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Abstract 29 

Seagrasses play a vital role in structuring coastal marine ecosystems, but their distributional range 30 

and genetic diversity have declined rapidly over the past decades. In order to improve 31 

conservation of seagrass species, it is important to predict how climate change may impact their 32 

ranges. Such predictions are typically made with correlative species distribution models (SDMs), 33 

which can estimate a species’ potential distribution under present and future climatic scenarios 34 

given species’ presence data and climatic predictor variables. However, these models are typically 35 

constructed with species-level data, and thus ignore intraspecific genetic variability, which can 36 

give rise to populations with adaptations to heterogeneous climatic conditions. Here, we explore 37 

the link between intraspecific adaptation and niche differentiation in Thalassia hemprichii, a 38 

seagrass broadly distributed in the tropical Indo-Pacific Ocean and a crucial provider of habitat for 39 

numerous marine species. By retrieving and re-analyzing microsatellite data published previously, 40 

we delimited two distinct phylogeographical lineages within the nominal species and found an 41 

intermediate level of differentiation in their multidimensional environmental niches, suggesting 42 

the possibility for local adaptation. We then compared projections of the species’ habitat 43 

suitability under climate change scenarios using species-level and lineage-level SDMs. In the 44 

Central Tropical Indo-Pacific region, models for both levels predicted considerable range 45 

contraction in the future, but the lineage-level models predicted more severe habitat loss. 46 

Importantly, the two modelling approaches predicted opposite patterns of habitat change in the 47 

Western Tropical Indo-Pacific region. Our results highlight the necessity of conserving distinct 48 

populations and genetic pools to avoid regional extinction due to climate change and have 49 

important implications for guiding future management of seagrasses. 50 

 51 

Keywords: climate change scenario, genetic lineage, niche conservation, range shift, species 52 

distribution model, Thalassia hemprichii  53 
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Introduction 54 

Marine ecosystems worldwide are experiencing rapid shifts in environmental conditions due to 55 

climate change, the most evident of which is a steady increase in sea surface temperature (SST) 56 

(Cheung et al. 2013). These changes can affect marine organisms in different ways, such as by 57 

altering the structure of trophic webs (e.g., Hyndes et al. 2016), biasing sex ratios in species with 58 

temperature-dependent sex determination (e.g., Miyoshi et al. 2020), and redefining the 59 

geographical ranges of species (e.g., Pinsky et al. 2020). In order to guide natural resource 60 

management under this changing marine landscape, it is crucial to make future predictions of 61 

suitable habitat for target species as accurately as possible. 62 

Species distribution models (SDMs), which estimate relationships between species’ presence 63 

data and environmental predictors, have been used extensively to predict potential changes in 64 

species’ distributions under climate change scenarios (Guisan et al. 2017). The majority of SDMs 65 

are constructed at the species-level or even higher taxonomic levels, and this is particularly true 66 

for applications to marine species (Robinson et al. 2011; Robinson et al. 2017; Chefaoui et al. 2018; 67 

Jayathilake & Costello 2018; Melo-Merino et al. 2020). One fundamental and critical assumption 68 

underlying species-level SDMs is niche conservatism, which assumes that all populations of a 69 

species have analogous environmental requirements and respond in a similar way to a changing 70 

environment (Guisan et al. 2017; Smith et al. 2019). But this assumption ignores intraspecific 71 

variation, in particular local adaptation and phenotypic plasticity (Pazzaglia et al. 2021), which are 72 

frequently observed especially in broadly distributed taxa (e.g., Marín-Guirao et al. 2016; Duarte 73 

et al. 2018; King et al. 2018; Benito Garzón et al. 2019; Peterson et al. 2019; Zhang et al. 2020b). 74 

SDMs constructed with data for lineages below the species level can account for possible local 75 

adaptations and therefore can provide more reliable niche estimations and habitat suitability 76 

projections for species with high intraspecific variation. For instance, a species-level SDM for the 77 

threatened Japanese crayfish Cambaroides japonicus (De Haan 1841) predicted that this species 78 
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might lose a large proportion of its suitable habitat in the future, whereas lineage-level SDMs for 79 

the same species predicted a weaker impact of climate change overall (Zhang et al. 2021). The 80 

importance of taxonomic units (i.e., above and below the species level) in distribution modelling 81 

has recently been recognized (Benito Garzón et al. 2019; Peterson et al. 2019; Smith et al. 2019; 82 

Collart et al. 2021), which has resulted in more SDM applications for terrestrial and freshwater 83 

species that consider intra-specific variation (e.g., Ikeda et al. 2017; Razgour et al. 2019; Zhang et 84 

al. 2021). Conversely, relatively few SDM studies have investigated this issue in the marine realm 85 

(but see Assis et al. 2018a; Cacciapaglia & van Woesik 2018; Lowen et al. 2019).  86 

Seagrasses are one of the most critical habitat engineers of tropical coastal marine 87 

environments. They not only harbor rich marine biodiversity in seagrass meadows, but also 88 

provide a number of ecosystem services, such as primary productivity, habitat restoration, 89 

resources for marine life, and human recreation (Unsworth et al. 2018). Maintaining these services 90 

is key to achieving conservation and economic goals under global change. Yet, seagrass ecosystems 91 

are declining worldwide at an annual rate of 7% due to multiple natural and human-mediated 92 

disturbances (Orth et al. 2006; Waycott et al. 2009). It is noteworthy that climate change has 93 

received considerable attention as a major factor for the increasing loss of seagrass meadows (Jordà 94 

et al. 2012; Thomson et al. 2015; Repolho et al. 2017; Duarte et al. 2018; Smale et al. 2019). This is 95 

particularly true for the tropical Indo-Pacific bioregion, which supports the most seagrass diversity 96 

and a high diversity of associated flora and fauna (Short et al. 2007) but has suffered from striking 97 

degradation of seagrass coverage (Coles et al. 2011; Rasheed & Unsworth 2011; Grech et al. 2012; 98 

