) except CPU usage, low values correspond to high performance. The results are

presented and discussed in the next Section.

25

6. Results and Discussion

6.1 Power Consumption

As explained in Sections 4 and 5, power consumption measurements were taken using a type C
USB tester. Two types of power consumption readings were taken during each run: the maximum
instantaneous power consumption and the total power consumption for the program to finish
running. Both measurements are provided in Watts. It is important to note that the power
consumption measurements include the power required to operate the device. Although many of
the power readings were between 3,2 and 4,2 Watts, the idle power consumption of a Raspberry
Pi 4 is typically just over 3 Watts. However, the idle power consumption was near-identical for
each run, therefore the total power consumption values could be compared. The maximum
instantaneous power consumption results are summarized in Table 1 and Figure 13 below. The

full results can be seen in Appendix B.

Table 1: Summary of maximum instantaneous power consumption for different languages
and architectures.

4,21 4,20 Go Microservices
3,65 3,65 Go Monolithic
3,93 3,94 Python Microservices
3,20 3,20 Python Monolithic
3,93 3,94 Cpp Microservices
3,43 3,42 Cpp Monolithic |

26

Comparison of Max Instantaneous Power Consumption

I Microservices
B Monolithic

Power Consumption (Watt)

Go Python Cpp
Language

Figure 13: Bar chart showing the comparative maximum instantaneous power consumption
of different languages and architectures

It can be seen from Figure 13 that the microservices architecture consistently had a higher
maximum instantaneous power consumption than the monolithic architecture, for all languages.
This difference in power consumption can also be seen in Table 2, which shows that the average

difference between microservices and monolithic power consumption (across all languages) was
-14,9%.

Table 2: Table showing the percentage difference in maximum instantaneous power
consumption (Watt) between different architectures.

Language Microservices Max Power (Watt) Monolithic Max Power (Watt) Difference

Go 4,21 3,65 -13,33%
Python 3,93 3,20 -18,60%

Cpp 3,93 3,43 -12,75%
Average -14,89%

When considering power consumption by language, the difference is less remarkable. However,
Go had the highest maximum instantaneous power consumption, followed by C++ and then by
Python. C++ and Python had similar measurements for the microservices architecture.

Table 3 and Figure 14 show a summary of the total power consumption (over the entire runtime).

27

Table 3: Summary of total power consumption for different languages and architectures.

Mean Total Power Consumption (Watts) Median Total Power Consumption (Watts) Language Architecture

3,67 3,69 Go Microservices
3,53 3,53 Go Monolithic
3,74 3,74 Python Microservices
3,49 3,49 Python Monolithic
3,50 3,55 Cpp Microservices
3,55 3,55 Cpp Monolithic ,

Comparison of Power Consumption

I Microservices
B Monolithic

Power Consumption (Watt)

Go Python Cpp
Language

Figure 14: Bar chart showing the comparative total power consumption of different
languages and architectures.

Compared to the maximum instantaneous power consumption, the total power consumption
measurements do not differ much by architecture or language, which can also be seen in Table
4. The microservices architecture consumed slightly more power for Go and Python but
consumed slightly less for C++. When considering the microservices architecture, Python
consumed the most, followed by Go and then by C++. For the monolithic architecture, the values

were almost the same.

28

Table 4: Table showing the percentage difference in total power consumption (Watt)
between different architectures.

Go 3,67 S -3,75%
Python 3,74 3,49 -6,72%

Cpp 3,50 A 1,55%
Average -2,97%

One of the most interesting findings was that the order of maximum instantaneous power
consumption (by language) was different to the order of total power consumption. For example,
Python had the lowest maximum instantaneous power consumption but the highest total power
consumption. This could be explained by the fact that Python has a much longer runtime than
Go and C++ (see Section 6.2), hence Python does not have a high peak consumption but rather
consumes at a stable level for a longer period of time. It is also interesting to note that there was
a much bigger difference between the two architectures for maximum instantaneous power
consumption than for total power consumption. On average, the monolithic architecture

consumed slightly less power for both metrics.

6.2 Runtime

Runtime (duration from start to end of program execution) was measured using language-specific
time libraries, e.g. C time library for C++, and the GNU time command. Four different runtimes
were measured for the microservices architecture - one for each sensor/actuator and one for
overall runtime. For the monolithic architecture, the overall runtime was measured. For
comparison, two overall microservices runtimes were used. The first is the cumulative
microservices runtime, which was calculated by summing the runtimes of all of the individual
microservices applications. The second was the overall “concurrent” runtime that was measured
from the execution of the bash script until the last microservice program came to an end. The

runtime results are summarized in Table 5 and Figure 15.

29

Table 5: Table summarising the runtime measured for different languages and

architectures.

Mean Runtime (s) Median Runtime (s) Language Architecture
131,04 133,60 Go Microservices - Cumulative
119,10 119,00 Go Microservices
112,14 112,15 Go Monolithic
673,70 663,35 Python Microservices - Cumulative
380,70 381,00 Python Microservices
621,47 623,46 Python Monolithic

97,49 97,84 Cpp Microservices - Cumulative
90,60 89,00 Cpp Microservices
82,30 81,85 Cpp Monolithic g

* “Microservices — Cumulative” indicates the total runtime as a sum of the individual microservices runtimes. “Microservices”
is the total runtime for all microservices concurrently.

Comparison of Overall Runtime

700 -
600 -
500 -
)
©
&
o 400 -)) .
k) EE Microservices - cumulative
g B Microservices
2 300 - B Monolithic
35
@

200 -

100 -

Go Python Cpp

Figure 15: Bar chart showing the comparative overall runtime of different languages and
architectures.

Table 5 and Figure 15 clearly show that Python had a substantially longer runtime than the other
languages, for both architectures and with both cumulative and concurrent runtimes. This is not
surprising since Python is an interpreted language (see Section 2.4). It was interesting to see that
the concurrent microservices runtime was substantially smaller than that of the monolithic
architecture for Python, which could be indicative of sub-optimal CPU-bound concurrency in
Python. However, further research would be needed to make any conclusions on this. The results

for Go and C++ were contrary to those of Python as the runtimes were slightly shorter with the
30

monolithic architecture than with the microservices architecture. Comparing by language, it can

be seen that Go had a slightly longer runtime than C++. In order to compare these two languages

more closely, two box plots were generated — one for each architecture. These are shown in

Figures 16 and 17.

Overall Runtime Comparison - Microservices

130

120 A
m
2
S 110 -
Q ¢ ¢
L
@ 100 A
=
=
3
g - ———

80 A
Go Cpp
Language

Figure 16: Box plot showing the comparative overall runtime of Go and C++ when using a

microservices architecture.

31

120 Overall Runtime Comparison - Monolithic

120 +

=

[

o
1

Runtime (seconds)
5
o

O
o
1

Go C;'>p
Language

Figure 17: Box plot showing the comparative overall runtime of Go and C++ when using a
monolithic architecture.

Figures 16 and 17 show that Go had a slightly longer runtime than C++ for both architectures.
When using a microservices architecture, Go had a median runtime of 119,0 seconds whilst C++
had a median runtime of 89,0 seconds, which gives a difference of -25,2%. For the monolithic
architecture, Go had a median runtime of 112,2 seconds whilst C++ had a median runtime of
81,9 seconds, which gives a difference of -27%. Additionally, the box plots show that Go had a
larger spread of runtime values than C++. The fact that Go had a longer runtime than C++ could
be explained by the fact that C code had to be wrapped in Go code in order to access the general-
purpose input/output (GPIO) pins for DHT22 readings. Compared to the Python runtime,

however, Go had a similar runtime to C++.
Table 6 summarizes the difference in mean runtimes between the different architectures. It can

be seen that the monolithic architecture had a shorter runtime for Go and C++, whilst the

microservices architecture had a shorter runtime for Python.

32

Table 6: Table summarising the runtime differences between architectures.

Go 119,10 112,14 -5,84%
Python 380,70 621,47 63,24%
Cpp 90,60 82,30 -9,16%
Average 16,08%

As discussed in the literature review (Section 3.1), very limited research has been done to
compare the performance of the monolithic and microservices architectures on a technical level.
However, the research conducted by Al-Debagy and Martinek (2018), although not directly
related, yielded results that correlate to the results from this research thesis. The authors found
that, for a small number of threads, the monolithic architecture had a shorter response time than
the microservices architecture. For a larger number of threads (greater than 1000), the
microservices architecture had a shorter response time [Al-Debagy, O. and Martinek, P., 2018].
Although the impact of number of threads was not researched in this project, and response time
is not directly comparable to runtime, it is clear that with a small number of threads, the
monolithic architecture had a shorter runtime in this research thesis and therefore the runtime

findings are, at least in part, in line with the finding of Al-Debagy and Martinek (2018).

6.3 Memory Consumption

Memory consumption was measured using three different metrics. The first was the maximum
RSS in kB (see Section 4.3.3 for more information), which was measured through the GNU time

command. The results for maximum RSS are summarized in Table 7 and Figure 18.

Table 7: Table summarising the maximum RSS of different languages and architectures

97637,20 98628,00 Go Microservices
83097,50 89543,00 Go Monolithic
40030,90 40090,00 Python Microservices
13651,40 13657,50 Python Monolithic
21824,00 21822,00 Cpp Microservices
15150,40 15150,00 Cpp Monolithic |

33

Comparison of Maximum Resident Set Size
100000 -

80000 -

60000 -

Il Microservices
B Monolithic
40000 -

Maximum Resident Set Size (kB)

20000 -

Go Python Cpp

Figure 18: Bar chart showing the comparative maximum RSS of different languages and
architectures.
It is clear from both Table 7 and Figure 18 that, for all 3 languages, the monolithic architecture
had a significantly smaller maximum RSS. Table 8 shows that the average difference in
maximum RSS between the microservices architecture and the monolithic architecture was
-37,12%. When comparing by language, it can be seen that the mean maximum RSS for Go was
much larger that for Python and C++. This result was surprising as it was expected that Go and
C++ would have similar memory consumption measurements. In order to gain a better

understanding, the total RSS should also be considered.

Table 8: Table summarising the maximum RSS differences between architectures.

Language Microservices Max RSS (kB) Monolithic Max RSS (kB) Difference

Go 97637,20 83097,50 -14,89%

Python 40030,90 13651,40 -65,90%

Cpp 21824,00 15150,40 -30,58%
Average -37,12%

The second memory consumption metric was the total RSS, which was measured using a Syrupy
script (see Section 4.3.3 for more information). Using Syrupy memory snapshots, a profile was
built of the memory consumption of each program. The results are summarized in Table 9 and

Figure 19.

34

Table 9: Table summarising the total RSS of different languages and architectures

Mean Total RSS (MB) Median Total RSS (MB) Language Architecture

190,94 188,50 Go Microservices
194,66 194,66 Go Monolithic
584,19 586,80 Python Microservices
1325,93 1323,42 Python Monolithic
185,17 187,78 Cpp Microservices
180,30 177,90 Cpp Monolithic |

Comparison of Total RSS

1200000 -

1000000 -

800000 -

I Microservices

600000 - B Monolithic

Total RSS (kB)

400000 -

200000 -

Go Python Cpp

Figure 19: Bar chart showing the comparative total RSS of different languages and
architectures.

The total RSS results were more in line with expectations (in contrast to the maximum RSS
results). Figure 19 shows that Go and C++ had similar mean total RSS measurements, whereas
Python had a greater mean total RSS for both architectures. It is also interesting to note that,
when using Python, the microservices architecture had a much smaller mean total RSS than the
monolithic architecture, whilst the total RSS values for Go and C++ did not differ much by
architecture. This deduction is reinforced by the differences shown in Table 10, which shows that
the total RSS for Python was 127% greater when using the monolithic architecture than with the

microservices architecture. For the other two languages, the differences were negligible.

35

Table 10: Table summarising the total RSS differences between architectures.

Language Microservices Total RSS (MB) Monolithic Total RSS (MB) Difference

Go 190,94 194,66 1,94%
Python 584,19 1325,93 126,97%
Cpp 185,17 180,30 -2,63%
Average 42,09%

The third, and last, memory consumption metric was the average CPU usage in percentage. This
was also measured using the GNU time command. Table 11 and Figure 20 summarize the results

that were obtained.

Table 11: Table summarising the CPU usage of different languages and architectures

Mean CPU (%) Median CPU (%) Language Architecture

98,10 97,83 Go Microservices
110,40 107,00 Go Monolithic
65,30 65,33 Python Microservices
83,10 83,00 Python Monolithic
94,03 94,00 Cpp Microservices
98,70 99,00 Cpp Monolithic |

Comparison of CPU Usage

I Microservices
B Monolithic

CPU (%)

Go Python Cpp

Figure 20: Bar chart showing the comparative CPU usage of different languages and
architectures.

36

The results shown in Table 11 and Figure 20 show that, regardless of language, the monolithic
architecture had higher CPU usage than the microservices architecture. On average the
monolithic architecture had 14,9% higher CPU usage. When comparing by languages, it was
found that Go had the highest average CPU usage, followed by C++ and then by Python. This
result is in line with expectations since Go has built in light-weight threads (called go routines)
and, with more recent versions of Go, Go routines automatically use all CPU cores that are
available, if required by the process. Since the Raspberry Pi used in this research thesis has 4
cores, higher CPU usage, e.g. 110%, may indicate better use of resources. However, this would

need to be studied further to make any conclusions.

Table 12: Table summarising the CPU usage differences between architectures.

