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Abstract

In this paper we show that several classes of languages from com-
putational complexity theory, such as EXPTIME, can be characterized
in a continuous manner by using only polynomial differential equations.
This characterization applies not only to languages, but also to classes of
functions, such as the classes defining the Grzegorczyk hierarchy, which
implies an analog characterization of the class of elementary computable
functions and the class of primitive recursive functions.

1 Introduction

In the papers [BGP16b], [BGP17b] the authors presented a characterization of
the computational complexity class P by using polynomial ordinary differential
equations (ODEs). This characterization is purely continuous and hence estab-
lishes a continuous characterization of the class P typically associated to discrete
models of computation such as the standard Turing machine. This result does
not use any reference to a (discrete) machine and hence provides an implicit
characterization of P.

Interestingly, this result also provides a form of equivalence between ana-
log and digital models of computations, both at a computability level and at a
complexity level. This stems from the fact that the class of functions which can
be computed with these polynomial ODEs corresponds to an analog model of
computation, Shannon’s General Purpose Analog Computer (GPAC) [Sha41],
[GC03], which is intended to model differential analyzers, which were the ana-
log computers in use before the advent of the digital computer [Bus31]. It
was shown that the GPAC and Turing based models of computation, including
computable analysis, are computationally equivalent at a computability level
[GCB08], [BCGH06], [BCGH07] and at a complexity level, when we consider
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functions computable in polynomial time [BGP16b], [BGP17b].
A natural question to ask is whether the above continuous characterization

of polynomial time computability via ODEs extends to other computational
complexity classes. This is not obvious from [BGP16b], [BGP17b], since these
papers are technically dense, and rely on other papers such as [BGP16a] which
are tailored to the polynomial case. Polynomials have many desirable prop-
erties which are unfortunately not shared by some other types of functions.
For example, the class of polynomials is closed under composition, while the
class of exponential functions is not, which may (and will, as we will see later)
pose problems when trying to characterize the class EXPTIME with polynomial
ODEs.

The purpose of the present paper is to understand how the results of [BGP16b],
[BGP17b] can be extended to other complexity classes such as EXPTIME.
For this purpose we will first focus on classes of functions, such as the class
FEXPTIME of functions computable in exponential time and we will show how
this class can be characterized using ODEs. Other classes of functions that we
will characterize include all the classes defining the Grzegorczyk hierarchy and,
in particular, the elementary computable functions and the primitive recursive
functions. We note that some similar results were proved in [CMC00], [CM01],
[CMC02], [BH04], [BH05]. However the approach used in these papers differs
from the current one in the sense that they use real recursive functions which
use partial differential equations, among other differences.

As we will see in the following sections, we will be able to reuse some results
from previous papers such as [BGP16b], [BGP17b], [BGP16a], while other re-
sults will have to be adapted. As we mentioned, the papers [BGP16b], [BGP17b]
are technically dense and often not easy to follow. In this paper we also intend
to provide a “road map” to the results of [BGP17b], which might help sim-
plify their understanding, by clearly separating the “core” results of the papers
[BGP16b], [BGP17b], from their “non-core” counterparts.

To obtain our results, first we characterize the class FEXPTIME of discrete
functions computable in exponential time using ODEs (Theorem 29). The idea
behind this result is to use the encoding provided by [BGP17b] of the tran-
sition function of a given Turing machine as a solution of a polynomial ODE
and iterate it with polynomial ODEs. The challenge will be in making all this
work using resources which are exponentially bounded on the input size, and
not double exponentially bounded as a more direct approach similar to that of
[BGP17b] would yield. This will provide the elements necessary to understand
how to extend this result to other discrete complexity classes of functions (The-
orem 35). As an example of this extension we will show how it is possible to
apply Theorem 35 to the whole Grzegorczyk hierarchy, obtaining in this way a
completely analog characterization of the Grzegorczyk hierarchy by using ODEs
and, in particular, of the class of elementary functions and the class of prim-
itive recursive functions. In the case of the Grzegorczyk hierarchy it will not
be enough to apply Theorem 35, since for the complexity time bound we need
to extend discrete time bounds (i.e. defined over N) classes to real functions.
While this is trivially done for polynomial or exponential functions, this is not
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straightforward for classes such as the Grzegorczyk hierarchy. We present a
solution to this problem by constructing appropriate bounds using ODEs which
perform several operations like iteration, etc.