Chefaoui et al. 2018; Olsen et al. 2018; Brodie et al. 2020). Given the global ecological roles of 99 

seagrasses, it is imperative to make accurate forecasts of their distribution patterns in the face of 100 

climate change, but seagrasses are “among the least-studied groups” (Melo-Merino et al. 2020) 101 

with respect to range shift projections. The majority (if not all) of SDM studies on seagrasses have 102 

been at the species level and therefore did not incorporate potential intraspecific variation. 103 
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The seagrass Thalassia hemprichii (Ehrenberg) Ascherson (Hydrocharitaceae) is a perennial 104 

climax species that is widely distributed in the tropical Indo-Pacific bioregion (Green & Short 105 

2003), extending from Australia, the peripheral limit of its eastern range (Hernawan et al. 2017), 106 

to East Africa in the West Indian Ocean (Jahnke et al. 2019a). It reproduces sexually via seeds and 107 

asexually via vegetative growth of rhizomes. Uprooted adult plants can potentially float for 108 

months and hence colonize distant areas (Wu et al. 2016). In addition, this seagrass forms buoyant 109 

seeds that remain afloat for long enough to disperse a few hundreds of kilometers (Lacap et al. 110 

2002). A recent survey revealed that seedlings can also disperse for over a month due to the 111 

accumulation of oxygen in the body tissue (Wu et al. 2016). Thus, T. hemprichii has excellent 112 

long-distance dispersal potential that may play a significant role in shaping population genetic 113 

structure (Lowe & Allendorf 2010). This species may be particularly vulnerable to climate change 114 

because it exhibits spatial separation of the sexes (dioecious), reinforced by physiological and 115 

morphological differentiation of each sex to variable microhabitats (Hultine et al. 2016). Recent 116 

genetic studies of T. hemprichii detected genetic lineage divisions in the East and West Indo-117 

Pacific Ocean (Hernawan et al. 2017; Jahnke et al. 2019a), but we still do not have a clear 118 

understanding of the distribution of lineages across the entire tropical Indo-Pacific region, or 119 

whether these diverged lineages are expected to respond differentially to climate change. 120 

In the present study, we used T. hemprichii as a model to: (i) examine divergence of genetic 121 

lineages in the tropical Indo-Pacific Ocean; (ii) test if phylogeographical lineages exist, and if so, 122 

quantify niche differentiation between distinct lineages; (iii) predict climate change impacts on 123 

the species’ range with species-level and lineage-level SDMs. By incorporating potential 124 

intraspecific variation, our SDMs can provide more realistic predictions on how climate change 125 

will shift future distributions of a habitat-forming seagrass, thus generating valuable knowledge 126 

for guiding the long-term management of this species in the tropical Indo-Pacific coast. 127 

 128 
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Materials and methods 129 

Datasets and intraspecific genetic clustering 130 

We retrieved and compiled molecular datasets of two recently published regional studies of T. 131 

hemprichii, i.e., 17 populations in the East Indo-Pacific (Hernawan et al. 2017) and 11 populations 132 

in the Western Indian Ocean (Jahnke et al. 2019a). We used twelve microsatellites (i.e., Thh3, 133 

Thh15, Thh34, Thh41, TH07, TH34, TH37, TH43, TH52, TH66, TH73) for population structuring 134 

and lineage sorting of 1021 individuals from 28 populations across the tropical Indo-Pacific (Fig. 135 

1a). We then estimated pairwise genetic differences among populations using the Cavalli-Sforza 136 

and Edwards chord distance and represented them in a network using the R package IGRAPH 137 

(Csardi & Nepusz 2006) with the addition of a custom script by Johansson et al. (2015). To visually 138 

inspect the relationships within and between the main genetic clusters inferred by STRUCTURE 139 

(Pritchard et al. 2000), we pruned the full network by sequentially removing edges (i.e., network 140 

pairwise links among sampling sites) of decreasing genetic distance until the point at which the 141 

main groups of tightly connected nodes still remained connected (in order to avoid the split of any 142 

large network cluster from the main network). We estimated the classification of sampling sites 143 

within network communities at each step of the pruning process with the “fastgreedy” community 144 

detection algorithm implemented in IGRAPH (Clauset et al. 2004, Blondel et al. 2008). Network 145 

analysis (Fig. 1b), Bayesian-based STRUCTURE (Fig. 1c), and molecular variation (AMOVA) 146 

(Supporting Information Table S1) revealed strong overall genetic differentiation among two 147 

distinct lineages occupying the Tropical Indo-Pacific. Based on the landscape genetic analysis of 148 

Cushman et al. (2014) and the definitions of global marine ecoregions (Spalding et al. 2007), we 149 

classified these two lineages as distinct genotypes encompassed within two biogeographic regions: 150 

the Western Tropical Indo-Pacific (WTIP) and the Central Tropical Indo-Pacific (CTIP). We then 151 

used the two lineages in subsequent ecological niche modelling. 152 

 153 
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Distribution data and marine predictors 154 

We collected a total of 62,465 presence records of T. hemprichii from a recently assembled and 155 

cleaned dataset of global marine forests (Assis et al. 2020) and published literature (see Data 156 

availability). In SDM studies, it is critical to correct for sampling bias and remove clustered 157 

records, which may over-represent environmental conditions in better-surveyed regions (Kramer-158 

Schadt et al. 2013). Therefore, presence records were filtered by: i) removing duplicated records at 159 

the resolution of our environmental predictors (i.e., keeping only one record per 5 arcmin grid 160 

cell); ii) removing records on land or with distance to land > 370 km (following other SDM studies 161 

for coastal species; e.g., Zhang et al. 2020a), and iii) performing spatial thinning using a distance of 162 

20 km using the R package spThin (Aiello-Lammens et al. 2015). This distance is a reasonable 163 

approximation of the dispersal potential for this plant traveling via floating propagules (Lacap et al. 164 

2002), and it can also reduce potential effects of sampling bias while retaining sufficient numbers 165 

of presence records for our analyses. As significant clustering was present in the data (particularly 166 

around Australia), these procedures removed a large proportion (up to 99%) of the presence data. 167 

Ultimately, we kept 519 records for the species-level model (hereafter “species model”, records 168 

from the entire region), 479 records for the CTIP lineage-level model (hereafter “CTIP model”, 169 

records within CTIP region only), and 26 records for the WTIP lineage-level model (hereafter 170 