Go 98,10 110,40 12,54%
Python 65,30 83,10 27,26%

Cpp 94,03 98,70 4,97%
Average 14,92%

37

7. Conclusion and Future Work

The Web and Internet of Things (WoT/IoT) is an exciting field that will no doubt continue to
develop over the years to come. As further developments are made, and more strange and
wonderful objects become “Things”, the limitations on resources will likely grow. In 2021 there
are already many devices that face these constraints due to a variety of reasons such as their
remote placement (e.g. implantable sensors or volcanic eruption sensors) or the need to work
whilst in motion (e.g. wearable sensors). Hence there is a great need for efficient resource usage

in resource-constrained devices.

The aim of this research thesis was to compare the impact on resource usage of two different
software architectures when implementing an IoT application on a resource-constrained device.
The device that was chosen for this thesis is a Raspberry Pi 4 as it is an excellent embedded
device on which to conduct experiments. The two different architectures that were compared in
this study were: microservices and monolithic. In order to ensure that the results were not
language specific, the architectures were developed in three programming languages: Go, Python
and C++. Although a number of studies were found that compare the resource usage of different
programming languages, only one study could be found that focused on resource usage in
resource-constrained devices and no studies could be found that compared the performance of

the two different architectures in resource-constrained devices.

The microservices architecture offers many benefits for WoT and IoT, such as modularity,
flexibility and maintainability. A number of studies were found that concluded that the
microservices architecture is well suited for WoT and IoT as it shares many of the same goals.
WoT/10T is inherently dynamic and has many endpoints, which can present a lot of challenges
to design and implementation. An architecture like microservices can exploit these
characteristics, turning the challenges into advantages. However, very little research has been
done to compare the technical performance of the microservices architecture to the monolithic
architecture, especially in the context of IoT. Therefore, a technical comparison of these two

architectures was made in this research thesis.

The choice of messaging protocol for communication between microservices/components was
also reviewed and discussed. It was found that a lightweight non-HTTP messaging protocol was
best suited to resource-constrained devices. Three options were considered in depth: MQTT,
AMQP and CoAP. A number of studies were analysed, and it was found that MQTT offers less

features (e.g. quality of service, security, reliability) than AMQP and is therefore more

38

lightweight. When comparing MQTT and CoAP, it was found that both protocols offer many
benefits. It was decided that MQTT would be used for this thesis based on preference.

The technical approach was outlined in detail, including the hardware components that were
required for the project, and the software that was needed for the collection of measurements. A
three-part experimental methodology was also outlined, which was closely followed. The results
obtained during this research were summarized in a number of tables and charts and were
discussed in detail. The results Section was split into three main parts: power consumption,
runtime and memory consumption. Two different power consumption readings were taken for
the first part of the results: maximum instantaneous power consumption and total power
consumption. It was found that the maximum instantaneous power consumption of the
microservices architecture was, on average across all languages, 14,9% higher than for the
monolithic architecture. It was also found that Go had the highest maximum instantaneous power

consumption, for both architectures, whilst Python and C++ had similar measurements.

The results for total power consumption (over the full runtime) were slightly different. When
comparing the two architectures, it was found that the power consumption values were very
similar and on average, across all languages, the microservices architecture consumed only 3,0%
more than the monolithic architecture. It was also found that, when using the monolithic
architecture, total power consumption was almost identical for all languages. With the
microservices architecture, Python had the highest consumption, followed by Go and the C++,
although the values did not differ by much. It was also clear that, although maximum
instantaneous power consumption can be useful to understand peak power requirements, it is not
directly proportional to total power consumption, e.g. Python had the smallest maximum

instantaneous power consumption but the greatest total power consumption.

The second part of the results considered runtime performance. It was found that the
microservices architecture had a longer runtime than the monolithic architecture for Go and C++,
whilst the inverse was true for Python, which could be related to CPU-bound concurrency
optimization of the different languages. When comparing runtime performance of the
programming languages, the results were largely in line with expectations. C++ had the shortest
runtime, followed closely by Go. Python had a significantly longer runtime, which makes sense
since Python is the only interpreted language that was used in this project. It was interesting to
note that the Python runtime was much longer when using a monolithic architecture than when
using a microservices architecture, which was not the case for C++ or Go. With the microservices

architecture, Python had a mean runtime that was 319,4% greater than that of C++, whilst Go’s

39

mean runtime was 31,5% greater than that of C++. Similar differences were observed for the

monolithic architecture.

Memory consumption was measured using three different metrics: maximum RSS, total RSS and
CPU usage. A comparison of maximum RSS by architecture showed that maximum RSS for the
microservices architecture was 37,1% greater than for the monolithic architecture. The difference
was especially significant for Python (65,9% difference). It was found that Go had a significantly
greater maximum RSS than the other languages, for both architectures. Python had the smallest
maximum RSS for the monolithic architecture, whilst C++ had the smallest for the microservices
architecture. The results for total RSS were very different from maximum RSS, both by
architecture and by language. The total RSS measurements for Go and C++ did not differ much
by architecture, whilst there was a big difference for Python. On average, the total RSS was
127,0% greater for the monolithic architecture than the microservices architecture when using
Python. Comparing by language, the total RSS of Python was significantly greater than for the
other two languages, especially for the monolithic architecture, whilst Go and C++ had very

similar total RSS measurements.

The last memory consumption metric that was considered was the average CPU usage. It was
found that the monolithic architecture had, on average, 14,9% higher CPU usage than the
microservices architecture and the biggest difference was observed for Python. A comparison by
language showed that Go had the greatest CPU usage, for both architectures. C++ had the second
highest CPU usage and Python had the lowest usage. These findings were in line with
expectations since Go has built-in light-weight threads (Go routines) and therefore can optimize

CPU usage.

Overall, this research thesis yielded some very interesting results, some of which were expected
whilst others were not. The results showed that the monolithic architecture had better
performance in most metrics, i.e. maximum instantaneous power consumption, total power
consumption (only for Go and Python), overall runtime (only for Go and C++), maximum RSS
and CPU. Therefore, it could be concluded that, when deploying small scale applications on [oT
devices, the monolithic architecture may offer more benefits. It is quite likely, however, that the
microservices architecture could outperform the monolithic architecture with larger scale
applications. The size of the application should therefore be considered when choosing a software

architecture.

40

Clearly there is still substantial room for contribution in this area of research. Very limited
research has been done on the performance of the microservices architecture compared to the
monolithic architecture and no such research could be found in the context of IoT. This is
surprising since many corporations are moving towards microservices, and significant research
is being done on the use of this architecture. It is therefore important to understand what
advantages and disadvantages this architecture could introduce. Although this study made a
technical comparison of the two architectures and of different languages, it was done on small
scale and on a single embedded device. Additional research on a larger scale would provide

valuable insights.

41

8. References

Al-Debagy, O. and Martinek, P. (2018) “A comparative review of microservices and monolithic
architectures,” in 2018 IEEE 18th International Symposium on Computational Intelligence and
Informatics (CINTI). IEEE.

Al-Masri, E., Kalyanam, K., Batts, J., Kim, J., Singh, S., Vo, T. and Yan, C., 2020. Investigating
Messaging Protocols for the Internet of Things (IoT). IEEE Access, 8, pp.94880-94911.

Atchison, L., Wieldt, T. and Paul, F., 2018. Microservices: What They Are And How They Work.
[online] New Relic Blog. Available at: <https://blog.newrelic.com/technology/microservices-
what-they-are-why-to-use-them/> [Accessed 16 January 2021].

Babaria, U., 2018. Why lot Development Needs Microservices And Containerization. [online]
Einfochips.com. Available at: <https://www.einfochips.com/blog/why-iot-development-needs-
microservices-and-containerization/> [Accessed 8 January 2021].

Bahashwan, A. and Manickam, S., 2018. A Brief Review of Messaging Protocol Standards for
Internet of Things (IoT). Journal of Cyber Security and Mobility, 8(1), pp.1-14.

Biggs, J., & Popper, B. (2020). What’s so great about Go? [online] Stackoverflow.blog.
Available at: <https://stackoverflow.blog/2020/11/02/go-golang-learn-fast-programming-
languages/> [Accessed: 29 June 2021].

Blokdyk, G. (2018).IBM docs: Complete self-assessment guide. North Charleston, SC:
Createspace Independent Publishing Platform.

Bolar, T., 2020. Web Of Things Over lot And Its Applications. [online] InfoQ. Available at:
<https://www.infoq.com/articles/web-of-things-iot-
apps/#:~:text=What%20is%20Internet%200f%20Things,and%2For%20other%20connected %2
Odevices.> [Accessed 8 January 2021].

Burhan, M. et al (2018) “IoT elements, layered architectures and security issues: A
comprehensive survey,” Sensors (Basel, Switzerland), 18(9). doi: 10.3390/s18092796.

Butzin, B., Golatowski, F. and Timmermann, D. (2016) “Microservices approach for the internet
of things,” in 2016 IEEE 21st International Conference on Emerging Technologies and Factory
Automation (ETFA). IEEE.

Cook, S., 2020. 60+ lot Statistics, Facts And Trends [2020 Edition] | Comparitech. [online]
Comparitech. Available at: <https://www.comparitech.com/internet-providers/iot-statistics/>
[Accessed 23 December 2020].

De la Torre, C., Wagner, B. and Rousos, M., 2020. NET Microservices: Architecture For
Containerized .NET Applications. 1st ed. Washington: Microsoft Developer Division.

Dizdarevi¢, J., Carpio, F., Jukan, A. and Masip-Bruin, X., 2019. A Survey of Communication
Protocols for Internet of Things and Related Challenges of Fog and Cloud Computing
Integration. ACM Computing Surveys, 51(6), pp.1-29.

Eclipse Mosquitto (2018) [online] Mosquitto.org. Available at: <https://mosquitto.org/>
[Accessed: January 25, 2021].

42

Fowler, M., 2014. Microservices. [online] martinfowler.com. Available at:
<https://martinfowler.com/articles/microservices.html> [Accessed 17 December 2020].

Georgiou, S., Kechagia, M. and Spinellis, D. (2017) “Analyzing programming languages’ energy
consumption: An empirical study,” in Proceedings of the 21st Pan-Hellenic Conference on
Informatics. New York, NY, USA: ACM.

Gnatyk, R. (2018). Microservices vs Monolith: which architecture is the best choice for your
business? [online] N-ix.com. Available at: <https://www.n-ix.com/microservices-vs-monolith-
which-architecture-best-choice-your-business/> [Accessed: 29 June 2021].

Go Documentation. (2016). [online] Golang.org. Available at: <https://golang.org/doc/>
[Accessed: 29 June 2021].

Gomez, C. et al. (2012) “Problem statement and requirements for IPv6 over low-power wireless
personal area network (6LoWPAN) routing.” [online] IETF.org. Available at:
https://tools.ietf.org/html/rfc6606 [Accessed: 25 January 2021].

Guinard, D. and Trifa, V., 2016. Building The Web Of Things. 1st ed. New York: Manning.

Hindle, A. et al. (2014) “GreenMiner: a hardware based mining software repositories software
energy consumption framework,” in Proceedings of the 11th Working Conference on Mining
Software Repositories - MSR 2014. New York, New York, USA: ACM Press.

Jaffey, T. (2014). MQTT and CoAP, IoT Protocols. [online] Eclipse.org. Available at:
<https://www.eclipse.org/community/eclipse _newsletter/2014/february/article2.php>
[Accessed: 15 June 2021].

Keranen, A., Ersue, M. and Bormann, C. (2014) “Terminology for constrained-node
networks,” Internet Engineering Task Force. [online] IETF.org. Available at:
<https://tools.ietf.org/html/rfc7228> [Accessed: 25 January 2021].

Komiyama, N., 2017. Fork Hides Noodle-Slurping Sounds. [online] The Japan Times. Available
at: <https://www.japantimes.co.jp/news/2017/10/28/national/media-national/fork-hides-noodle-
slurping-sounds/> [Accessed 23 December 2020].

Kuhlman, D. (2011). A python book: Beginning python, advanced python, and python exercises.
Platypus Global Media.

Lu, D. et al. (2017) “A Secure Microservice Framework for 1oT,” in 2017 IEEE Symposium on
Service-Oriented System Engineering (SOSE). IEEE.

Lueth, K. L. (2014) Why it is called Internet of Things: Definition, history, disambiguation.
[online] Iot-analytics.com. Available at: <https://iot-analytics.com/internet-of-things-
definition/> [Accessed: 27 January 2021].

Mena, M. et al. (2020) “WoTnectivity: A communication pattern for different web of things
connection protocols,” in 2020 IEEE 44th Annual Computers, Software, and Applications
Conference (COMPSAC). 1IEEE.

Mishra, H. (2019) COAP vs MQTT. [online] lotbyhvm.ooo. Available at:
<https://iotbyhvm.ooo/coap-vs-mqtt/> [Accessed: 5 February 2021].

43

Morel, A., 2019. AMQP Vs MQTT | Top 14 Differences To Learn With Infographics. [online]
EDUCBA. Available at: <https://www.educba.com/amqgp-vs-mqtt/> [Accessed 17 January
2021].

Mgqtt.org. 2020. MOTT - The Standard For Iot Messaging. [online] Available at:
<https://mqtt.org> [Accessed 17 January 2021].

Nagasai, M. (2017) Classification of IoT Devices. [online] Cisoplatform.com. Available at:
<https://www.cisoplatform.com/profiles/blogs/classification-of-iot-devices> [Accessed: 25
January 2021].

Naik, N. (2017) “Choice of effective messaging protocols for IoT systems: MQTT, CoAP,
AMQP and HTTP,” in 2017 IEEE International Systems Engineering Symposium (ISSE). IEEE.