Finally, combining our approach with that of [BGP17b] we show that we
can characterize classes of languages instead of classes of functions, and this
will be concretely implemented for describing the complexity class EXPTIME
using differential equations.

The outline of the paper is as follows. On section 2 we review some basic
notions about computability with ODEs. In section 3 we briefly review the
results of [BGP17b] which show how one can characterize the class FP of discrete
functions computable in polynomial time in terms of differential equations. In
section 4 we discuss the problems of extending the results from [BGP17b] to
the exponential case. Then we present a solution to solve these problems and
we use it to characterize the class FEXPTIME using differential equations. In
section 5 we discuss the conditions that allow us to repeat what was done with
the exponential case for higher complexity classes. In section 6 we show that,
analogously to what was done in [BGP17b] for the polynomial case, the analog
characterization of the class FEXPTIME and of higher complexity classes via
ODEs can be done by considering just one complexity parameter, the length of
the solution curve of the ODE. In section 7 we apply the generalization to the
case of the Grzegorczyk hierarchy. To do so, we develop a technique to obtain
by means of system of differential equations the correct set of boundaries for
each level of the hierarchy. In section 8 we show how the class EXPTIME can
be characterized using differential equations. Finally, in section 9 we present
the conclusions and discuss some open problems.

2 Computing with polynomial differential equa-
tions

As we have mentioned, polynomial ODEs correspond to Shannon’s GPAC. More
concretely a function is generable if it is the solution of some polynomial initial-
value problem (PIVP) defined with a polynomial ODE. We call such functions
PIVP functions. Note that in this sense a generable function is a one-variable
function. The notion of generable function can be extended to multivariate
functions as in [BGP17b]. Moreover, by restricting the coefficients of the poly-
nomials used to define the ODE, we can also restrict the class of functions
computed by this model. This is usually assumed to avoid potential problems
where the ODE gains unreasonable computational power by using the coeffi-
cients of the polynomials as oracles. More concretely, let K be some field with
the property that Q ⊆ K and recall that Jf (x) denotes the Jacobian of f at
point x.

Definition 1 Let D ⊆ Rk be a domain (i.e. an open and connected set) and
f : D → Rl. We say that f ∈ GVALK if and only if there is an initial-value
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problem (IVP)
Jy(x) = p(y), y(x0) = y0 (1)

with solution y such that f(x) = (y1(x), . . . , yl(x)), where p is some n×k matrix,
n ≥ l, with the property that each entry of p is a polynomial with coefficients in
K, and x0 ∈ Kk ∩D, y0 ∈ Kl.

We remark that, for the class GVALK, a function f ∈ GVALK corresponds
to (components of) a solution y of a differential equation. Note also that it
can be shown that each IVP of the form of (1) has one and only one solution
[BGP17a]. Moreover the one-variable functions of GVALR are exactly the PIVP
functions, which are formed by components of some polynomial initial value-
problem y′ = p(y), y(t0) = y0, where y : R→ Rn for some n ≥ 1. We can
also establish complexity measures for functions in GVALK by putting a bound
on the growth of functions. Throughout this paper, unless other specified, ‖·‖
denotes the sup norm in Rk, i.e. if x ∈ Rk, then ‖x‖ = max1≤i≤k |xi|, where
x = (x1, . . . , xk).

Definition 2 We say that f ∈ GVALK(sp), where sp : R→ R, if f ∈ GVALK
and there is some solution y of (1) for which one has: (i) f(x) = (y1(x), . . . , yl(x))
and (ii) ‖y(x)‖ ≤ sp(‖x‖).