“WTIP model”, records within WTIP region only) (Fig. 1a). 171 

It is important to properly select the extent of the study area used to sample background 172 

records when constructing presence-background SDMs for target species (Barve et al. 2011; Vale 173 

et al. 2014). For coastal marine species, it is common practice to develop SDMs within the 174 

Exclusive Economic Zone (i.e., within 370 km from the coast) (e.g., Lins et al. 2018; Stephenson et 175 

al. 2020; Zhang et al. 2020a). Besides, given the distributional range and records of T. hemprichii 176 

from online repositories and literature (Fig. 1a), we restricted our study to the areas within 370 km 177 

of land between 25°E and 180°E, and between 50°S and 40°N. Please note that our study extent 178 
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includes southern Australia and New Zealand, where this species does not naturally occur. It is 179 

always challenging to estimate an appropriate study extent for a species (Barve et al. 2011), but the 180 

extent we selected should represent the plausible accessible areas to T. hemprichii over 181 

evolutionary time. We subsetted this main study extent to create separate study extents for the 182 

WTIP and CTIP lineages (Fig. 1a) based on our molecular results (see details in the Lineage 183 

genetic diversity in the Results section). 184 

A number of marine predictors have been demonstrated to influence the geographical 185 

distribution of marine species (Bosch et al. 2018). Based on previous studies (including seagrasses; 186 

e.g., Jayathilake & Costello 2018; Zhang et al. 2020a), we initially considered twenty such 187 

predictors for modeling, including two geographical predictors (water depth and distance to land) 188 

from the Global Marine Environment Datasets (http://gmed.auckland.ac.nz; Basher et al. 2018) 189 

and eighteen environmental predictors (including annual mean, maximum, minimum, range, 190 

average of the minimum records per year, and average of the maximum records per year) for SST, 191 

sea surface salinity, and sea surface current velocity from the Bio-ORACLE database v2.1 192 

(https://www.bio-oracle.org; Assis et al. 2018b). In SDM studies, highly collinear predictors can 193 

lead to spurious interpretations of variable importance and unexpected predictions if correlations 194 

change in different projection scenarios (Dormann et al. 2013). Hence, we checked collinearity by 195 

calculating the pairwise Pearson’s correlation coefficients (r) among the twenty predictors 196 

(Supporting Information Fig. S1) and selected one among highly correlated predictors (|r| > 0.7) 197 

(Dormann et al. 2013) based on present-day and future data availability, biological importance, 198 

and previous findings on important variables for estimating seagrass distribution (Jayathilake & 199 

Costello 2018). In the end, we retained the two geographical predictors and six environmental 200 

predictors: annual mean current velocity, minimum current velocity, annual mean sea surface 201 

salinity, annual range of sea surface salinity, annual mean SST, and annual range of SST.  202 
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To project future habitat suitability of T. hemprichii, we considered four representative 203 

concentration pathway (RCP) scenarios (i.e., RCP 2.6, RCP 4.5, RCP 6.0, and RCP 8.5), and two 204 

time periods (i.e., 2050s: the average for 2040–2050s, and 2100s: the average for 2090–2100). We 205 

obtained the corresponding projections of future marine environmental layers from the Bio-206 

ORACLE database v2.1. We assumed that the two geographical predictors would remain 207 

unchanged for future projections (Zhang et al. 2020a). 208 

 209 

Niche differentiation estimation 210 

To estimate whether the two lineages of T. hemprichii occupy different niche spaces, we 211 

characterized their realized niches using Hutchinsonian n-dimensional hypervolumes 212 

(Hutchinson 1957) sensu Blonder et al. (2018). We quantified the realized niches of the WTIP and 213 

CTIP lineages using the eight selected marine predictor variables (see previous section). In short, 214 

we extracted and standardized (i.e., zero means and unit variance) marine predictor values 215 

associated with the presence records for the two lineages. We then determined the volumes and 216 

shapes of the realized niches with the R package hypervolume using the Gaussian method 217 

(Blonder 2019). We measured the extent of niche differentiation between the two lineages with 218 

the kernel.beta function (Mammola & Cardoso 2020) in the R package BAT (Cardoso et al. 2015, 219 

2020). Following Carvalho & Cardoso (2020), niche differentiation between hypervolumes was 220 

partitioned into the following two processes: niche shift (replacement of space between 221 

hypervolumes) and niche contraction/expansion (net difference between hypervolumes). The 222 

niche differentiation index ranges from 0 (niches overlap entirely) to 1 (niches are fully dissimilar) 223 

(Carvalho & Cardoso 2020; Mammola & Cardoso 2020). In addition, to ascertain whether the 224 

realized niches of the two lineages were still different after considering the environmental space 225 

available, we conducted a niche similarity test (Broennimann et al. 2012) using the R package 226 
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ecospat (Di Cola et al. 2017). This test compares the empirical realized environmental niche of 227 

CTIP with random niches permuted for WTIP over its available environmental space.  228 

 229 

Species distribution modelling 230 

We built SDMs using Maxent 3.4.4, a presence-background machine learning algorithm with two 231 

main complexity tuning parameters: regularization multiplier, which penalizes complexity by 232 

removing predictors with low predictive ability, and feature class, which allows for increasing 233 

complexity of the model response (Phillips et al. 2017). For each model (species model, WTIP 234 

model, and CTIP model), we randomly generated 10,000 background points within the 235 

corresponding study region. As Maxent’s default settings for the main tuning parameters can result 236 

in overfit models (Radosavljevic & Anderson 2014), we used a version of the R package ENMeval 237 

under expansion (1.9.0; https://github.com/jamiemkass/ENMeval) to tune our Maxent models over 238 

ranges of each parameter and chose models with optimal complexity based on performance 239 

metrics calculated on withheld data (Muscarella et al. 2014). In brief, we considered a total of 32 240 

candidate models with different combinations of regularization multipliers (RM; ranging from 0.5 241 

to 4.0, at 0.5 interval), which penalize complexity more with higher values, and feature classes 242 

(linear, quadratic, hinge), which allow responses with differing flexibility. Rather than using 243 

conventional random cross-validation to judge model performance, we used a spatial block cross-244 

validation approach, which typically results in evaluations that better reflect the model’s ability to 245 

transfer to non-analog conditions (Roberts et al. 2017; Valavi et al. 2019). Briefly, each study 246 

region was divided into four spatial blocks containing an equal number of presence records, three 247 

blocks were used for model training and the remaining block for validation, then this procedure 248 

was repeated until every block was used for model validation. As with previous studies (e.g., 249 