Paessler.com. 2018. What Is MQTT? Definition And Details. [online] Available at:
<https://www.paessler.com/it-explained/mqtt> [Accessed 17 January 2021].

Parwej, Dr. Firoj & Akhtar, Nikhat & Perwej, Dr. Yusuf. (2019). An Empirical Analysis of Web
of Things (WoT). Volume 10. Page 1-9. 10.26483/ijarcs.v10i3.

Pereira, R. et al. (2017) “Energy efficiency across programming languages: how do energy, time,
and memory relate?,” in Proceedings of the 10th ACM SIGPLAN International Conference on
Software Language Engineering. New York, NY, USA: ACM.

Richardson, C., 2019. What Are Microservices?. [online] microservices.io. Available at:
<https://microservices.io/> [Accessed 16 December 2020].

Rodgers, P., 2005. "Service-Oriented Development on NetKernel- Patterns, Processes &
Products to Reduce System Complexity Web Services Edge 2005 East: CS-
3". CloudComputingExpo 2005. SYS-CON TV.

Rungta, K. (2020) Embedded systems tutorial: What is, types, history & examples. [online]
Guru99.com. Available at: <https://www.guru99.com/embedded-systems-tutorial.html>
[Accessed: 27 January 2021].

Santana, C., Alencar, B. and Prazeres, C. (2018) “Microservices: A mapping study for internet
of things solutions,” in 2018 IEEE 17th International Symposium on Network Computing and
Applications (NCA). IEEE.

Santana, C. et al. (2019) “A reliable architecture based on reactive microservices for IoT
applications,” in Proceedings of the 25th Brazillian Symposium on Multimedia and the Web. New
York, NY, USA: ACM.

Stansberry, J. (2015) MQTT and CoAP: Underlying Protocols for the IoT.
[online] Electronicdesign.com. Available at:
<https://www.electronicdesign.com/technologies/iot/article/21800998/silicon-labs-mqtt-and-
coap-underlying-protocols-for-the-iot> [Accessed: 5 February 2021].

Stroustrup, B. (2013). The C++ programming language (4th ed.). Boston, MA: Addison-Wesley
Educational.

Sukumaran, J. (2020). Syrupy: System Resource Usage Profiler. [online] github.com. Available
at: <https://github.com/jeetsukumaran/Syrupy> [Accessed 21 February 2021].

44

Tapia, F. et al. (2020) “From monolithic systems to microservices: A comparative study of
performance,” Applied sciences (Basel, Switzerland), 10(17), p. 5797.

Thones, J. (2015) “Microservices,” IEEE software, 32(1), pp. 116—-116.
UUGear. (2018). DHT11 Humidity & Temperature Sensor Module. [online] Uugear.com.
Available at: <http://www.uugear.com/portfolio/dht1 1-humidity-temperature-sensor-module/>

[Accessed 15 July 2021].

Van der Westhuizen, H. W. and Hancke, G. P. (2018) “Practical comparison between COAP and
MQTT - sensor to server level,” in 2018 Wireless Advanced (WiAd). IEEE.

VMware (2020) Messaging that just works — RabbitMQ. [online] Rabbitmqg.com. Available at:
<https://www.rabbitmq.com/> [Accessed: January 25 January 2021].

W3.org. 2019. Thing Description (TD) Ontology. [online] w3.org. Available at:
<https://www.w3.0rg/2019/wot/td> [Accessed 8 January 2021].

Zeiner, H. et al. (2016) “SeCoS: Web of Things platform based on a microservices architecture
and support of time-awareness,” E & 1, 133(3), pp. 158-162.

45

Appendix A — Code

The code that was used for this project is shown in this appendix.

A.1 — Bash Code
Bash scripts were used to launch Go, Python or C++ programs on the Raspberry Pi.

#Script to run 3 go scripts in parallel on the publisher side.

#Run by using the following line in the correct directory in terminal: bash runCppScripts <ipaddress of
raspberry pi>

#$1 represents the passed argument (ipaddress).

start=$(date +%s.%N)

/usr/bin/time —-v -o memoryResultsGolLong.txt —a ./humTempPub $1 &
/usr/bin/time -v —-o memoryResultsGolLong.txt —-a ./pirPub $1 &
/usr/bin/time -v -o memoryResultsGolLong.txt -a ./ledSub $1;
end=$(date +%s.%N)

awk -v varl="$start" -v var2="¢$end" 'BEGIN {print "Overall runtime: " + var2 - varl}'

#Script to run 3 go scripts in parallel on the publisher side.

#Run by using the following line in the correct directory in terminal: bash runCppScripts
<ipaddress of raspberry pi>

#$1 represents the passed argument (ipaddress).

start=$(date +%s.%N)

/usr/bin/time -v —o memoryResultsGoMonolLong.txt —a ./allServices $1;

end=$(date +%s.%N)

awk -v varl="$¢start" -v var2="$end" 'BEGIN {print "Overall runtime: " + var2 - varl}'

#Script to run 3 python scripts in parallel on the publisher side.

#Run by using the following line in the correct directory in terminal: bash runPythonScripts <ipaddress of
raspberry pi>

#$1 represents the passed argument (ipaddress).

start=$(date +%s.%N)

/usr/bin/time -v —o memoryResultsPythonLong.txt —a python3 humidityTemperatureMicroservicePublisher.py $1 &
/usr/bin/time -v —-o memoryResultsPythonLong.txt —a python3 pirMicroservicePublisher.py $1 &
/usr/bin/time -v —o memoryResultsPythonLong.txt —a python3 ledMicroserviceSubscriber.py $1;

end=$(date +%s.%N)

awk -v varl="$start" -v var2="¢$end" 'BEGIN {print "Overall runtime: " + var2 — varl}'

Figure A.3: Screenshot showing the bash script to launch the Python microservices

application

46

#Script to run python script on the publisher side.

#Run by using the following line in the correct directory in terminal: bash runPythonScripts
<ipaddress of raspberry pi>

#$1 represents the passed argument (ipaddress).

start=$(date +%s.%N)
/usr/bin/time -v —o0 memoryResultsPythonMonoLong.txt —a python3 allServices.py $1

end=$(date +%s.%N)

awk -v varl="¢start" -v var2="$end" 'BEGIN {print "Overall runtime: " + var2 - varl}'

Figure A.4: Screenshot showing the bash script to launch the Python monolithic application

#Script to run 3 python scripts in parallel on the publisher side.

#Run by using the following line in the correct directory in terminal: bash runCppScripts
<ipaddress of raspberry pi>

#$1 represents the passed argument (ipaddress).

start=$(date +%s.%N)

/usr/bin/time -v -0 memoryResultsCppLong.txt —a ./humTempPub $1 &
/usr/bin/time -v —o memoryResultsCppLong.txt —-a ./pirPub $1 &
/usr/bin/time -v —o memoryResultsCppLong.txt —a ./ledSub $1;
end=$(date +%s.%N)

awk -v varl="$start" -v var2="¢$end" 'BEGIN {print "Overall runtime: " + var2 - varl}'

Figure A.5: Screenshot showing the bash script to launch the C++ microservices
application

#Script to run 3 python scripts in parallel on the publisher side.

#Run by using the following line in the correct directory in terminal: bash runCppScripts
<ipaddress of raspberry pi>

#$1 represents the passed argument (ipaddress).

start=$(date +%s.%N)

/usr/bin/time -v -0 memoryResultsCppMonoLong.txt -a ./allServices $1

end=$(date +%s.%N)

awk -v varl="$start" -v var2="¢$end" 'BEGIN {print "Overall runtime: " + var2 - varl}'

Figure A.6: Screenshot showing the bash script to launch the C++ monolithic application

47

A.2 — Microservices Code

Go Code — Temperature and Humidity Sensor

1 package main

2

3 import "C"

4

5 import (

6 "encoding/json"
7 "fmt"

8 "io/ioutil"

9 "log"

10 "os"

11 "os/signal"

12 "strconv"

13 "strings"

14 "syscall"

15 "time"

16

17 mqtt "github.com/eclipse/paho.mqtt.golang"
118)

19

20 var sessionStatus bool = true

21 var counter int = 0

22 var start = time.Now()

23 var dhtStart = time.Now()

24 var dhtEnd = time.Now()

25 var dhtDuration float64

26 var TOPIC_H string = "Humidity"

27 var TOPIC_T string = "Temperature"
28 var ADDRESS string

29 var PORT = 1883

30 var temperatureReading float32 = 0
31 var humidityReading float32 = 0

32

33 type tempStruct struct {

34 Temp float32

35 Unit string

36}

37

38 type humStruct struct {
39 Humidity float32

40 Unit string
41}

42

43 type reading interface {
44 structToJSON() [lbyte
45 }

46

47 // Function to handle receipt of a message

48 var messagePubHandler mqtt.MessageHandler = func(client mqtt.Client, msg mqtt.Message) {
49 fmt.Println("Message received")

50}

51

52

54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92

// Function to publish a message
v func publish(client mgtt.Client) {
v if !sessionStatus {
doneString := "{\"Done\": \"True\"}"
client.Publish(TOPIC_T, @, false, doneString)
client.Publish(TOPIC_H, @, false, doneString)
return
}
dhtEnd = time.Now()
dhtDuration = dhtEnd.Sub(dhtStart).Seconds()
v if (temperatureReading == 0 && humidityReading == @) || dhtDuration > 1 {
C.read_dht_data()
dhtStart = time.Now()
byteSlice, readErr := ioutil.ReadFile("reading.txt")
v if readErr != nil {

log.Fatal(readErr)
}
mySlice := byteSliceToIntSlice(byteSlice)

v if mySlice[@] != 0 && mySlice[2] != 0 {
temperatureReading = float32(mySlice[2] + (mySlice[3] / 10))
humidityReading = float32(mySlice[@] + (mySlicel[1] / 10))

}
}
v currentTemperature := tempStruct{
Temp: temperatureReading,
Unit: "C",
}
v currentHumidity := humStruct{
Humidity: humidityReading,
Unit: o,
}
jsonTemperature := currentTemperature.structToJSON()
jsonHumidity := currentHumidity.structToJSON()
client.Publish(TOPIC_T, @, false, string(jsonTemperature))
client.Publish(TOPIC_H, @, false, string(jsonHumidity))
return
}
v func getJSON(r reading) [lbyte {

return r.structToJSON()
}

49

94

95

96

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132

134
135
136
137
138
139
140
141
142
143
144
145

func byteSliceToIntSlice(bs [lbyte) [lint {
strings := strings.Split(string(bs), ",")
result := make([lint, len(strings))

for i, s := range strings {

if len(s) == 0 {
continue

}

n, convErr := strconv.Atoi(s)

if convErr != nil {
log.Fatal(convErr)

}

}

result[i] = n

return result

func (ts tempStruct) structToJSON() [lbyte {
jsonReading, jsonErr := json.Marshal(ts)
if jsonErr != nil {

b

log.Fatal(jsonErr)

return jsonReading

func (ts humStruct) structToJSON() [lbyte {
jsonReading, jsonErr := json.Marshal(ts)
if jsonErr != nil {

}

log.Fatal(jsonErr)

return jsonReading

var connectHandler mqtt.OnConnectHandler = func(client mqtt.Client) {
fmt.Println("Connected")

var connectLostHandler mgtt.ConnectionLostHandler = func(client mqtt.Client, err error) {
fmt.Printf("Connection lost: %v", err)

func saveResultToFile(filename string, result string) {
file, errOpen := os.OpenFile(filename, os.0_APPEND|os.0_CREATE|os.0_WRONLY, 0644)
if errOpen != nil {

}

log.Fatal(errOpen)

byteSlice := []Ibyte(result)
_, errWrite := file.Write(byteSlice)
if errWrite != nil {

}

log.Fatal(errWrite)

50

146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170

172
173
174
175
176
177
178
179
180

182
183
184
185
186
187
188

The following code is the C code that has been wrapped in order to access the GPIO pins.

func main() {

// Retrieve the IP address

if len(os.Args) <= 1 {
fmt.Println("IP address must be provided as a command line argument")
0s.Exit(1)

}

ADDRESS = o0s.Args[1]

fmt.Println(ADDRESS)

// End program with ctrl-C
c := make(chan os.Signal, 1)
signal.Notify(c, os.Interrupt, syscall.SIGTERM)
go func() {
<-C
0s.Exit(0)
0

// Creat MQTT client
opts := mqtt.NewClientOptions()
opts.AddBroker(fmt.Sprintf("tcp://%s:%d", ADDRESS, PORT))
opts.OnConnect = connectHandler
opts.OnConnectionLost = connectLostHandler
client := mqtt.NewClient(opts)
if token := client.Connect(); token.Wait() && token.Error() != nil {
panic(token.Error())
}
// Publish to topic
numIterations := 100000
for i := 0; i < numIterations; i++ {
if i == numIterations-1 {
sessionStatus = false
}
publish(client)

// Disconnect and save results to file
client.Disconnect(100)

end := time.Now()

duration := end.Sub(start).Seconds()
resultString := fmt.Sprint("Humidity and temperature runtime =
saveResultToFile("piResultsGoLong.txt", resultString)
fmt.Println("Humidity and temperature runtime at end =

, duration, "\n")

, duration)

51

O oo NO U AW

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//

#cgo LDFLAGS: -lwiringPi

#include
#include
#include
#include
#include
#include
#include

<wiringPi.h>
<stdio.h>
<stdlib.h>
<stdint.h>
<string.h>
<time.h>
<unistd.h>

#define MAX_TIMINGS 85

#define DHT_PIN 7 /* GPIO-4 x/
int datal5] = {0, 0, 0, 0, 0 };
double read_dht_data()