If K $R, it is often convenient to ensure that K is closed under the appli-
cation of functions in GVALK. This is the case for generable fields. A detailed
treatment of generable fields and their properties can be found in [BGP17a]. As
an example, RP , the field of real numbers that are polynomial-time computable
in the sense of computable analysis, is a generable field. More specifically, the
only property of these fields that is relevant for this paper is the following: a
field K is generable if Q ⊆ K and f(α) ∈ Kl for any (f : Rk→ Rl) ∈ GVALK
and any α ∈ Kl. It can be shown (see [BGP17a, Section 6]) that there exists a
minimal generable field, denoted by RG (the field is minimal in the sense that
if K is another generable field, then RG ⊆ K), and that any element of RG
is computable in polynomial time. From now on we will always assume that
K = RG and denote GVALRG by GVAL for simplicity.

We note that several standard functions from analysis such as the trigono-
metric functions, polynomials, the exponential and logarithmic functions all be-
long to GVAL (i.e. they are generable). This class also has important stability
properties, since it is closed under addition, subtraction, product, composition,
and ODE solving [BGP17a]. Specifically, the fact that trigonometric functions
belong to GVAL and that this class is closed under composition will be essential
for proving some of our results in later sections.

In what follows, it will be convenient to consider generable functions which
are bounded by a polynomial.

Definition 3 We say that f ∈ GPVAL if and only if f ∈ GVAL(p) for some
polynomial p.
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Figure 1: Computing the function f with an ODE.

However, functions such as the Gamma function or the Riemann Zeta func-
tion are not generable. The problem does not arise from the model of compu-
tation but from the notion of computation used, where real-time computation
is used e.g. in the one-variable case. For example, when computing sin, we
immediately get sin(t) as soon as we feed the input t to the GPAC computing
sin. This is in contrast to other models of computation (e.g. Turing machines),
where some time is allowed for the computation since the moment the input is
provided to the model up to the moment in which an answer is provided. For
this reason, the GPAC model was extended in [Gra04] to more closely match
this notion of computation. The idea is to use a kind of limit computation (see
Fig. 1), where at each moment the computation provides an approximation of
the correct answer with an error which goes to 0 as computation time goes to
infinity, matching what is done in computable analysis [Wei00], [KF82]. Con-
trarily to what happens for GVALK, in this setting a function f is not longer
(formed by components of) a solution y of a differential equation. Instead f(x)
is obtained as the limit limt→+∞y(t) of a solution y of an ODE, with initial
condition y(0) dependent in a “simple manner” of the value x.

Definition 4 (ATS) Let f ⊆ Rn → Rm. We say that f ∈ ATS(Π,Υ), where
Π,Υ : R2→ R if and only if there exist multivariate polynomials p, q with coeffi-
cients in RG such that for any x ∈ dom(f), there exists (a unique) y : R→ Rd
satisfying for all t ≥ 0:

• y(0) = q(x) and y′(t) = p(y(t));

• ∀µ > 0 if t ≥ Π(‖x‖ , µ) then ‖(y1(t), . . . , ym(t))− f(x)‖ ≤ e−µ;

• ‖y(t)‖ ≤ Υ(‖x‖ , t).

5



The function Π is usually referred to as the time bound, and the function
Υ as the space bound (the notation ATS is an abbreviation for “analog time
space”). Note that, differently to what happens with Turing machines in dis-
crete complexity theory, here space and time boundaries are independent and
unrelated one to another. In the paper [BGP16a] the focus was on the class
ATSP of functions computed with a polynomial time and space bound. This
class will also be important in the present paper.

Definition 5 Let f ⊆ Rn → Rm. We say that f ∈ ATSP if f ∈ ATS(Π,Υ) for
some polynomials Π and Υ.

When using the class ATSP in proofs, it is often useful to use one of the
several equivalent definitions of ATSP, which were proved in [BGP16a]. In
particular, the following definition will be helpful (where the notation C0(R,Rn)
stands for the set of continuous functions from R to Rn), where R+ = [0,+∞[:

Proposition 6 Let f ⊆ Rn → Rm. Then f ∈ ATSP if and only if there exist
δ ≥ 0, d ∈ N, multivariate polynomials p with coefficients in RG, y0 ∈ RdG, and
polynomials Π,Υ,Λ : R2

+ → R+ such that for any x ∈ C0(R,Rn), there exists
(a unique) y : R→ Rd satisfying for all t ≥ 0:

• y(0) = y0 and y′(t) = p(y(t), x(t));