Radosavljevic & Anderson 2014; Kass et al. 2020), the optimal model was selected by sequentially 250 

considering a 10% omission rate (i.e., the percentage of validation presences with habitat 251 
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suitability predictions lower than that of the 10th quantile of training predictions), followed by 252 

the area under the receiver operating characteristics curve (AUC) calculated on the validation data 253 

(i.e., the model’s ability to discriminate between presence and background records) to break ties. 254 

We acknowledge that AUC is a poor measure for the absolute performance of presence-255 

background models (e.g., Jiménez‐Valverde 2012), but nonetheless this metric can be used to make 256 

relative comparisons of candidate models fitted with the same data (Lobo et al. 2008).  257 

Predictive performances of the three best-performing Maxent models were further assessed 258 

using the continuous Boyce index, a reliable evaluation measure of presence-only algorithms 259 

(Hirzel et al. 2006). The continuous Boyce index ranges from –1 to 1, where positive values 260 

suggest that model predictions match well with the presence data, and negative values suggest a 261 

poor match (Hirzel et al. 2006). Variable importance for each model was determined using 262 

permutation importance calculated by Maxent. For this method, presence and background data 263 

values for each predictor variable in turn were randomly permuted and training AUC 264 

recalculated—a large drop in AUC indicates higher importance (Phillips 2017). In addition, we 265 

estimated the marginal response curves of important predictors (i.e., curves representing habitat 266 

suitability along a range of the values of one predictor variable while keeping the other predictors 267 

constant). We converted continuous habitat suitability predictions for T. hemprichii to binary 268 

values using the same 10% omission thresholds that we used for model evaluation (Radosavljevic 269 

& Anderson 2014). We then transformed the binary habitat suitability projections to the Lambert 270 

Cylindrical Equal Area projection at a resolution of 10 km and calculated areas of potential 271 

distribution (Zhang et al. 2020a).  272 

It is of great importance to consider species dispersal ability into SDMs when estimating 273 

climate change impacts (Araújo et al. 2006; Guisan et al. 2017). Given that species move across 274 

trans-regional across barriers in marine environments (Robinson et al. 2011; Pearman et al. 2020), 275 

and the relatively high dispersal ability of T. hemprichii (Lacap et al. 2002), we estimated range 276 
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size change under an unlimited dispersal scenario, which assumes that species have unrestricted 277 

dispersal ability and can disperse to any suitable area (Araújo et al. 2006; Zhang et al. 2020c). 278 

Range size change was calculated as follows: 279 

range size change = 
𝑓𝑢𝑡𝑢𝑟𝑒𝑠𝑢𝑖𝑡𝑎𝑏𝑙𝑒𝑎𝑟𝑒𝑎−𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠𝑢𝑖𝑡𝑎𝑏𝑙𝑒𝑎𝑟𝑒𝑎

𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠𝑢𝑖𝑡𝑎𝑏𝑙𝑒𝑎𝑟𝑒𝑎
×100%,  280 

where negative and positive values represent range contraction and expansion, respectively. 281 

We used the optimal species- and lineage-level models to make projections of future potential 282 

distribution based on the different RCP scenarios for the two future time periods. Making 283 

projections using SDMs into novel environmental space (i.e., outside the range of training data) 284 

results in some degree of extrapolations, which should be quantified to determine levels of 285 

uncertainty (Elith et al. 2010). Therefore, we measured the similarity between present-day and 286 

future environmental conditions using multivariate environmental similarity surfaces (MESS) 287 

(Elith et al. 2010). In practice, we calculated the MESS with the R package rmaxent (Baumgartner 288 

& Wilson 2021) for each model using the top three most important predictors via permutation 289 

importance: positive MESS values indicate conditions more similar to the training data, while 290 

negative values indicate conditions more different (i.e., novel). 291 

 292 

Results 293 

Lineage genetic diversity 294 

We found significant genetic divergence between the populations of T. hemprichii in the Western 295 

Tropical Indo-Pacific and Central Tropical Indo-Pacific regions. The genetic data for the two 296 

lineages that we used for this analysis originated from disparate sources, and we found some minor 297 

discrepancies (see Data availability) between the two datasets after carefully inspecting the 298 

calibrated fragment lengths of the microsatellites (Hernawan et al. 2017; Jahnke et al. 2019a). 299 

Regardless, even after deleting a few microsatellites (e.g., Thh41, TH07 and TH37), two genetic 300 

lineages in T. hemprichii remained significantly diverged (i.e., CTIP and WTIP) across the 301 
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Tropical Indo-Pacific (Fig. 1b, 1c). Genetic variation among lineages accounted for 43.42% of the 302 

total genetic variation (ФCT = 0.43, p < 0.0001; Supporting Information Table S1). Very limited 303 

genetic admixture was observed between the CTIP and WTIP lineages. The CTIP lineage 304 

harbored strikingly rich genetic diversity, with three times more alleles and allelic richness, and 305 

eight times fewer private alleles than the WTIP lineage (Supporting Information Table S2). 306 

 307 

Niche differentiation between hypervolumes 308 

The size of the realized niche of the CTIP lineage was one order of magnitude greater than that of 309 

the WTIP lineage (CTIP lineage: 17295.6; WTIP lineage: 2273.2) (Fig. 2). Niche differentiation 310 

between the two hypervolumes (0.97) was mainly due to variation in niche size (0.79), whereas 311 

niche shift contributed only marginally (0.18). Difference in realized niches was easily 312 

distinguished via water depth and distance to land, with the WTIP lineage selecting a narrow 313 

range of water depth and distance to land (Fig. 2). The two lineages also exhibited niche 314 

differentiation with respect to annual mean sea surface salinity. In addition, the CTIP lineage 315 

niche was broader with respect to annual mean SST and annual range SST, whereas that of the 316 