{

clock_t begin = clock()d

wiringPiSetup();

uint8_t laststate = HIGH;

uint8_t counter = 0;

uint8_t j =0, i;

data[@] = datall] = datal[2] = datal3] = datal4] = 0;
/* pull pin down for 18 milliseconds */

pinMode(DHT_PIN, OUTPUT);
digitalWrite(DHT_PIN, LOW);
delay(18);

/* prepare to read the pin x/
digitalWrite(DHT_PIN, HIGH);
delayMicroseconds(40);

pinMode(DHT_PIN, INPUT);

/* detect change and read data */

for (i

{

= 0; 1 < MAX_TIMINGS; i++)

counter = 0;
while (digitalRead(DHT_PIN) == laststate)

{

H

counter++;

delayMicroseconds(2);

if (counter == 255)
break;

laststate = digitalRead(DHT_PIN);
if (counter == 255){

break;

52

44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84

//
/7
//
//
//
//
//
//
//
//
/7 }

// /x
* check we read 40 bits (8bit x 5) + verify checksum in the last byte
% print it out if data is good

//
//
//

}
/* ignore first 3 transitions x/
if (((i>=4) && (1 %2 ==20))

{
/* shove each bit into the storage bytes x/
datalj / 8] <<= 1;
if (counter > 16)
datalj 7/ 81 |= 1;
j++;
}

/7 if ((j >= 40) &&

// (datal4] == ((datal[@] + datall]l + datal2] + datal3]) & OxFF)))
/7 A

// FILE xf = fopen("reading.txt", "w");

// if (f == NULL)

// {

// printf("Error opening file!\n");

// exit(1);

// }

// fprintf(f, "%d,%d,%d,%d,%d", datal[@], datalll, datal2], datal3], datal4]);
// fclose(f);

// clock_t end = clock();

// double time_spent = (double)(end - begin) / CLOCKS_PER_SEC;

// return time_spent;

// Y} else {

// FILE xf = fopen("reading.txt", "w");

// if (f == NULL)

// {

// printf("Error opening file!\n");

// exit(1);

// }

// fprintf(f, "%d,%d,%d,%d,%d", datal@]l, data[l], datal[2], data[3], datal4]);
// fclose(f);

// return datalo];

/! }

//}

53

O 00 NO U WN

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

package main

import (
"encoding/json"
"fmt"
"log"
Hogh
"os/signal"
"syscall"
"time"

mgqtt "github.com/eclipse/paho.mqtt.golang"

rpio "github.com/stianeikeland/go-rpio

var sessionStatus bool = true
var counter int = 0

var start = time.Now()

var TOPIC string = "PIR"

type pirStruct struct {
PIR bool

func saveResultToFile(filename string, result string) {
file, errOpen := os.OpenFile(filename, os.0_APPEND|os.0_CREATE|os.0_WRONLY, 0644)

if errOpen != nil {
log.Fatal(errOpen)

}

byteSlice := [lbyte(result)

_, errWrite := file.Write(byteSlice)

if errWrite != nil {
log.Fatal(errWrite)

// Function to handle receipt of a message
var messagePubHandler mqtt.MessageHandler
fmt.Println("Message received")

func(client mqtt.Client, msg mqtt.Message) {

54

//Function to publish a message
func publish(client mqtt.Client) {
if !sessionStatus {

doneString := "{\"Done\": \"True\"}"
client.Publish(TOPIC, @, false, doneString)
return

} else {

pirPin := rpio.Pin(17)
pirPin.Input()
readValue := pirPin.Read()
var pirReading bool
if int(readvalue) == 1 {
pirReading = true
} else {
pirReading = false
}
currentPIR := pirStruct{
PIR: pirReading,
}
jsonPIR := currentPIR.structToJSON()
client.Publish(TOPIC, @, false, string(jsonPIR))
return

64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82

func (ps pirStruct) structToJSON() [lbyte {
jsonReading, jsonErr

if jsonErr != nil {
log.Fatal(jsonErr)

:= json.Marshal(ps)

return jsonReading

var connectHandler mqtt.OnConnectHandler
fmt.Println("Connected")

func(client mqtt.Client) {

var connectLostHandler mqtt.ConnectionLostHandler
fmt.Printf("Connection lost: %v", err)

func(client mqtt.Client, err error) {

83 var ADDRESS string
84 var PORT = 1883

85

86 func main() {

87 // Retrieve IP address

88 if len(os.Args) <= 1 {

89 fmt.Println("IP address must be provided as a command line argument")
90 0s.Exit(1)

91 }

92 ADDRESS = 0s.Args[1]

93 fmt.Println(ADDRESS)

94

95 // Check that RPIO opened correctly

96 if err := rpio.Open(); err != nil {

97 fmt.Println(err)

98 os.Exit(1)

99 }

100

101 // End program with ctrl-C

102 c := make(chan os.Signal, 1)

103 signal.Notify(c, os.Interrupt, syscall.SIGTERM)
104 go func() {

105 <-C

106 0s.Exit(0)

107 0

108

109 // Creat MQTT client

110 opts := mgtt.NewClientOptions()

111 opts.AddBroker(fmt.Sprintf("tcp://%s:%d", ADDRESS, PORT))
112 opts.SetClientID("go_mqgtt_client_pir")

113 opts.SetDefaultPublishHandler(messagePubHandler)
114 opts.0OnConnect = connectHandler

115 opts.OnConnectionLost = connectLostHandler

116 client := mqtt.NewClient(opts)

117 if token := client.Connect(); token.Wait() && token.Error() != nil {
118 panic(token.Error())

119 }

120

121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137

W 0O NO UL WN -

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

// Publish to topic
numIterations := 100000
for i := 0; i < numIterations; i++ {
if i == numIterations-1 {
sessionStatus = false
}
publish(client)

// Disconnect

client.Disconnect(100)

end := time.Now()

duration := end.Sub(start).Seconds()

resultString := fmt.Sprint("PIR runtime = ", duration, "\n")
saveResultToFile("piResultsGoLong.txt", resultString)
fmt.Println("PIR runtime = ", duration)

package main

import (
"encoding/json"
"fmt"
"log"
ot
"os/signal"
"strings"
"syscall"
"time"

mgtt "github.com/eclipse/paho.mqtt.golang"
rpio "github.com/stianeikeland/go-rpio"

var sessionStatus bool = true
var counter int = 0

var start = time.Now()

var TOPIC string = "LED"

type ledStruct struct {
LED_1 bool
GPIO int

func saveResultToFile(filename string, result string) {
file, errOpen := os.OpenFile(filename, os.0_APPEND|os.0_CREATE|os.0_WRONLY, 0644)
if errOpen != nil {
log.Fatal(errOpen)
}
byteSlice := []byte(result)
_, errWrite := file.Write(byteSlice)
if errWrite != nil {
log.Fatal(errWrite)

57

39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78

// Function to handle receipt of message
var messagePubHandler mgtt.MessageHandler = func(client mgtt.Client, msg mqtt.Message) {
counter++
if counter == 1 {
start = time.Now()
}
var led ledStruct
ledPin := rpio.Pin(12)
if strings.Contains(string(msg.Payload()), "Done") {
sessionStatus = false
ledPin.Output()
ledPin.Low()
end := time.Now()
duration := end.Sub(start).Seconds()
resultString := fmt.Sprint("LED subsriber runtime = ", duration, "\n")
saveResultToFile("piResultsGoLong.txt", resultString)
fmt.Println("LED subsriber runtime = ", duration)
} else {
json.Unmarshal([]byte(msg.Payload()), &led)
ledPin = rpio.Pin(led.GPIO)
ledPin.Output()
if led.LED_1 {
ledPin.High()
} else {
ledPin.Low()

var connectHandler mqtt.OnConnectHandler = func(client mqtt.Client) {
fmt.Println("Connected")
}

var connectLostHandler mgtt.ConnectionLostHandler = func(client mqtt.Client, err error) {
fmt.Printf("Connection lost: %v", err)

var ADDRESS string
var PORT = 1883

58

79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125

func main() {

// Save the IP address
if len(os.Args) <= 1 {

fmt.Println("IP address must be provided as a command line argument')

os.Exit(1)
¥
ADDRESS = 0s.Args[1]
fmt.Println(ADDRESS)

// Check that RPIO opened correctly

if err := rpio.Open(); err != nil {
fmt.Println(err)
os.Exit(1)

}

// End program with ctrl-C
c := make(chan os.Signal, 1)
signal.Notify(c, os.Interrupt, syscall.SIGTERM)
go func() {
<-C
0s.Exit(0)
0

// Creat MQTT client

opts := mqtt.NewClientOptions()

opts.AddBroker(fmt.Sprintf("tcp://%s:%d", ADDRESS, PORT))

opts.SetClientID("go_mqtt_client_led")

opts.SetDefaultPublishHandler(messagePubHandler)

opts.OnConnect = connectHandler

opts.OnConnectionLost = connectLostHandler

client := mgtt.NewClient(opts)

if token := client.Connect(); token.Wait() && token.Error()
panic(token.Error())

// Subscribe to topic
token := client.Subscribe(TOPIC, 1, nil)
token.Wait()

// Stay in loop to receive message
for sessionStatus { //Do nothing

}

// Disconnect
client.Disconnect(100)

= nil {

59

W oo N LA, WN R

W wWwwwwwwwwwiNNNNNNNNNNRRRPRRRRERRRR R
W OO NOULE WNREOOVWWLOUNOUL A WNREREROOVWOOLONO U, WNROS

import time

import board

import adafruit_dht

import paho.mqtt.publish as publish
import json

import sys

start = time.time()
startDht = time.time()
endDht = time.time()
humidity = 0
temperature = 0

MQTT_SERVER = sys.argv[1]

Initial the dht device, with data pin connected to:
dhtDevice = adafruit_dht.DHT11(board.D4)
count = 0
while count < 100000:
try:
endDht = time.time()
if(humidity == @ and temperature == 0) or (endDht-startDht) > 1:
humidity = dhtDevice.humidity # Get current humidity from dhtll
temperature = dhtDevice.temperature # Get current temperature from dhtll
startDht = time.time()
hum_json = {"Humidity": humidity, "Unit": "%"}
publish.single("Humidity", json.dumps(hum_json), hostname=MQTT_SERVER)
temp_json = {"Temp": temperature, "Unit": "C"}
publish.single("Temperature", json.dumps(temp_json), hostname=MQTT_SERVER)
count += 1

except RuntimeError as error: # Errors happen fairly often, DHT's are hard to read, just keep going

error.args[0]

publish.single("Humidity", json.dumps({"Done": True}), port=1883, hostname=MQTT_SERVER)
publish.single("Temperature", json.dumps({"Done": True}), port=1883, hostname=MQTT_SERVER)
end = time.time()

print("Humidity and temperature runtime = " + str(end-start))
with open("piResultsPythonLong.txt", "a") as myfile:
myfile.write("Humidity and temperature publisher runtime = " + str(end-start) + "\n")

60

O 00 NOUL s WN -

W W W W INNNNNNNNNNRRPRRPRRPRRRPRRRRPRBRE
W NP OWONOUAEWNEREREROCOVONOULESE WNRES

O 00O NO UL B WN =

P R R R R R R R R
0O ~NOWULEA WNR

import time

import paho.mqtt.publish as publish
import json

import RPi.GPIO as GPIO

import sys

start = time.time()

MQTT_SERVER = sys.argv[1]
MQTT_PATH = "PIR"

Initial the pir device, with data pin connected to 17:
GPIO.setmode(GPI0.BCM)

GPIO.setup(17, GPIO.IN)

presence = False

count = 0
while count < 100000:
try:
presence = GPIO.input(17)
temp_json = {"PIR": presence}
Publish message
publish.single(MQTT_PATH, json.dumps(temp_json), port=1883, hostname=MQTT_SERVER)
except RuntimeError as error: # Errors happen fairly often, DHT's are hard to read, just keep going
print(error.args[0])
count += 1

Publish message to end program
publish.single(MQTT_PATH, json.dumps({"Done": True}), port=1883, hostname=MQTT_SERVER)
end = time.time()
print("PIR publisher runtime = " + str(end-start))
with open("piResultsPythonLong.txt", "a") as myfile:
myfile.write("PIR publisher runtime = " + str(end - start) + "\n")

import paho.mqtt.client as mqtt
import json

import RPi.GPIO as GPIO

import time

import sys

MQTT_SERVER = sys.argv[1]
MQTT_PATH = "LED"
GPIO0.setmode(GPI0.BCM)
GPIO.setwarnings(False)
num_messages = 0

start = time.time()

pin = 0

def on_connect(client, userdata, flags, rc):
print("Connected. Result code: "+ str(rc))
client.subscribe(MQTT_PATH)

61

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

The on_message function runs once a message is received from the broker
def on_message(client, userdata, msg):

global num_messages

global start

global pin

num_messages += 1

if num_messages ==

start = time.time()

received_json = json.loads(msg.payload) #convert the string to json object
if "Done" in received_json: # Save runtime to file

client.loop_stop()

client.disconnect()

end = time.time()

timer = end - start

with open("piResultsPythonLong.txt", "a") as myfile:
myfile.write("LED subscriber runtime = " + str(timer) + "\n")

print("LED subscriber runtime = " + str(timer) + "\n");

GPIO.output(pin, GPIO.LOW)

else: # change led status

client

led_1_status = received_json["LED_1"]
pin = received_json["GPI0"]
GPIO.setup(pin, GPIO.OUT)
if led_1_status:

GPIO.output(pin, GPIO0.HIGH)
else:

GPIO.output(pin, GPIO.LOW)

mgtt.Client()

client.on_connect = on_connect
client.on_message = on_message
client.connect (MQTT_SERVER, 1883, 60)
client. loop_forever()