• ‖y(t)‖ ≤ Υ(supδ ‖x‖ (t), t), where supδ f(t) = supu∈[t−δ,t]∩[0,+∞[ f(u);

• For any I = [a, b] ⊆ R with a ≥ 0, if there exist x̄ ∈ dom(f) and µ ≥ 0 such
that for all t ∈ I we have ‖x(t)− x̄‖ ≤ e−Λ(‖x‖,µ), then ‖(y1(t), . . . , ym(t))− f(x̄)‖ ≤
e−µ whenever a+ Π(‖x̄‖, µ) ≤ u ≤ b.

The first condition of proposition 6 defines the ODEs generating the func-
tion f , the second condition ensures that the norm of the solution of this system
satisfies a polynomial bound, while the third condition takes care of the con-
vergence of such solution: specifically, this solution y converges to the correct
value of the function f(x̄) only if there exists an interval where the value of a
continuous function x is near the point x̄. If this happens, then, after a delay
given by a polynomial boundary Π, we get a convergence similar to the one of
the original definition of ATSP. The proposition above is particularly impor-
tant because, allowing possible fluctuations for the input x, it provides a strong
robustness property to the functions in ATSP that plays a determinant role on
ensuring closure by composition for the class.

The class ATSP has several nice properties, which were proved in [BGP17b].
Next we provide a summary of the most relevant results.

Proposition 7 (ATSP closure by arithmetic operations) If g, f ∈ ATSP,
then g + f, g − f, g · f ∈ ATSP, with the obvious restrictions on the domains of
definition.
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Proposition 8 (ATSP modulus of continuity) If f ∈ ATSP, then f ad-
mits a polynomial modulus of continuity: there exists a polynomial Ω : R2 → R
such that for all x, y ∈ dom(f) and µ ≥ 0,

‖x− y‖ ≤ e−Ω(‖x‖,µ) ⇒ ‖f(x)− f(y)‖ ≤ e−µ.

In particular, f is continuous.

One the most important properties of ATSP is closure under composition.

Theorem 9 (ATSP closure by composition) If f, g ∈ ATSP, and f(dom(f)) ⊆
dom(g), then g ◦ f ∈ ATSP.

Since the class ATSP is, in a sense, an extension of the class GPVAL, one
should expect that the latter is included in the former. This is true in a certain
type of domain, which is enough for our purposes:

Definition 10 A set X is called a star domain if there exists x0 ∈ X such that
for all x ∈ X the line segment from x0 to x is in X. Such an x0 is called a
vantage point.

The following theorem is from [BGP17b].

Theorem 11 If f ∈ GPVAL has a star domain with a vantage point in RG
then f ∈ ATSP.

One key element to extend the polynomial characterization of P and FP
given in [BGP16a] to higher complexity classes was to understand which ones
of the above properties could be maintained for the general case of Definition
4 independently from the functions chosen to play the role of space and time
boundaries. Indeed, some proofs of the properties listed above explicitly make
use of properties of polynomials, and exploit the equivalence between ATSP and
other analog classes such as the one of Definition 6, that does not apply for the
class with generic boundaries. More importantly, it is essential to identify which
of the above properties are necessary for the whole construction to hold and lead
to the desired equivalence. As we will show, the fundamental properties in this
sense are closure under arithmetic operations and closure under composition.
Therefore, our modification of the polynomial construction is designed with the
intent of enabling these two closure properties for classes of the type of Definition
4, while at the same time allowing some freedom on the choice of the time and
space boundaries.

3 Computing discrete functions: the polynomial
time case

In this section we review several useful results from [BGP17b]. In particular we
will see how we can code the transition function of a Turing machine (TM for
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Figure 2: The graphs of functions hxl[a,b] (in blue) and lxh[a,b] (in red) having
last argument x.

short) into a function in ATSP and how we can iterate it a polynomial number
of times, again using a function in ATSP. This will imply that any function
f : Γ∗ → Γ∗ computable in polynomial time, where Γ is a finite alphabet, will
belong to ATSP in a certain sense. Namely, the notion of emulable function will
have to be introduced to be able to go from Γ∗ to Rk, in a way which is similar
to what is done when using the representation approach [BHW08], [Wei00] in
computable analysis. All these notions and ideas will be helpful later when
tackling the exponential time case.