WTIP lineage was broader for annual mean current velocity, minimum current velocity, and 317 

annual range of sea surface salinity (Fig. 2). Niche differentiation between the two hypervolumes 318 

was also high (0.86) when we considered only marine environmental predictors (i.e., excluding 319 

water depth and distance to land) (Supporting Information Fig. S2). Regarding the niche similarity 320 

analysis, after 1000 iterations the resulting p-values were above 0.05 for both overlap metrics 321 

available in the ecospat package (0.10 for Schoener’s D and 0.07 for Warren’s I; Supporting 322 

Information Fig. S3). This demonstrates that the realized environmental niche occupied by WTIP 323 

is less similar to the niche occupied by CTIP when compared to random permutations over the full 324 

environmental space of WTIP. 325 

 326 
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Model performance 327 

The tuning parameter settings with optimal complexity for the species-level and lineage-level 328 

models ranged from relatively simple to complex. The optimal species-level model was the most 329 

complex (hinge features and 0.5 RM), while those for the lineage-level models were simpler 330 

(CTIP: linear/quadratic/hinge features and 2.5 RM; WTIP: linear/quadratic features and 0.5 RM) 331 

(Table 1). The average 10% omission rate was considerably lower for the WTIP lineage-level 332 

model (3.57%) than for the other models (CTIP: 26.69%; species: 17.93%, Table 1) — as this was 333 

lower than the expectation of average 10% omission for the metric, it indicates that the optimal 334 

settings results in models that may over-predict to some extent for WTIP. Although omission rate 335 

was used primarily for model selection, the average validation AUC scores used to break ties were 336 

very high for all optimal models (Table 1); we think this is due to the fact that a majority of 337 

presence data are in near-shore waters (Fig. 1a), which likely inflated the model’s ability to 338 

discriminate between these presences and background records in deeper water. In addition, all 339 

three optimal models had relatively high continuous Boyce index scores (over 0.90; Table 1), 340 

indicating that final model predictions matched the presence data well. The eight predictors had 341 

different levels of importance in the three models, but water depth and distance to land 342 

consistently played important roles (Table 2). In particular, these two predictors accounted for 343 

more than 95% of permutation importance in the WTIP model (Table 2). For the CTIP and species 344 

models, annual mean SST also had a high permutation importance (~29% and ~24%, respectively) 345 

(Table 2). Response curves for water depth and distance to land suggest that shallow coastal waters 346 

are more suitable for T. hemprichii (Supporting Information Fig. S4, Table S3). 347 

 348 

Present-day habitat suitability projections 349 

Under present-day conditions, species and lineage models projected similar but not identical 350 

habitat suitability patterns, with a large part of the East African coast and the Pacific region as 351 

suitable habitat for this species (Fig. 3). Compared with the species model, the CTIP model 352 
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predicted more southern distribution in Australia (Fig. 3c, 3d). In particular, the CTIP model 353 

predicted suitable conditions in the Spencer Gulf, Southern Australia, where the species does not 354 

naturally occur (Fig. 3a, 3c). The species model did not capture this pattern (Fig. 3b, 3d). 355 

Moreover, the WTIP model identified more suitable habitat in the Red Sea than the species-level 356 

model (Fig. 3c, 3d). Overall, species- and lineage-level models predicted comparable suitable areas 357 

for T. hemprichii in the WTIP region (species model: 302,800 square km; WTIP model: 315,000 358 

square km), while the species model predicted broader suitable area for the CTIP region (species 359 

model: 1,873,800 square km; CTIP model: 1,757,900 square km). 360 

 361 

Climate change impacts on habitat suitability 362 

Species- and lineage-level models resulted in different future habitat suitability projections in the 363 

CTIP region, with the lineage-level model resulting in predictions of more loss of suitable areas 364 

(Table 3, Fig. 4). Both species- and lineage-level models predict considerable future loss of suitable 365 

area in the CTIP region, especially on the Sunda Shelf (i.e., Indonesia and Malaysia) (Table 3, Fig. 366 

4). Compared with the species model, the CTIP model projected more extensive range loss under 367 

all climatic scenarios (Table 3). Interestingly, both models predicted that the species will shift 368 

slightly southwards in Australia.  369 

Species-level and lineage-level models predicted different impacts of climate change on 370 

habitat suitability for T. hemprichii in the WTIP region (Table 3). The WTIP model predicted 371 

range expansion (except under the RCP 2.6 scenario for the 2050s), whereas the species model 372 

consistently indicated range contraction (Table 3). Overall, both species- and lineage-level models 373 

predicted that future climate change marginally affects habitat suitability in the WTIP region and 374 

that changes in range size were mostly < 15%, with the exception of a higher value (~24%) for the 375 

species model in the 2100s for the RCP 8.5 scenario (Table 3). The WTIP model predicted that 376 

habitat suitability of T. hemprichii in the WTIP region will remain stable in the future, while the 377 
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species model predicted range contraction in the Red Sea and expansion in southern Madagascar 378 

and South Africa (Fig. 4). 379 

Both species and CTIP models consistently showed that MESS values in the Sunda Shelf were 380 

slightly negative, which demonstrates small differences in climatic conditions between the 381 

present-day and future scenarios for this region (Supporting Information Fig. S5). For the WTIP 382 

region, the lineage and species model showed high environmental similarity except slight 383 

environmental dissimilarity in the Red Sea between present-day and future scenarios (Supporting 384 

Information Fig. S5). These results indicate a low degree of extrapolation in our model predictions. 385 

 386 

Discussion 387 

This study identified two diverged genetic lineages (WTIP and CTIP) in the seagrass T. hemprichii 388 

across the tropical Indo-Pacific. The observed niche differentiation between the two lineages 389 

suggests a violation of the niche conservatism assumption for species-level SDMs, and our lineage-390 

level predictions of present and future range importantly avoid this assumption. Despite 391 

differences between the habitat suitability predictions of the lineage-level and species-level SDMs, 392 

they consistently predict that the CTIP lineage is at greater risk of range contraction in the future. 393 

Although genetic or genomic data that can be used to construct lineage-level SDMs are not always 394 

available, our study emphasizes how incorporating information about phylogeographical structure 395 

when modelling the impacts of climate change provides more realistic predictions to better 396 

understand future range shifts (Smith et al. 2019; Zhang et al. 2021).  397 

 398 

Critical marine predictor variables for seagrasses 399 

Both the lineage-level and species-level SDMs showed that distance to land, water depth, and 400 

annual mean SST represent the most essential factors in explaining the distributional patterns of T. 401 

hemprichii. The importance of these three predictors has been emphasized in previous studies of 402 
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Thalassia species (e.g., Duarte 1991; Lapointe et al. 1994; Fourqurean & Zieman 2002; Zhang et al. 403 