62

W oo NO UL WN =

WWWWWWRNNNNNNNNNNRRRRR R R R B B
A WNRSOSWOW®O®NOUBWNRSOONOUB_WNRS

36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

extern "C" {
#include <wiringPi.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "MQTTClient.h"
}
#include <csignal>
#include <iostream>

#include "include/rapidjson/document.h"
#include "include/rapidjson/stringbuffer.h"
#include "include/rapidjson/prettywriter.h"
#include "include/rapidjson/writer.h"
#include <chrono>

#include <fstream>

#include <typeinfo>

// MQTT variables

#define CLIENTID "hum_temp_client"
#define TOPIC_T "Temperature"
#define TOPIC_H "Humidity"
#define QOS 0

#define TIMEOUT 10000L

charx ADDRESS;

// Pi dht1l variables
#define MAXTIMINGS 85
#define DHTPIN 7

int dht11_dat[5] = { @, 0, @, @, @ }; //first 8bits is for humidity integral value,

// RapidJson variables
using namespace rapidjson;
using namespace std::chrono;

// Function to publish message

int

publish_message(std::string str_message, const char xtopic, MQTTClient client){
// Initializing components for MQTT publisher

MQTTClient_message pubmsg = MQTTClient_message_initializer;
MQTTClient_deliveryToken token;

// Updating values of pubmsg object

char xmessage = new char[str_message.length() + 1];
strcpy(message, str_message.c_str());
pubmsg.payload = message;

pubmsg.payloadlen = (int)std::strlen(message);
pubmsg.qos = Q0S;

pubmsg.retained = 0;

MQTTClient_publishMessage(client, topic, &pubmsg, &token); // Publish the message
int rc = MQTTClient_waitForCompletion(client, token, TIMEOUT);
return rc;

:string json_to_string(const rapidjson::Document& doc){

rapidjson::PrettyWriter<rapidjson::StringBuffer> writer(string_buffer);

}
std:
//Serialize JSON to string for the message
rapidjson::StringBuffer string_buffer;
string_buffer.Clear();
doc.Accept(writer);
return std::string(string_buffer.GetString());
}

second 8bits for humidity decimal,

63

64 // Reading of the dhtll is rather complex in C/C++. See this site that explains how readings are made: http://www.uuge:
65 intx read_dht11l_dat()

66 {

67 auto startl = high_resolution_clock::now();

68 uint8_t laststate = HIGH;

69 uint8_t counter = 0;

70 uint8_t j =0, i;

71 dht11_dat[0] = dhtll_dat[1] = dht1l_dat[2] = dht1l1l_dat[3] = dhtll_dat[4] = 0;
72

73 // pull pin down for 18 milliseconds. This is called “Start Signal” and it is to ensure DHT11l has detected the sigr
74 pinMode(DHTPIN, OUTPUT);

75 digitalWrite(DHTPIN, LOW);

76 delay(18);

77

78 // Then MCU will pull up DATA pin for 4@us to wait for DHT11l’s response.
79 digitalWrite(DHTPIN, HIGH);

80 delayMicroseconds(40);

81

82 // Prepare to read the pin

83 pinMode(DHTPIN, INPUT);

84

85 // Detect change and read data

86 for (i =0; i < MAXTIMINGS; i++)

87 {

88 counter = 0;

89 while (digitalRead(DHTPIN) == laststate)
90 {

91 counter++;

92 delayMicroseconds(1);

93 if (counter == 255)

94 {

95 break;

96 }

97 }

98 laststate = digitalRead(DHTPIN);

929

100 if (counter == 255)

101 break;

102

64

103 // Ignore first 3 transitions

104 if ((i>=4) & (1 %2 ==10))

105 {

106 // Add each bit into the storage bytes

107 dht1l_dat[j / 8] <<= 1;

108 if (counter > 16)

109 dht1l_dat[j / 8] |= 1;

110 j++;

111 }

112 }

113

114 // Check that 4@ bits (8bit x 5) were read + verify checksum in the last byte
115 if ((j >= 40) && (dht1l_dat[4] == ((dht1ll_dat[@] + dht11l_dat[1] + dht11_dat[2] + dhtl11l_dat[3]) & OxFF)))
116 {

117 return dhtll_dat; // If all ok, return pointer to the data array

118 } else {

119 return dhtll_dat; //If there was an error, set first array element to -1 as flag to main function
120 }

121 }

122

123 int main(int argc, charx argvl[])

124 {

125 auto start = high_resolution_clock::now(); // Starting timer

126 std::string input = argv[1]; // IP address as command line argument to avoid hard coding
127 input.append(":1883"); // Append MQTT port

128

129 char char_input[input.length() + 1];

130 strcpy(char_input, input.c_str());

131 ADDRESS = char_input;

132 double temperature = 0;

133 double humidity = 0;

134

135 MQTTClient client;

136 MQTTClient_connectOptions conn_opts = MQTTClient_connectOptions_initializer;

137 int rc;

138

139 MQTTClient_create(&client, ADDRESS, CLIENTID, MQTTCLIENT_PERSISTENCE_NONE, NULL);
140 conn_opts.keepAliveInterval = 20;

141 conn_opts.cleansession = 1;

142

65

143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183

if ((rc = MQTTClient_connect(client, &conn_opts)) != MQTTCLIENT_SUCCESS)
{

printf("Failed to connect, return code %d\n", rc);

exit (EXIT_FAILURE);
} else{

printf("Connected. Result code %d\n", rc);

wiringPiSetup(); // Required for wiringPi

int count = 0;

int num_iterations = 100000;

auto dhtStart = high_resolution_clock::now();
auto dhtEnd = high_resolution_clock::now();
std::chrono::duration<double> dhtTimer;

while(count <= num_iterations) {
dhtEnd = high_resolution_clock::now();
dhtTimer = dhtEnd - dhtStart;

if((temperature == 0 && humidity == @) || dhtTimer > (std::chrono::seconds(1))) { //need to get values from
int xreadings = read_dht1l_dat();
dhtStart = high_resolution_clock::now();
int counter = 0;
while (readings[0] == -1 && counter < 5) {

readings = read_dht11_dat(); // Errors frequently occur when reading dht sensor. Keep reading until values are ret

counter = counter + 1;

}

if (counter == 5) {
std::cout << "Problem with DHT11 sensor. Check Raspberry Pi \n";
return 1;

}

humidity = readings[@] + (readings[1] / 10);

temperature = readings[2] + (readings([3] / 10);

if(count == num_iterations){
rapidjson::Document document_done;
document_done.SetObject();
rapidjson::Document::AllocatorType& allocatorl = document_done.GetAllocator();
document_done.AddMember("Done", true, allocatorl);

66

184
185
186
187
188
189
190
191

193
194
195
196
197
198
199
200

202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224

225
722G

std::string pub_message_done = json_to_string(document_done);
rc = publish_message(pub_message_done, TOPIC_T, client);
rc = publish_message(pub_message_done, TOPIC_H, client);

}
else {
//Create JSON DOM document object for humidity
rapidjson::Document document_humidity;
document_humidity.SetObject();
rapidjson::Document::AllocatorType &allocator2 = document_humidity.GetAllocator();
document_humidity.AddMember("Humidity", humidity, allocator2);
document_humidity.AddMember("Unit", "%", allocator2);
//Create JSON DOM document object for temperature
rapidjson::Document document_temperature;
document_temperature.SetObject();
rapidjson::Document::AllocatorType &allocator3 = document_temperature.GetAllocator();
document_temperature.AddMember("Temp", temperature, allocator3);
document_temperature.AddMember("Unit", "C", allocator3);
try {
std::string pub_message_humidity = json_to_string(document_humidity);
rc = publish_message(pub_message_humidity, TOPIC_H, client);
std::string pub_message_temperature = json_to_string(document_temperature);
rc = publish_message(pub_message_temperature, TOPIC_T, client);
} catch (const std::exception &exc) {
// catch anything thrown within try block that derives from std::exception
std::cerr << exc.what();
}
}

count = count + 1;

// End of loop. Stop MQTT and calculate runtime
MQTTClient_disconnect(client, 1000);
MQTTClient_destroy(&client);

auto end = high_resolution_clock::now();

std::chrono::duration<double> timer = end-start;

std::ofstream outfile;

outfile.open("piResultsCppLong.txt", std::ios_base::app); // append to the results text file
outfile << "Humidity and temperature publisher runtime = " << timer.count() << "\n";
std::cout << "Humidity and temperature runtime = " << timer.count() << "\n";

return rc;

67

O oo ~NOULL s WN =

WWWNNNNNNNNNNRRRRRRR R R R
N RSO OWO®OWNOoOUBDSWNRO®OWOONOOUDWNROS

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69

extern "C" {

#include <wiringPi.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "MQTTClient.h"

}

#include <csignal>

#include <iostream>

#include "include/rapidjson/document.h"
#include "include/rapidjson/stringbuffer.h"
#include "include/rapidjson/prettywriter.h"
#include "include/rapidjson/writer.h"
#include <chrono>

#include <fstream>

#include <typeinfo>

// Pi variables
#define PIN 17

// MQTT variables

#define CLIENTID "pir_client"
#define TOPIC "PIR"
#define QOS 0

#define TIMEOUT 10000L

charx ADDRESS;

// RapidJson variables
using namespace rapidjson;
using namespace std::chrono;

int

std:

int

publish_message(std::string str_message, const char xtopic, MQTTClient client){
// Initializing components for MQTT publisher

MQTTClient_message pubmsg = MQTTClient_message_initializer;
MQTTClient_deliveryToken token;

// Updating values of pubmsg object

char xmessage = new char[str_message.length() + 1];
strcpy(message, str_message.c_str());
pubmsg.payload = message;

pubmsg.payloadlen = (int)std::strlen(message);
pubmsg.qos = QO0S;

pubmsg.retained = 0;

MQTTClient_publishMessage(client, topic, &pubmsg, &token); // Publish the message
int rc = MQTTClient_waitForCompletion(client, token, TIMEOUT);
return rc;

:string json_to_string(const rapidjson::Document& doc){

//Serialize JSON to string for the message

rapidjson::StringBuffer string_buffer;

string_buffer.Clear();

rapidjson::PrettyWriter<rapidjson::StringBuffer> writer(string_buffer);
doc.Accept(writer);

return std::string(string_buffer.GetString());

main(int argc, charx argv[])

auto start = high_resolution_clock::now(); // Starting timer

std::string input = argv[1]; // IP address as command line argument to avoid hard coding
input.append(':1883"); // Append MQTT port

char char_input[input.length() + 1];

strcpy(char_input, input.c_str());
ADDRESS = char_input;

68

70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106

107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128

MQTTClient client;
MQTTClient_connectOptions conn_opts = MQTTClient_connectOptions_initializer;
int rc;

MQTTClient_create(&client, ADDRESS, CLIENTID, MQTTCLIENT_PERSISTENCE_NONE, NULL);
conn_opts.keepAliveInterval = 20;
conn_opts.cleansession = 1;

if ((rc = MQTTClient_connect(client, &conn_opts)) != MQTTCLIENT_SUCCESS)
{
printf("Failed to connect, return code %d\n", rc);
exit(EXIT_FAILURE);
} else{
printf("Connected. Result code %d\n", rc);

wiringPiSetup(); // Required for wiringPi

pinMode(PIN, INPUT);

bool motion = false;

int count = 0;

int numIterations = 100000;

while(count <= numIterations) {

if(count == numIterations){

rapidjson: :Document document_done;
document_done.SetObject();
rapidjson::Document::AllocatorType& allocatorl = document_done.GetAllocator();
document_done.AddMember("Done", true, allocatorl);
std::string pub_message_done = json_to_string(document_done);
rc = publish_message(pub_message_done, TOPIC, client);

}
else {
motion = digitalRead(PIN);
//Create JSON DOM document object for humidity
rapidjson::Document document_pir;
document_pir.SetObject();
rapidjson::Document::AllocatorType &allocator2 = document_pir.GetAllocator();
document_pir.AddMember("PIR", motion, allocator2);
try {
std::string pub_message_pir = json_to_string(document_pir);
rc = publish_message(pub_message_pir, TOPIC, client);
} catch (const std::exception &exc) {
// catch anything thrown within try block that derives from std::exception
std::cerr << exc.what();
}
}

count = count + 1;

// End of loop. Stop MQTT and calculate runtime
MQTTClient_disconnect(client, 10000);
MQTTClient_destroy(&client);

auto end = high_resolution_clock::now();
std::chrono::duration<double> timer = end-start;
std::ofstream outfile;

outfile.open("piResultsCppLong.txt", std::ios_base::app); // append to the results text
outfile << "PIR publisher runtime = " << timer.count() << "\n";

std::cout << "PIR runtime = " << timer.count() << "\n";

return rc;

file

69

W oo NOOULE WN R

AW WWWWWWWWWNNNNNNNNNNRRRPRRRPR R R R
S WO NOUEAEWNROOOUOWOWNOURSA,WNROOWOLONOD UL WNROS

extern "C" {
#include <wiringPi.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "MQTTClient.h"
}
#include <csignal>
#include <iostream>
#include "include/rapidjson/document.h"
#include <chrono>
#include <fstream>

//using namespace std;
using namespace rapidjson;
using namespace std::chrono;

#define CLIENTID "ledSubscriber"
#define TOPIC "LED"

#define QOS 0

int pin;

volatile MQTTClient_deliveryToken deliveredtoken;

bool led_status;

std::string session_status;

charx ADDRESS;

int num_messages = 0;

auto start = high_resolution_clock::now(); // initialize start

// Required callback

void delivered(void *context, MQTTClient_deliveryToken dt)