3.1 Simulating Turing machines

In this section we will encode the configuration of a Turing machine M as
an element of R4 and we will build a corresponding transition function fM :
R4 → R4. This transition function is built by composing some basic functions,
which can be seen as “bricks” to build more complex functions with a desired
behavior. Here we present a selection of those function which will be useful on
what follows.

Proposition 12 Let G ⊆ RdG ⊆ Rd be a finite subset and f : G→ RG ⊆ R be a
function. Then there exists a function Lf ∈ ATSP (Lagrange polynomial), Lf :
Rd → R, with the property that Lf�G = f , where Lf�G denotes the restriction
of Lf to G. In other words, there exists a function Lf ∈ ATSP which extends
G to the whole real domain.

Proposition 13 The real functions x→ |x| ,max,min all belong to ATSP.

Other two crucial functions are lxh and hxl that allow to smoothly approxi-
mate a step function in a continuous manner. Their graph is depicted in Fig. 2.

Proposition 14 (Low-X-High and High-X-Low) For every I = [a, b], a, b ∈
RG there exist two real functions lxhI ,hxlI ∈ ATSP such that for any µ > 0
and x, t ∈ R one has:
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• lxhI is of the form lxhI(t, µ, x) = φ1(t, µ, x)x, where φ1(t, µ, x) ∈ ATSP
and 0 < φ1(t, µ, x) < 1;

• hxlI is of the form hxlI(t, µ, x) = φ2(t, µ, x)x, where φ2(t, µ, x) ∈ ATSP
and 0 < φ2(t, µ, x) < 1;

• If t ≤ a, then |lxhI(t, µ, x)| ≤ e−µ and |x− hxlI(t, µ, x)| ≤ e−µ;

• If t ≥ b, then |x− lxhI(t, µ, x)| ≤ e−µ and |hxlI(t, µ, x)| ≤ e−µ;

• In all cases, |lxhI(t, µ, x)| ≤ |x| and |hxlI(t, µ, x)| ≤ |x|.

Before showing how a configuration can be encoded into an element of R4

and how the transition function of a Turing machine M can be encoded as a
function fM : R4 → R4, we present the notion of Turing machine that we will
use on what follows.

Definition 15 (Turing Machine) A Turing Machine is a tuple M = (Q,Σ,Γ, b, δ, q0, q∞),
where Q = {0, ...,m} are the states of the machine, Σ = {s0, ..., sk−2} is the tape
alphabet and b = s0 is the blank symbol, Γ ⊆ Σ− b is the input alphabet, q0 ∈ Q
is the initial state, q∞ ∈ Q is the halting state, and δ : Q×Σ→ Q×Σ×{L, S,R}
is the transition function with L = −1, S = 0, R = 1. We write δ1, δ2, δ3 as the
components of δ. That is δ(q, σ) = (δ1(q, σ), δ2(q, σ), δ3(q, σ)), where δ1 is the
new state, δ2 the new symbol, and δ3 the head move direction. We require that
δ(q∞, σ) = (q∞, σ, S).

Note that each symbol si from Σ can be associated uniquely to the natural
number i ∈ N without any danger of confusion. Hence, in what follows, we
will assume that Σ = {0, ..., k− 2}, without making an explicit reference to the
correspondence si 7→ i, in order the simplify the notation. We also note that we
assume that Σ has k− 1 symbols and not k symbols. As indicated in [BGP17b,
Remark 36] this assumption is important to obtain the continuous (real) map of
[BGP17b] which simulates the transition function of a Turing using the encoding
of configurations of Definition 17. Other continuous transition functions exist
(see e.g. [GCB08]) where this requirement is not needed, but they are “less
efficient” and not suitable enough for complexity results.

Definition 16 (Configuration) A configuration for a Turing Machine M is
a tuple c = (x, σ, y, q), where x ∈ Σ∗ is the part of the tape at the left of the
head, y ∈ Σ∗ is the part at the right, σ ∈ Σ is the symbol under the head, and
q ∈ Q is the current state. More precisely, x1 is the symbol immediately at the
left of the head and y1 is the symbol immediately at the right.