2014) and other seagrasses (e.g., Baumstark et al. 2016; Jayathilake & Costello 2018). Further, 404 

water depth and distance to land play significant roles in other efforts to map seagrass using 405 

WorldView-2 satellite imagery (Baumstark et al. 2016). Water depth correlates with the amount 406 

of sunlight irradiance that reaches the seagrass, and with the rate of respiration of rhizomes and 407 

shoot density, thereby constraining the extension of seagrass meadows and primary productivity 408 

to shallower areas (Duarte 1991). SST affects the photosynthesis, growth, and mortality of seagrass, 409 

as demonstrated by field measurements and experimental manipulations of T. hemprichii (Collier 410 

& Waycott 2014; Pedersen et al. 2016; Rasmusson et al. 2020). In general, the total nitrogen and 411 

phosphorus concentrations of the water column decrease with increasing distance from land, 412 

despite a gradient of decreasing P limitation but increasing N limitation (Lapointe et al. 1994). 413 

Nutrient inputs thus interact with changing temperatures to produce impacts on seagrass shoot 414 

densities, areal production rates, and biomass (Lapointe et al. 1994; Yamakita et al. 2011). The 415 

predominant roles of the two geographical predictors and the negligible roles of marine 416 

environmental predictors in the WTIP lineage-level model (Table 2) may partially explain the 417 

marginal impacts of climate change predicted for this region.  418 

Due to data availability, we used marine predictors at a spatial resolution of 5 arcmin (about 419 

9.2 km at the equator). Within each grid cell, predictors such as temperature and salinity might be 420 

homogeneous, but water depth can vary considerably. Seagrasses mainly inhabit shallow waters 421 

(Duarte 1991) and it would be reasonable to define study extent using water depth. We found that 422 

when limiting the study region using water depth, our main conclusions regarding the change in 423 

range size  still held, but the predictive ability of the SDMs decreased (Supporting Information 424 

Tables S4-S5). Given the limitations of the water depth layer and the decreased model 425 

performance upon its inclusion, we decided to delineate the study region using distance to land. 426 
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To increase the reliability of marine SDMs, future efforts should be made to develop more high-427 

resolution marine predictors. 428 

 429 

Incorporating intraspecific variation into SDMs for seagrasses 430 

Seagrasses provide vital ecological services in marine ecosystems and SDMs have been applied to 431 

this taxonomic group for multiple purposes (see reviews by Robinson et al. 2011; Robinson et al. 432 

2017; Melo-Merino et al. 2020). Nonetheless, all previously reported SDMs on seagrasses were 433 

built at the species level and thus have not considered possible intraspecific variation. For 434 

instance, Chefaoui et al. (2018) developed species-level SDMs for two seagrasses (Posidonia 435 

oceanica and Cymodocea nodosa) in the Mediterranean Sea and predicted that the two species are 436 

likely to experience dramatic habitat loss in the future. We fully agree that species-level SDMs are 437 

by definition informative, but given the high prevalence of intraspecific variation in marine 438 

macrophytes (e.g., King et al. 2018), and the significance of intraspecific variation in SDMs (Benito 439 

Garzón et al. 2019; Smith et al. 2019; Zhang et al. 2021; Collart et al. 2021), incorporating 440 

intraspecific genetic variation into forecasts of seagrass distribution should result in more realistic 441 

scenarios of the potential consequences of climate change, providing that adaptive intraspecific 442 

variation can be distinguished from clonal variation for seagrass populations under changing 443 

conditions. 444 

The importance of taxonomic resolution in SDMs has been addressed in several terrestrial 445 

and freshwater species, but much more sparsely for marine species (see review by Smith et al. 446 

2019; Collart et al. 2021). Species-level SDMs that disregard existing intraspecific variation can 447 

either over- or under-estimate climate change impact on distributional change. For instance, 448 

species-level models for the lodgepole pine Pinus contorta consistently predicted more extreme 449 

habitat loss than subspecies-level models (Oney et al. 2013). As another example, although a 450 

species-level model for the reef-building coral Porites lobata predicted over 5% habitat expansion, 451 
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when modelling this species as five genetically isolated subpopulations the prediction was ca. 50% 452 

habitat loss (Cacciapaglia & van Woesik 2018). In the present study, the species model consistently 453 

predicted low impacts of climate change in the CTIP region in comparison to the lineage model 454 

(e.g., the habitat loss vs. stability in the Sunda Shelf in Fig. 4c vs. Fig. 4d). As for the WTIP region, 455 

we found the opposite pattern. Here, the lineage model predicted stable future habitats in the 456 

southern Red Sea (Fig. 4c), whereas the species model predicted habitat loss, including to the 457 

north of Mauritius (Fig. 4d). In addition, both species and lineage models predict a southward 458 

range expansion in the southern CTIP, but only the species model clearly predicts this in the 459 

WTIP. Southern expansion is likely correlated with future temperature increases in areas which 460 

are now too cold (Supporting Information Fig. S6). We should note that MESS values in the 461 

equatorial regions were slightly negative, which indicates novel future environmental conditions. 462 

This is due in part to higher future SST values for this region than those used by the present-day 463 

SDM (Supporting Information Fig. S7)—thus, SDM projections in this region should be associated 464 

with more uncertainty.  465 

That the difference between the future projections for the two lineages could be attributed to 466 

the large difference in sample size (479 records for CTIP and 26 records for WTIP) is unlikely, 467 

because. i) compared with other algorithms, Maxent is less sensitive to sample size and has better 468 

performance for small sample sizes (e.g., Hernandez et al. 2006; Wisz et al. 2008); ii) models for 469 

both lineages had similarly high predictive abilities when using cross-validation with spatial 470 

partitioning, which results in lower performance metrics for overfit models than conventional 471 

random partitioning (Roberts et al. 2017). Further, as the range of WTIP is much larger than that 472 

of CTIP, it is reasonable that less occurrence data would be necessary to properly characterize the 473 

occupied environments for CTIP. However, SDMs were developed in this study without 474 

considering physiological information  of the species, and traits related to dispersal and resilience 475 

to climate change. Such considerations in a mechanistic SDM could result in different future  476 