{
printf("Message with token value %d delivery confirmed\n", dt);
deliveredtoken = dt;

// Callback function for when an MQTT message arrives from the broker

int msgarrvd(void xcontext, char xtopicName, int topicLen, MQTTClient_message xmessage)

{

num_messages = num_messages + 1;

70

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78

if(num_messages == 1){
start = high_resolution_clock::now(); // Starting timer

}

int i;

charx payloadptr; //payload

payloadptr = (charx)message->payload; //payload converted to charx

int len = strlen(payloadptr);

if(payloadptr[len-2] == '}'){ // Fix for a bug in RapidJson
payloadptr[len-1] = '"\0';

}

rapidjson::Document document;
document.Parse(payloadptr); // Parse string to JSON

if(document.HasMember("Done")){ // Done message is received from publisher when communication ends. This triggers the

MQTTClient_freeMessage(&message) ;

MQTTClient_free(topicName);

session_status = "Done";

auto end = high_resolution_clock::now();

std::chrono::duration<double> timer = end-start;

std::cout << "LED subscriber runtime = " << timer.count() << "\n";

std::ofstream outfile;

outfile.open("piResultsCppLong.txt", std::ios_base::app); // append to the results text file

outfile << "LED subscriber runtime = " << timer.count() << "\n";
return 0;
} else{

if(document.HasMember("LED_1")) { // If the message is about the LED status, the LED is switch accordingly

led_status = (bool) document["LED_1"].GetBool();
pin = document["GPI0"].GetInt();
pinMode(pin, OUTPUT);
digitalWrite(pin, led_status);
}
MQTTClient_freeMessage(&message);
MQTTClient_free(topicName);
return 1;

71

79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118

119
120
121
122
123
124

// Required callback for lost connection
void connlost(void xcontext, char xcause)

{

printf("\nConnection lost\n");
printf(" cause: %s\n'", cause);

int main(int argc, char xargv[]){

std::string input = argv[1]; // IP address as command line argument to avoid hard coding
input.append(":1883"); // Append MQTT port

char char_input[input.length() + 1];

strcpy(char_input, input.c_str());

ADDRESS = char_input;

wiringPiSetupGpio();

MQTTClient client;

MQTTClient_connectOptions conn_opts = MQTTClient_connectOptions_initializer;
int rc;

int ch;

MQTTClient_create(&client, ADDRESS, CLIENTID, MQTTCLIENT_PERSISTENCE_NONE, NULL);
conn_opts.keepAliveInterval = 20;
conn_opts.cleansession = 1;

MQTTClient_setCallbacks(client, NULL, connlost, msgarrvd, delivered);

if ((rc = MQTTClient_connect(client, &conn_opts)) != MQTTCLIENT_SUCCESS) //Unsuccessful connection
{
printf("Failed to connect, return code %d\n", rc);
exit(EXIT_FAILURE);
}
else{ // Successful connection
printf("Connected. Result code %d\n", rc);

}

MQTTClient_subscribe(client, TOPIC, QOS);

while(session_status != "Done"){ // Continue listening for messages until end of session
//Do nothing

}

MQTTClient_disconnect(client, 10000);
MQTTClient_destroy(&client);
digitalWrite(pin, 0);

return rc;

72

A.3 — Monolithic Code

gPi

85

7 /% GPIO-4 %/
0, 0, 0 };

)

k();

= HIGH;

= 0;

=0, i;

datal[2] = datal[3] = datal4] = 0;
18 milliseconds x/

TPUT);

N, LOW);

he pin x/
N, HIGH);
0);
PUT);
read data */

for (i =0; i < MAX_TIMINGS; i++)

Go Code

1 package main

2

3 // #cgo LDFLAGS: -lwirin
4 // #include <wiringPi.h>
5 // #include <stdio.h>

6 // #include <stdlib.h>

7 // #include <stdint.h>

8 // #include <string.h>

9 // #include <time.h>

10 // #include <unistd.h>
11 // #define MAX_TIMINGS
12 // #define DHT_PIN

13 // int datal5] = { o, 0,
14 // double read_dht_data(
15 // A4

16 // clock_t begin = cloc
17 // wiringPiSetup();

18 // uint8_t laststate

19 // uint8_t counter
20 // uint8_t j

21 // datale] = datall] =
22 // /% pull pin down for
23 // pinMode(DHT_PIN, OU
24 // digitalWrite(DHT_PI
25 // delay(18);

26 // /x prepare to read t
27 // digitalWrite(DHT_PI
28 // delayMicroseconds(4
29 // pinMode(DHT_PIN, IN
30 // /x detect change and
31 //

32 /7 A

33 // counter = 0;

34 // while (digitalR
35 // {

36 // counter++;
37 // delayMicrose
38 // if (counter
39 // break;
40 // }
41 // laststate = digi
42 // if (counter ==
43 // break;
44 // +

ead(DHT_PIN) == laststate)

conds(2);
== 255)

talRead(DHT_PIN);
255){

73

45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85

//
//
/7
//
//
//
//
//
//
//}
/77
//
//
//

*

/* ignore first 3 transitions x/
if (((i>=4) & (1 %2 ==20))

{
/* shove each bit into the storage bytes x/
datalj / 8] <<= 1;
if (counter > 16)
datalj / 81 |=1;
J++;
}

* check we read 40 bits (8bit x 5) + verify checksum in the last byte
* print it out if data is good

*/

/7 if ((] >= 40) &

// (datal[4] == ((datal@] + datall] + datal2] + datal3]) & OxFF)))
/7 A

// FILE xf = fopen("reading.txt", "w");

// if (f == NULL)

// {

// printf("Error opening file!\n");

// exit(1);

// }

// fprintf(f, "%d,%d,%d,%d,%d", datal[@]l, datal[l], data[2], datal[3], datal4]);
// fclose(f);

// clock_t end = clock();

// double time_spent = (double)(end - begin) / CLOCKS_PER_SEC;

// return time_spent;

// } else {

// FILE xf = fopen("reading.txt", "w");

// if (f == NULL)

// {

// printf("Error opening file!\n");

// exit(1);

// }

// fprintf(f, "%d,%d,%d,%d,%d", datal@], datal[l], datal2], datal[3], datal4]);
// fclose(f);

// return datalo];

// Y

// }

import "C"

74

86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126

import (
"encoding/json"
"fmt"
"io/ioutil"
"Log"
g
"os/signal"
"strconv"
"strings"
"syscall"
"time"

mqtt "github.com/eclipse/paho.mqtt.golang"
rpio "github.com/stianeikeland/go-rpio"

var sessionStatusHT bool = true
var sessionStatusPir bool = true
var sessionStatusLed bool = true
var counter int = 0

var start = time.Now()

var startPIR = time.Now()

var startHT = time.Now()

var startLED = time.Now()

var dhtStart = time.Now()

var dhtEnd = time.Now()

var dhtDuration float64

var TOPIC_H string = "Humidity"
var TOPIC_T string = "Temperature"
var TOPIC_P string = "PIR"

var TOPIC_L string = "LED"

var ADDRESS string

var PORT = 1883

var temperatureReading float32 = 0
var humidityReading float32 = 0

type tempStruct struct {
Temp float32
Unit string

75

127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168

type humStruct struct {
Humidity float32

Unit string

}

type ledStruct struct {
LED_1 bool
GPIO int

type pirStruct struct {
PIR bool

type reading interface {
structToJSON() [lbyte

func saveResultToFile(filename string, result string) {
file, errOpen := os.OpenFile(filename, 0s.0_APPEND|os.0_CREATE|os.0_WRONLY, 0644)
if errOpen != nil {
log.Fatal(errOpen)
}
byteSlice := []byte(result)
_, errWrite := file.Write(byteSlice)
if errWrite != nil {
log.Fatal(errWrite)

// Function to handle receipt of message
var messagePubHandler mqtt.MessageHandler = func(client mgtt.Client, msg mqtt.Message) {
counter++
if counter == 1 {
startLED = time.Now()
}
var led ledStruct
ledPin := rpio.Pin(12)
if strings.Contains(string(msg.Payload()), "Done") {
sessionStatusLed = false
ledPin.Output()
ledPin.Low()

76

169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211

endLED := time.Now()
durationLED := endLED.Sub(startLED).Seconds()
resultString := fmt.Sprint("LED subsriber runtime = ", durationLED, "\n")
saveResultToFile("piResultsGoMonoLong.txt", resultString)
fmt.Println("LED subsriber runtime = ", durationLED)
} else {
json.Unmarshal([]byte(msg.Payload()), &led)
ledPin = rpio.Pin(led.GPIO)
ledPin.Output()
if led.LED_1 {
ledPin.High()
} else {
ledPin.Low()

//Function to publish a message
func publish(client mqtt.Client, sensor string) {
if !sessionStatusHT && (sensor == "dht") {
doneString := "{\"Done\": \"True\"}"
client.Publish(TOPIC_T, @, false, doneString)
client.Publish(TOPIC_H, @, false, doneString)
return
} else if !sessionStatusPir && (sensor == "pir") {
doneString := "{\"Done\": \"True\"}"
client.Publish(TOPIC_P, @, false, doneString)
return
} else if sensor == "dht" {
dhtEnd = time.Now()
dhtDuration = dhtEnd.Sub(dhtStart).Seconds()
if (temperatureReading == 0 && humidityReading == 0) || dhtDuration > 1 {
C.read_dht_data()
dhtStart = time.Now()
byteSlice, readErr := ioutil.ReadFile("reading.txt")
if readErr != nil {
log.Fatal(readErr)
}
mySlice := byteSliceToIntSlice(byteSlice)
if mySlicel[@] !'= 0 && mySlice[2] != 0 {
temperatureReading = float32(mySlice[2] + (mySlicel3] / 10))
humidityReading = float32(mySlicel[@] + (mySlicel[1] / 10))

77

212 }

213 currentTemperature := tempStruct{

214 Temp: temperatureReading,

215 Unit: "C",

216 }

217 currentHumidity := humStruct{

218 Humidity: humidityReading,

219 Unit: o,

220 }

221 jsonTemperature := currentTemperature.structToJSON()
222 jsonHumidity := currentHumidity.structToJSON()
223 client.Publish(TOPIC_T, @, false, string(jsonTemperature))
224 client.Publish(TOPIC_H, @, false, string(jsonHumidity))
225 return

226 } else if sensor == "pir" {

227 pirPin := rpio.Pin(17)

228 pirPin.Input()

229 readValue := pirPin.Read()

230 var pirReading bool

231 if int(readvalue) == 1 {

232 pirReading = true

233 } else {

234 pirReading = false

235 }

236 currentPIR := pirStruct{

237 PIR: pirReading,

238 }

239 jsonPIR := getJSON(currentPIR)

240 client.Publish(TOPIC_P, @, false, string(jsonPIR))
241 return

242 }

243}

244

245 func getJSON(r reading) [lbyte {

246 return r.structToJSON()

247 }

248

249 func (ts tempStruct) structToJSON() [lbyte {

250 jsonReading, jsonErr := json.Marshal(ts)

251 if jsonErr != nil {

252 log.Fatal(jsonErr)

253 }

254 return jsonReading

255
256
257
258
259
260
261
262
263
264
265
266

268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292

func (ts humStruct) structTolSON() [lbyte {
jsonReading, jsonErr := json.Marshal(ts)
if jsonErr != nil {
log.Fatal(jsonErr)
}

return jsonReading

func (ps pirStruct) structToJSON() [lbyte {
jsonReading, jsonErr := json.Marshal(ps)
if jsonErr !'= nil {
log.Fatal(jsonErr)
}

return jsonReading

func byteSliceToIntSlice(bs [lbyte) [lint {
strings := strings.Split(string(bs), ",")
result := make([lint, len(strings))
for i, s := range strings {
if len(s) == 0 {
continue
}
n, convErr := strconv.Atoi(s)
if convErr != nil {
log.Fatal(convErr)
}
result[i] = n
}

return result

var connectHandler mgtt.OnConnectHandler = func(client mqtt.Client) {
fmt.Println("Connected")

79

293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309

330
331
332
333
334

var connectLostHandler mqtt.ConnectionLostHandler = func(client mqtt.Client, err error) {

b

fmt.Printf("Connection lost: %v", err)

func main() {

// Retrieve IP address

if len(os.Args) <= 1 {
fmt.Println("IP address must be provided as a command line argument")
os.Exit(1)

}

ADDRESS = 0s.Args[1]

fmt.Println(ADDRESS)

// Check that RPIO opened correctly
if err := rpio.Open(); err != nil {
fmt.Println(err)

os.Exit(1)
}
// End program with ctrl-C
c := make(chan o0s.Signal, 1)
signal.Notify(c, os.Interrupt, syscall.SIGTERM)
go func() {
<-C
0s.Exit(0)
0

// Creat MQTT client

opts := mqtt.NewClientOptions()

opts.AddBroker(fmt.Sprintf("tcp://%s:%d", ADDRESS, PORT))

opts.SetClientID("go_mqtt_client_pir")

opts.SetDefaultPublishHandler(messagePubHandler)

opts.OnConnect = connectHandler

opts.OnConnectionLost = connectLostHandler

client := mqtt.NewClient(opts)

if token := client.Connect(); token.Wait() && token.Error() !'= nil {
panic(token.Error())

// Subscribe to topic
token := client.Subscribe(TOPIC_L, 1, nil)
token.Wait()