20 
 

range projections as compared with the results obtained with our approach. Further studies 477 

involving both field investigations and associated data updates and methodological developments 478 

for models [e.g., developing ensembles of small models (Breiner et al. 2018) or changing the study 479 

extent] would further improve our predictions for climate change impacts on T. hemprichii in the 480 

Tropical Indo-Pacific. 481 

 482 

Intraspecific variation and local adaptation in seagrass 483 

Differences in response to thermal changes related to intraspecific variation, whether eco-484 

physiological or evolutionary, are well-documented in seagrasses (King et al. 2018). This variation, 485 

partly based on phenotypic plasticity or local adaptation, ultimately might permit seagrasses to 486 

acclimatize and adapt to changes in climate (Duarte et al. 2018). The marine predictor variables 487 

that played a predominant role in our SDMs (e.g., annual mean SST and water depth) could be 488 

responsible for both long- and short-term local adaptation of T. hemprichii to a changing climate 489 

(King et al. 2018; Jahnke et al. 2019b). In support of this, common-garden experiments have 490 

revealed a clear local adaptation to increased temperatures in Zostera marina (Franssen et al. 2011; 491 

2014), and to a depth gradient in Posidonia oceanica (Marín-Guirao et al. 2016; Jahnke et al. 492 

2019b). Further, parallel adaptation of Z. marina to thermal clines along the American and 493 

European coasts was demonstrated using a space-for-time substitution design and gene expression 494 

profiling (Jueterbock et al. 2016). Such adaptive local differentiation induced by divergent 495 

environmental forces (e.g., light, depth and temperature) has led to structured populations and 496 

lineages in seagrasses at various spatial scales (Dattolo et al. 2014; Jueterbock et al. 2016; Jahnke et 497 

al. 2019b), suggesting that adaptation to local conditions is a key mechanism for seagrasses to face 498 

global climate change. 499 

Although we identified high genetic differentiation between the WTIP and CTIP lineages 500 

(Supporting Information Table S2), which may represent an extreme case of intraspecific genetic 501 
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divergence, we were not able to ascertain the adaptive components of divergence across a 502 

common landscape within the tropical Indo-Pacific. In T. hemprichii, natural selection imposed 503 

by environmental heterogeneity might have resulted in the evolution of locally adapted 504 

populations with considerable variation in productivity, growth rate and competitive interactions 505 

(Martins & Bandeira 2001; Lyimo et al. 2006; Larkum et al. 2018). Low genetic difference between 506 

lineages with associated environments that are very different is likely the result of admixture 507 

between geographically distant populations over evolutionary time, resulting in the species having 508 

a wide range and a broad fundamental niche. In this case, lineage-level SDMs would not be 509 

appropriate and a full-species SDM should be used because the populations are distant spatially but 510 

not genetically. 511 

Future studies should focus on distinguishing neutral genetic differentiation from local 512 

adaptation using reciprocal transplant trials (e.g., common gardens and provenance trials; see 513 

Joyce & Rehfeldt 2013; Ralph et al. 2018). Also, it is most important to mechanistically assess the 514 

sub-lethal susceptibility of T. hemprichii to thermal stress, including the effects of heat and 515 

hypoxia on photosynthesis, respiration, and primary productivity (Pedersen et al. 2016; 516 

Rasmusson et al. 2020), before the strongest impacts of future climate change are sustained. 517 

Intraspecific genetic diversity across populations can increase a species’ adaptive capacity and 518 

result in cascading effects to the entire ecosystem (Evans et al. 2017). It is thus important to 519 

identify the most temperature-tolerant genotypes from the WTIP and CTIP lineages, perhaps by 520 

manipulating temperature to quantify the performance of individual genotypes of T. hemprichii 521 

across thermal gradients. It is also essential to clarify whether genotype complementarity or 522 

dominance enhance the adaptive capacity in a population (Hughes & Stachowicz 2011). 523 

 524 

Conservation implications 525 
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The challenge of designing effective actions for seagrass conservation in the Indo-Pacific exists in 526 

the gap between science, policy, and practice (Fortes 2018). In this study, the separation in 527 

geographic distribution and high niche differentiation between the CTIP and WTIP lineages 528 

suggest that T. hemprichii populations may be locally adapted (Merilä & Hendry 2014). For 529 

species with significant intraspecific genetic diversity, it is crucial to help maintain the species’ 530 

potential for adaptive responses to climate change by conserving this diversity (D’Amen et al. 531 

2013). In particular, lineage differentiation can be explained by recruitment rate (Lyimo et al. 532 

2006; Sherman et al. 2018), nutrient resorption (Martins & Bandeira 2001), dispersal barriers 533 

(Melroy et al. 2017), and evolutionary history from the origin center to the distributional margins 534 

(Mukai 1993). Dramatic future habitat loss in the CTIP was predicted by both the species- and 535 

lineage-level models (Fig. 4), stressing the urgency to develop monitoring programs to rescue 536 

evolutionary and/or ecologically important units in T. hemprichii, particularly the populations 537 

and gene pools that have persisted through past long-term climate change because of local 538 

adaptation (Bell 2017; Hernawan et al. 2017). Furthermore, the recognition of high niche 539 

differentiation between the WTIP and CTIP lineages may help to establish coherent principles 540 

and regulating practices by which the different areas that T. hemprichii inhabits can be protected 541 

efficiently. 542 

The biomass, abundance, and productivity of seagrasses are highly correlated with both 543 

habitat suitability (Martins & Bandeira 2001; Saunders et al. 2013) and epiphytic species 544 

biodiversity (Lyimo et al. 2008). Optimizing productivity of T. hemprichii in a given site or 545 

population can help to increase associated community diversity (Eklöf et al. 2006; Lyimo et al. 546 