80

335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

// Publish to PIR topic
numIterations := 100000
for i := 0; i < numIterations; i++ {
if i == numIterations-1 {
sessionStatusPir = false
}
publish(client, "pir")

endPIR := time.Now()

durationPIR := endPIR.Sub(startPIR).Seconds()

resultString := fmt.Sprint("PIR runtime = ", durationPIR, "\n")
saveResultToFile("piResultsGoMonoLong.txt", resultString)
fmt.Println("PIR runtime = ", durationPIR)

// Publish to dht topic
for i := 0; i < numIterations; i++ {
if i == numIterations-1 {
sessionStatusHT = false
}
publish(client, "dht")

endHT := time.Now()

durationHT := endHT.Sub(startHT).Seconds()

resultString = fmt.Sprint("Humidity and temperature runtime = ", durationHT, "\n")
saveResultToFile("piResultsGoMonoLong.txt", resultString)

fmt.Println("Humidity and temperature runtime = ", durationHT)

// Stay in loop to receive message
for sessionStatusLed { //Do nothing
}

// Disconnect
client.Disconnect(100)

end := time.Now()
duration := end.Sub(start).Seconds()

resultString = fmt.Sprint("Overall runtime = ", duration, "\n")
saveResultToFile("piResultsGoMonoLong.txt", resultString)
fmt.Println("Overall runtime = ", duration)

81

W 00N UL WN R

ADEA DD WWWWWWWWWWNNNNNNNNNNRRRRRERRRPRRRR
WINERFRE OO OWWOWMNOUERE, WNREROOOWOONOUEA, WNROOOWOLONOUEAEWNROS

import paho.mqgtt.client as mqtt
import paho.mqtt.publish as publish
import json

import RPi.GPIO as GPIO

import time

import sys

import adafruit_dht

import board

start_total = time.time()

————— Variables for all —————-
MQTT_SERVER = sys.argv[1]
GPIO0.setmode(GPIO.BCM)
GPIO.setwarnings(False)

————— LED code-————- i
start_led = time.time()

MQTT_PATH_LED = "LED"
num_led_messages = 0
PIN_LED = @ # Will be received in MQTT message

def on_connect(client, userdata, flags, rc):
print(“Connected. Result code: "+ str(rc))
client.subscribe(MQTT_PATH_LED)

The on_message function runs once a message is received from the broker
def on_message(client, userdata, msg):
global num_led_messages
global start_led
global PIN_LED
num_led_messages += 1
if num_led_messages ==
start_led = time.time()
received_json = json.loads(msg.payload) #convert the string to json object
if "Done" in received_json:
client. loop_stop()
client.disconnect()
end_LED = time.time()
timer = end_LED - start_led
with open("piResultsPythonMonoLong.txt", "a") as myfile:
myfile.write("LED subscriber runtime = " + str(timer) + "\n")

82

44 print("LED subscriber runtime = " + str(timer) + "\n");

45 GPIO.output(PIN_LED, GPIO.LOW)

46

47 else:

48 led_1_status = received_json["LED_1"]
49 PIN_LED = received_json["GPI0"]

50 GPIO.setup(PIN_LED, GPIO.OUT)

51 if led_1_status:

52 GPIO.output(PIN_LED, GPIO.HIGH)
53 else:

54 GPIO.output(PIN_LED, GPIO.LOW)
55

56 client = mgtt.Client()

57 client.on_connect = on_connect

58 client.on_message = on_message

59 client.connect (MQTT_SERVER, 1883, 60)
60

61 # —————— PIR code —————-; #

62 start_PIR = time.time()

63 MQTT_PATH_PIR = "PIR"

64

65 # Initial the pir device, with data pin connected to 17:
66 GPIO.setup(17, GPIO.IN) # Change setup
67 presence = False

68 count = 0

69 while count < 100000:

70 try:

71 presence = GPIO.input(17)

72 temp_json = {"PIR": presence}

73 publish.single(MQTT_PATH_PIR, json.dumps(temp_json), port=1883, hostname=MQTT_SERVER)

74 except RuntimeError as error: # Errors happen fairly often, DHT's are hard to read, just keep going
75 print(error.args[0])

76 count += 1

77

78 publish.single(MQTT_PATH_PIR, json.dumps({"Done": True}), port=1883, hostname=MQTT_SERVER)
79 end_PIR = time.time()

80 print("PIR publisher runtime = " + str(end_PIR-start_PIR))

81 with open("piResultsPythonMonoLong.txt", "a") as myfile:

82 myfile.write("PIR publisher runtime = " + str(end_PIR-start_PIR) + "\n")
83

84 # ————— Humidity and Temperature code —————- #

85 # Initial the dht device, with data pin connected to:
86 start_HT = time.time()

87 dhtDevice = adafruit_dht.DHT11(board.D4)

88 count = 0

89 while count < 100000:

90 try:

91 humidity = dhtDevice.humidity # Get current humidity from dhtll

92 temperature = dhtDevice.temperature # Get current temperature from dhtll
93 hum_json = {"Humidity": humidity, "Unit": "s"}

94 publish.single("Humidity", json.dumps(hum_json), hostname=MQTT_SERVER)

95 temp_json = {"Temp": temperature, "Unit": "C"}

96 publish.single("Temperature", json.dumps(temp_json), hostname=MQTT_SERVER)
97 except RuntimeError as error: # Errors happen fairly often, DHT's are hard to read, just keep going
98 error.args[o]

99 count += 1

100

101 publish.single("Humidity", json.dumps({"Done": True}), port=1883, hostname=MQTT_SERVER)
102 publish.single("Temperature", json.dumps({"Done": True}), port=1883, hostname=MQTT_SERVER)
103 end_HT = time.time()

104 print("Humidity and temperature runtime = " + str(end_HT-start_HT))

105 with open("piResultsPythonMonoLong.txt", "a") as myfile:

106 myfile.write("Humidity and temperature publisher runtime = " + str(end_HT-start_HT) + "\n")
107

108 end_total = time.time()

109 with open("piResultsPythonMonoLong.txt", "a") as myfile:

110 myfile.write("Overall runtime = " + str(end_total-start_total) + "\n")
111

112 client. loop_forever()

83

O 00 NO UL B WN -

W wwwwwwww N NNNNNNNNNNNRRPRRPRRRPRRRRERPRE
00 NO UL WNREPEOSO OWOWNOURSE, WNREOO OOONO USRS WNREOS

extern "C" {

#include <wiringPi.h>

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include "MQTTClient.h"
}
#include <csignal>
#include <iostream>
#include "include/rapidjson/document.h"
#include "include/rapidjson/stringbuffer.h"
#include "include/rapidjson/prettywriter.h"
#include "include/rapidjson/writer.h"
#include <chrono>
#include <fstream>

//using namespace std;
using namespace rapidjson;
using namespace std::chrono;

// variables for all
volatile MQTTClient_deliveryToken deliveredtoken;
charx ADDRESS;

// LED variables

#define CLIENTID_LED "ledSubscriber"
#define TOPIC_LED “LED"
#define QOS 0

int pin_LED;

bool led_status;

std::string session_status;

int num_messages = 0;

auto start_led = high_resolution_clock::now(); // initialize

// PIR variables
#define CLIENTID_PIR "pir_client"
#define TOPIC_PIR "PIR"

start

84

39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77

79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117

#define TIMEOUT 10000L
#define PIN_PIR 17

// Humidity and Temperature variables
#define CLIENTID_HT "hum_temp_client"
#define TOPIC_T "Temperature"
#define TOPIC_H "Humidity"

#define MAXTIMINGS 85
#define DHTPIN 7

int dht11_dat[5] = { @, @, 0, 0, 0 }; //first 8bits is for humidity integral value, second 8bits for humidity decimal, third for ter

/] === LED code —--——- //
void delivered(void xcontext, MQTTClient_deliveryToken dt) // Required callback
{

printf(“Message with token value %d delivery confirmed\n", dt);
deliveredtoken = dt;

// Callback function for when an MQTT message arrives from the broker
int msgarrvd(void xcontext, char xtopicName, int topicLen, MQTTClient_message xmessage)

{
num_messages = num_messages + 1;
if(num_messages == 1){
start_led = high_resolution_clock::now(); // Starting timer
}
int i;
charx payloadptr; //payload
payloadptr = (charx)message->payload; //payload converted to charx
int len = strlen(payloadptr);
if(payloadptr(len-2] == '}'){ //Fix for Paho MQTT bug
payloadptr(len-1] = '\0';
} else if (len > 28){
payloadptr(len-8] = '\0';
rapidjson::Document document;
document.Parse(payloadptr); // Parse string to JSON
if(document.HasMember("Done")){ // Done message is received from publisher when communication ends. This triggers the end of the
MQTTClient_freeMessage(&message) ;
MQTTClient_free(topicName);
session_status = "Done";
auto end_led = high_resolution_clock::now();
std::chrono::duration<double> timer = end_led-start_led;
std::cout << "LED subscriber runtime = " << timer.count() << "\n";
std::ofstream outfile;
outfile.open("piResultsCppMonoLong.txt", std::ios_base::app); // append to the results text file
outfile << "LED subscriber runtime = " << timer.count() << "\n";
return 0;
} else{
if(document.HasMember("LED_1")) { // If the message is about the LED status, the LED is switch accordingly
led_status = (bool) document["LED_1"].GetBool();
pin_LED = document["GPI0"].GetInt();
pinMode(pin_LED, OUTPUT);
digitalWrite(pin_LED, led_status);
}
MQTTClient_freeMessage(&message) ;
MQTTClient_free(topicName);
return 1;
}
}

// Required callback for lost connection

void connlost(void *context, char xcause){
printf("\nConnection lost\n");
printf(" cause: %s\n", cause);

int publish_message(std::string str_message, const char xtopic, MQTTClient client){
// Initializing components for MQTT publisher
MQTTClient_message pubmsg = MQTTClient_message_initializer
MQTTClient_deliveryToken token;

// Updating values of pubmsg object

char xmessage = new char[str_message.length() + 1];
strcpy(message, str_message.c_str());
pubmsg.payload = message;

pubmsg.payloadlen = (int)std::strlen(message)

85

118 pubmsg.qos = Q0S;

119 pubmsg.retained = 0;

120

121 MQTTClient_publishMessage(client, topic, &pubmsg, &token); // Publish the message
122 int rc = MQTTClient_waitForCompletion(client, token, TIMEOUT);

123 return rc;

124}

125

126 std::string json_to_string(const rapidjson::Document& doc){

127 //Serialize JSON to string for the message

128 rapidjson::StringBuffer string_buffer;

129 string_buffer.Clear();

130 rapidjson::PrettyWriter<rapidjson::StringBuffer> writer(string_buffer);
131 doc.Accept(writer);

132 return std::string(string_buffer.GetString());

133 }

134

135 // Reading of the dht1l is rather complex in C/C++. See this site that explains how readings are made: http://www.uugear.com/port
136 intx read_dht11_dat()

137 {

138 uint8_t laststate = HIGH;

139 uint8_t counter = 0;

140 uint8_t j =0, i;

141

142 dht11_dat[0] = dht1l_dat[1] = dht1l_dat[2] = dht11_dat[3] = dhtll_dat[4] = 0;
143

144 // pull pin down for 18 milliseconds. This is called “Start Signal” and it is to ensure DHT11 has detected the signal from MC
145 pinMode(DHTPIN, OUTPUT);

146 digitalWrite(DHTPIN, LOW);

147 delay(18);

148 // Then MCU will pull up DATA pin for 4@Qus to wait for DHT11l’s response.

149 digitalWrite(DHTPIN, HIGH);

150 delayMicroseconds(40);

151 // Prepare to read the pin

152 pinMode(DHTPIN, INPUT);

153

154 // Detect change and read data

155 for (i = 0; i < MAXTIMINGS; i++)

156 {

157 counter = 0;

158 while (digitalRead(DHTPIN) == laststate)

159 {

160 counter++;

161 delayMicroseconds(1);

162 if (counter == 255)

163 {

164 break;

165 }

166 }

167 laststate = digitalRead(DHTPIN);

168

169 if (counter == 255)

170 break;

171

172 // Ignore first 3 transitions

173 if (((1>=4) && (1 %2 ==20))

174 {

175 // Add each bit into the storage bytes

176 dht1l_dat[j / 8] <<= 1;

177 if (counter > 16)

178 dht1l_dat[j / 8] |= 1;

179 j++;

180 }

181 }

182

183 // Check that 40 bits (8bit x 5) were read + verify checksum in the last byte
184 if ((j >= 40) && (dhtll_dat[4] == ((dhtll_dat[@] + dhtll_dat[1] + dhtll_dat[2] + dhtll_dat[3]) & OxFF)))
185 {

186 return dhtll_dat; // If all ok, return pointer to the data array
187 } else {

188 dht11_dat[0] = -1;

189 return dhtll_dat; //If there was an error, set first array element to -1 as flag to main function
190 }

191}

192

193 int main(int argc, charx argv[l)

194 {

195 auto start = high_resolution_clock: :now();

196

197 std::string input = argv[1]; // IP address as command line argument to avoid hard coding
198 input.append(":1883"); // Append MQTT port

86

char char_input[input.length() + 1];
strcpy(char_input, input.c_str());
ADDRESS = char_input;

int rc;

/] === LED code —————- //
wiringPiSetup();

MQTTClient_connectOptions conn_opts = MQTTClient_connectOptions_initializer;
MQTTClient client_led;
MQTTClient_create(&client_led, ADDRESS, CLIENTID_LED, MQTTCLIENT_PERSISTENCE_NONE, NULL);

MQTTClient_setCallbacks(client_led, NULL, connlost, msgarrvd, delivered);

if ((rc = MQTTClient_connect(client_led, &conn_opts)) != MQTTCLIENT_SUCCESS) //Unsuccessful
{
printf("Failed to connect, return code %d\n", rc);
exit (EXIT_FAILURE);
}
else{ // Successful connection
printf("Connected to led. Result code %d\n", rc);

MQTTClient_subscribe(client_led, TOPIC_LED, QO0S);

/] === PIR code —-———- //
auto start_pir = high_resolution_clock::now(); // Starting timer

MQTTClient client;

MQTTClient_create(&client, ADDRESS, CLIENTID_PIR, MQTTCLIENT_PERSISTENCE_NONE, NULL);
conn_opts.keepAliveInterval = 20;

conn_opts.cleansession = 1;

if ((rc = MQTTClient_connect(client, &conn_opts)) != MQTTCLIENT_SUCCESS){
printf("Failed to connect, return code %d\n", rc);
exit (EXIT_FAILURE);

} else{
printf("Connected to PIR. Result code %d\n", rc);

connection

87

240
241
242
243
244
245
246
247
248
249

266

bool motion = false;

int count = 0;

int num_iterations = 100000;

while(count <= num_iterations) {

if(count == num_iterations){

rapidjson::Document document_done;
document_done.SetObject();
rapidjson::Document::AllocatorType& allocatorl = document_done.GetAllocator();
document_done.AddMember("Done", true, allocatorl);
std::string pub_message_done = json_to_string(document_done);
rc = publish_message(pub_message_done, TOPIC_PIR, client);

}
else {
motion = digitalRead(PIN_PIR);
//Create JSON DOM document object for humidity
rapidjson::Document document_pir;
document_pir.SetObject();
rapidjson::Document::AllocatorType &allocator2 = document_pir.GetAllocator();
document_pir.AddMember("PIR", motion, allocator2);
try {
std::string pub_message_pir = json_to_string(document_pir);
rc = publish_message(pub_message_pir, TOPIC_PIR, client);
} catch (const std::exception &exc) {
// catch anything thrown within try block that derives from std::exception
std::cerr << exc.what();
}
}

count = count + 1;

// End of PIR loop. Calculate runtime

auto end_pir = high_resolution_clock::now();

std::chrono::duration<double> timer_pir = end_pir-start_pir;

std::ofstream outfile;

outfile.open("piResultsCppMonoLong.txt", std::ios_base::app); // append to the results text file

outfile << "PIR publisher runtime = " << timer_pir.count() << "\n";
std::cout << "PIR runtime = " << timer_pir.count() << "\n";
/] === Humidity temperature code ——-———- //

auto start_HT = high_resolution_clock::now(); // Starting timer

88

281 double temperature = -1;

282 double humidity = -1;

283 count = 0;

284 auto dhtStart = high_resolution_clock::now();

285 auto dhtEnd = high_resolution_clock: :now();

286 std::chrono::duration<double> dhtTimer;

287 while(count <= num_iterations) {

288 if(count == num_iterations){

289 rapidjson::Document document_done;

290 document_done.SetObject();

291 rapidjson::Document::AllocatorType& allocatorl = document_done.GetAllocator();

292 document_done.AddMember("Done", true, allocatorl);

293 std::string pub_message_done = json_to_string(document_done);

294 rc = publish_message(pub_message_done, TOPIC_T, client);

295 rc = publish_message(pub_message_done, TOPIC_H, client);

296 }

297 else {

298 dhtEnd = high_resolution_clock: :now();

299 dhtTimer = dhtEnd - dhtStart;

300 if((temperature == -1 & humidity == -1) || dhtTimer > (std::chrono::seconds(1))) { //need to get values from
301 int *readings = read_dhtl1l_dat();

302 dhtStart = high_resolution_clock::now();

303 int counter = 0;

304 while (readings[0] == -1 && counter < 5) {

305 readings = read_dht11_dat(); // Errors frequently occur when reading dht sensor. Keep reading until values are
306 counter = counter + 1;

307 }

308 if (readings[e] != -1) {

309 humidity = readings[@] + (readings[1] / 10);

310 temperature = readings[2] + (readings([3] / 10);

311 }

312 else{

313 humidity = 0;

314 temperature = 0;

315 }

316 }

317 //Create JSON DOM document object for humidity

318 rapidjson::Document document_humidity;

319 document_humidity.SetObject();

320 rapidjson::Document::AllocatorType &allocator2 = document_humidity.GetAllocator();
321 document_humidity.AddMember("Humidity", humidity, allocator2);

322 document_humidity.AddMember("Unit", "%", allocator2);

323

324 //Create JSON DOM document object for temperature

325 rapidjson::Document document_temperature;

326 document_temperature.SetObject();

327 rapidjson::Document::AllocatorType &allocator3 = document_temperature.GetAllocator();
328 document_temperature.AddMember("Temp", temperature, allocator3);

329 document_temperature.AddMember("Unit", "C", allocator3);

330 std::string pub_message_humidity = json_to_string(document_humidity);

331 rc = publish_message(pub_message_humidity, TOPIC_H, client);

332 std::string pub_message_temperature = json_to_string(document_temperature);
333 rc = publish_message(pub_message_temperature, TOPIC_T, client);

334 }

335 count = count + 1;

336 }

337

338 // End of loop. Calculate runtime

339 auto end_HT = high_resolution_clock: :now();

340 std::chrono::duration<double> timer_HT = end_HT-start_HT;

341 std::ofstream outfile2;

342 outfile2.open("piResultsCppMonoLong.txt", std::ios_base::app); // append to the results text file
343 outfile2 << "Humidity and temperature publisher runtime = " << timer_HT.count() << "\n";
344 std::cout << "Humidity and temperature runtime = " << timer_HT.count() << "\n";

345

346 while(session_status != "Done"){ // Continue listening for messages until end of session
347 //Do nothing

348 }

&9

347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365

//Do nothing

MQTTClient_disconnect(client, 10000);

MQTTClient_destroy(&client);

MQTTClient_disconnect(client_led, 10000);

MQTTClient_destroy(&client_led);
digitalWrite(pin_LED, 0);

auto end = high_resolution_clock: :now();
std::chrono::duration<double> timer = end-start;

std::ofstream outfile3;

outfile3.open("piResultsCppMonoLong.txt", std::ios_base::app); // append to the

outfile3 << "Overall runtime = " << timer.count() << "\n";

std::cout << "Overall runtime =

return rc;

<< timer.count() << "\n";

results text file

90

Appendix B — Results

B.1 — Power Results

Table B.1: Table with full maximum instantaneous power results for microservices

Go Power Consumption (Watt)
3,92
4,19
4,37
4,30
4,21
4,32
4,18
4,35
4,17
4,12

architecture

Python Power Consumption (Watt)
3,95
3,91
3,89
3,94
3,91
3,94
3,90
3,93
3,97
3,96

Cpp Power Consumption (Watt)

Bi95
3,91
3,89
3,94
3,91
3,94
3,90
3,93
3,97
3,96

Table B.2: Table with full maximum instantaneous power results for monolithic

Go Power Consumption (Watt)
3,68
3,58
3,68
3,60
3,66
3,71
3,71
3,62
3,65
3,61

architecture

Python Power Consumption (Watt)
3,19
3,18
3,19
3,21
3,21
3,24
3,19
3,19
3,20
3,20

Cpp Power Consumption (Watt)

3,42
3,35
3,48
3,38
e
3,45
3,42
3,42
3,64
3,37

Table B.3: Table with full total power results for microservices architecture

Go Power Consumption (Watt)
3,69
3,42
3,59
3,69
3,53
3,85
3,60
3,94
3,72
3,69

Python Power Consumption (Watt)
3,73
3,78
3,72
3,75
3,73
3,74
3,73
3,74
3,75
3,68

Cpp Power Consumption (Watt)
3,28
3,58
3,53
3,49
3,58
3,49
3,57
3,57
3,57
3,29

Table B.4: Table with full total power results for monolithic architecture

Go Power Consumption (Watt) Python Power Consumption (Watt) Cpp Power Consumption (Watt)

3,54 3,50 3,40
3,59 3,45 3,66
3,48 3,49 3,57
3,40 3,47 3,57
3,48 3,49 3,66
3,56 3,54 3,48
3,57 3,47 3,44
3,48 3,49 3,53
3,72 3,52 3,75
3,53 3,44 3,44

B.2 — Runtime Results

Table B.5: Table with full DHT runtime results for microservices architecture

Go Runtime Python Runtime Cpp Runtime

15,24 419,80 7,46
15,75 383,96 8,01
15,63 376,24 7,88
15,44 374,48 8,19
16,01 369,93 7,93
15,25 376,13 7,86
15,61 372,96 7,66
15,58 374,37 8,23
16,64 372,03 7,62
16,29 370,32 7,94 4

Table B.6: Table with full LED runtime results for microservices architecture

Go Runtime Python Runtime Cpp Runtime

113,27 134,75 98,06
114,44 115,40 87,76
102,26 109,02 83,71
125,65 138,85 85,79
115,17 106,05 86,95
109,76 102,81 86,65
122,57 112,80 83,91
102,36 108,61 82,49
88,95 113,40 87,24

82,22 103,84 77,70 R

Table B.7: Table with full PIR runtime results for microservices architecture

Table B.8: Table with full overall runtime results for microservices architecture —

5,94
7,76
6,96
7,80
8,02
7,74
7,39
8,02
8,68
8,05

178,96
192,46
179,37
179,21
177,61
179,69
177,42
180,53
177,38
178,57

3,38
3,24
3,61
3,47
4,19
3,72
3,26
3,41
3,77
3,84

concurrent
119,10 382,20 105,80
123,30 377,40 92,10
106,90 382,70 88,30
129,20 379,90 89,10
119,10 382,40 91,90
113,80 380,50 88,80
126,80 378,20 87,40
116,30 380,80 87,30
117,90 380,30 87,30
119,00 383,30 88,70

Table B.9: Table with full overall runtime results for microservices architecture —

cumulative

134,45
137,95
124,85
148,89
139,19
132,75
145,57
125,96
114,27
106,56

733,51
691,83
664,64
692,53
653,60
658,63
663,18
663,52
662,81
652,73

108,89
99,00
95,21
97,45
99,07
98,24
94,83
94,14
98,63
89,48

93

Table B.10: Table with full DHT runtime results for monolithic architecture

20,01 350,86 8,41
20,31 351,71 8,45
20,42 353,03 8,01
20,21 354,74 8,15
20,02 350,76 8,11
20,18 351,86 8,37
20,58 352,71 8,16
20,11 352,03 8,46
20,25 354,81 8,15
20,40 350,66 8,16

Table B.11: Table with full LED runtime results for monolithic architecture

120,10 117,47 80,40
97,45 107,88 77,86
113,67 107,52 84,86
108,05 116,40 83,45
121,06 107,03 80,87
107,44 118,15 80,36
118,87 108,88 81,41
119,03 108,59 80,12
107,05 117,24 80,08
99,51 107,39 84,00

~

Table B.12: Table with full PIR runtime results for monolithic architecture

6,21 154,45 4,36
6,30 153,13 4,44
6,31 152,89 SHEE
6,26 154,71 3,74
6,20 152,14 4,42
6,20 153,42 3,96
6,49 154,13 3,78
6,11 152,13 3,78
6,25 154,71 4,35

6,32 152,91 3,95

Table B.13: Table with full overall runtime results for monolithic architecture

121,02 623,46 81,56
98,43 629,71 78,88
115,31 614,10 85,75
108,99 628,81 84,13
121,86 610,34 82,54
108,08 623,46 81,18
120,09 628,62 82,14
121,03 616,11 80,83
107,14 627,99 81,07
99,49 612,12 84,91

B.3 — Memory Results

Table B.14: Table with full maximum RSS results for microservices architecture

98840 40221 21864
96712 40092 21776
98460 40212 21828
98796 39648 21828
98944 39960 21816
99232 40088 21776
97044 40236 21796
91980 39653 21892
97176 40240 21868
99188 39959 21796

Table B.15: Table with full maximum RSS results for monolithic architecture

88528 13588 15176
89544 13696 15136
25784 13668 15140
90176 13648 15148
88356 13656 15212
89952 13588 15184
89068 13699 15152
89848 13666 15160
89542 13646 15112

90177 13659 15084

Table B.16: Table with full total RSS results for microservices architecture

190944 584199 185172
190938 584184 185178
190941 584193 185173
190939 584192 185169
190940 584195 185170
190942 584195 185171
190940 584188 185170
190934 584190 185168
190940 584187 185169
190945 584184 185171

Table B.17: Table with full total RSS results for monolithic architecture

194658 1325931 180301
194655 1325930 180301
194661 1325934 180305
194663 1325929 180291
194666 1325916 180299
194660 1325929 180331
194657 1325933 180307
194653 1325931 180302
194661 1325931 180300
194662 1325932 180294

Table B.18: Table with full CPU results for microservices architecture

Go CPU (%) Python CPU (%) Cpp CPU (%)

99,67 64,00 93,67
100,67 64,33 95,33
98,67 65,67 94,33
98,00 65,67 94,00
97,67 65,33 90,33
97,00 65,33 94,00
100,67 65,33 97,00
96,33 65,67 93,00
95,67 66,33 91,67
96,67 65,33 97,00 p

96

Table B.19: Table with full CPU results for monolithic architecture

Go CPU (%) Python CPU (%) Cpp CPU (%)

107,00 83,00 99,00
107,00 82,00 98,00
144,00 84,00 99,00
107,00 83,00 99,00
106,00 84,00 98,00
106,00 84,00 99,00
108,00 82,00 99,00
107,00 83,00 99,00
106,00 82,00 98,00

106,00 84,00 99,00