2008). Thus, it is necessary to explore how community diversity and structure correlate with the 547 

genetic composition and structure of the foundational species T. hemprichii. Such research can 548 

help validate the results of SDMs in this study and quantify the relationship between T. 549 

hemprichii and its relevant community components (Ikeda et al. 2017). Since populations in each 550 
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of the CTIP and WTIP lineages are locally adapted, policymakers and stakeholders are encouraged 551 

to use local seed sources of T. hemprichii to ensure management strategies for successful 552 

restoration and conservation purposes. To this end, mechanistic studies underlying thermal 553 

adaptation by linking ecology to genetics should be done to better understand how T. hemprichii 554 

will adapt to climate change (Duarte et al. 2018; Hu et al. 2020). 555 

 556 
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Tables 922 

Table 1. Maxent parameters, performance metrics on spatially withheld data (validation AUC and 923 

omission rate) and the full dataset (continuous Boyce index), and 10th percentile presence 924 

thresholds of the two lineage-level models and the species-level model. Validation AUC and 10% 925 

omission rate results are expressed as means ± standard deviation across spatial partitions. 926 

Model RM1 
Feature 

class2 

Average 

validation 

AUC 

Average 10% 

omission rate 

(%) 

10% 

omission 

threshold 

Continuous 

Boyce index 

WTIP3 0.5 LQ 0.99(± 0.01) 3.57(± 7.14) 0.12 0.92 

CTIP4 2.5 LQH 0.96(± 0.03) 26.69(± 37.42) 0.37 0.99 

Species 0.5 H 0.96(± 0.02) 17.93(± 17.62) 0.30 0.99 

1RM: regularization multiplier. 927 

2Feature Class: L (linear), Q (quadratic), and H (hinge) were considered. 928 

3WTIP: the Western Tropical Indo-Pacific lineage-level model 929 

4CTIP: the Central Tropical Indo-Pacific lineage-level model 930 

  931 
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Table 2. Permutation importance (%) of marine predictors in each Maxent model. Values in bold 932 

showed important predictors. 933 

Predictors WTIP1 CTIP2 Species  

Water depth [m] 14.10 51.05 46.91 

Distance to land [km] 81.87 11.58 9.30 

Minimum current velocity [m/s] 0.46 0.00 0.03 

Annual mean current velocity [m/s] 0.15 0.04 0.27 

Annual mean sea surface salinity [PSS] 0.80 2.49 1.92 

Annual range of sea surface salinity [PSS] 0.93 4.96 13.38 

Annual mean sea surface temperature [°C] 0.83 28.68 23.47 

Annual range of sea surface temperature [°C] 0.87 1.20 4.73 

1WTIP: Western Tropical Indo-Pacific lineage-level model 934 

2CTIP: Central Tropical Indo-Pacific lineage-level model 935 

 936 

  937 
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Table 3. Range size change (%) of Thalassia hemprichii under future climate scenarios. Values in 938 

parentheses indicate range size change predicted by the species-level model. 939 

RCP1 
WTIP2 CTIP3 

2050s 2100s 2050s 2100s 

RCP 2.6 –0.2 (–2.5) 4.4 (–3.8) –40.6 (–29.3) –34.5 (–27.8) 

RCP 4.5 1.3 (–6.3) 4.2 (–6.3) –49.7 (–26.1) –55.7 (–26.4) 

RCP 6.0 3.4 (–0.4) 7.5 (–15.0) –43.8 (–30.3) –63.7 (–23.2) 

RCP 8.5 4.0 (–10.9) 13.2 (–23.7) –53.7 (–27.4) –72.1 (–25.8) 

1RCP: representative concentration pathway. 940 

2WTIP: Western Tropical Indo-Pacific lineage-level model 941 

3CTIP: Central Tropical Indo-Pacific lineage-level model 942 

 943 

  944 
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Figure Legends 945 

Figure 1.  (a) Map of study regions and presence records used in this study. Blue and red points 946 

represent sample collection locations for molecular analyses in the Western Tropical Indo-Pacific 947 

(WTIP) and the Central Tropical Indo-Pacific (CTIP). Gray crosses show presence records used for 948 

the species distribution models. (b) Network of microsatellite genetic differentiation (Cavalli-949 

Sforza and Edwards chord distances). The topology results from pruning the network for pairwise 950 

genetic distances <0.534. The smallest chord distance (0.499) between the WTIP and CTIP 951 

lineages is shown. (c) Genetic lineage division over space based on STRUCTURE clustering (k = 2). 952 

Population abbreviations are the same as in Hernawan et al. (2017) and Jahnke et al. (2019a), and 953 

their classification to network analysis is in agreement with that of STRUCTURE (Fig. 1c). 954 

Figure 2. The realized niches for the two lineages of Thalassia hemprichii quantified via eight-955 

dimensional hypervolumes. The axes represent unitless values as the predictors were standardized 956 

before analyses. Circles with white rims indicate hypervolume centroids. Boundaries and shapes of 957 

hypervolumes were delineated by 10,000 points randomly sampled within each hypervolume. The 958 

photograph depicts T. hemprichii. 959 

Figure 3. Present-day continuous (a, b) and binary (c, d) habitat suitability predictions for 960 

Thalassia hemprichii by lineage-level (a, c) and species-level (b, d) Maxent models. Dashed lines 961 

represent the equator. To improve the legibility of the binary predictions, we increased the pixel 962 

size by downscaling the spatial resolution to 30 arcmin. High-resolution predictions can be 963 

downloaded from Dryad (https://doi.org/10.5061/dryad.vhhmgqnsh). 964 

Figure 4. Changes in continuous (a, b) and binary (c, d) habitat suitability for Thalassia hemprichii 965 

projected by lineage-level (a, c) and species-level (b, d) Maxent models under the RCP 8.5 scenario 966 

in the 2050s. Dashed lines indicate the equator. The category “stable” represents areas predicted to 967 

be suitable under both present-day and future climatic conditions, “loss” indicates areas predicted 968 

to be suitable under present-day conditions but unsuitable in the future, and “gain” indicates areas 969 

predicted to be unsuitable under present-day conditions but suitable in the future. To improve the 970 

legibility of the binary predictions, we increased the pixel size by downscaling the spatial 971 

resolution to 30 arcmin. High-resolution predictions can be downloaded from Dryad 972 

(https://doi.org/10.5061/dryad.vhhmgqnsh). 973 
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Additional supporting information can be found online in the Supporting Information section at 976 

the end of the article. 977 