...0 0 0xn xn−1 . . . x2 x1 σ y1 y2 . . . yl 0 0 0...

The set of configurations of M is denoted as CM . For an input word w ∈ Σ∗ the
initial configuration is defined by c0(w) = (λ, b, w, q0). Instead, if at the end of
the computation the tape contain the word w ∈ Σ∗, then the final configuration
is defined by c∞(w) = (λ, b, w, q∞), where λ is the empty word.
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We now show how a configuration can be encoded as an element of R4.

Definition 17 Let c = (x, σ, y, q) be a configuration of a Turing machine M
with an alphabet Σ = {0, ..., k − 2}. Then the real encoding of c is defined as
〈c〉 = (0.x, σ, 0.y, q) ∈ Q×Σ×Q×Q where 0.x = x1k

−1+x2k
−2+...+x|x|k

|x| ∈ Q
and similarly for 0.y ∈ Q.

Let M also denote the transition function of the Turing machine M , i.e. if
c is a configuration, then M(c) denotes the configuration which follows from c
after one step of the computation of the TM M .

Theorem 18 ([BGP17b]) Let M be a Turing machine with an alphabet Σ =
{0, ..., k− 2}. Then there is a function M : R5 → R4 ∈ ATSP with the property
that if c is a configuration of M and µ > 0, then for any c̃ ∈ R4 one has

‖〈c〉 − c̃‖ ≤ 1

2k2
− e−µ =⇒

∥∥M(c̃, µ)− 〈M(c)〉
∥∥ ≤ k ‖〈c〉 − c̃‖ .

To simulate the computation of a Turing machine M over the real numbers,
we need not only to be able to code the transition function of M as a function
over the reals, but also to iterate this function over the set of (the coding of)
its configurations CM . Since we are not using exact quantities, to be useful, the
iteration also has to work on the set of elements of R4 “close enough” to CM .
This type of iteration can be performed for an arbitrary number of times (see
e.g. [GCB08]), but at a too high cost in terms of complexity (resources). Since
here we want an “efficient” simulation of the Turing machine (for example we
want to simulate polynomially many steps of a TM with a function in ATSP,
which uses polynomial time and space, and not with a function which uses e.g.
exponential space as in [GCB08]), we need a more refined approach.

The following theorem is from [BGP17b] and shows that a function f in
ATSP which satisfies certain conditions (the transition function M of Theorem
18 satisfies those conditions) can be iterated a polynomial number of times with
a function also in ASTP.

Theorem 19 ([BGP17b], Polynomial iteration of a function in ATSP)
Let f : Rm → Rm ∈ ATSP, η ∈ [0, 1

2 [ and assume that there exists a family of
subsets In ⊆ I, n ∈ N, and polynomials Ω : R → R, Π : R2 → R such that for
all n ∈ N:

• In+1 ⊆ In and f(In+1) ⊆ In;

• For all x ∈ In,
∥∥f [n](x)

∥∥ ≤ Π(‖x‖ , n);

• For all x ∈ In, y ∈ Rm, µ ≥ 0, if ‖x− y‖ ≤ e−Ω(‖x‖)−µ then y ∈
I and ‖f(x)− f(y)‖ ≤ e−µ.

Let f∗η (x, u) = f [n](x) for x ∈ In and u ∈ [n− η, n+ η], where n ∈ N. Then,
f∗η ∈ ATSP.
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3.2 Equivalence relation between FP and ATSP

Using the results of the previous section it can be shown [BGP17b] that FP
(the class of functions f : Γ∗ → Γ∗ computable in polynomial time, where Γ is
a finite alphabet) and ATSP are equivalent using a notion of emulation that we
now present. From now on, we fix an alphabet Γ and we assume that Γ comes
with an injective mapping γ : Γ → N\{0}, which means that every non-blank
symbol of the alphabet has a unique assigned positive number (the blank is
assigned to 0). By extension, γ applies letter wise over words.

Definition 20 (Discrete emulation) Let G be a set of functions from R2 to
R2. The function f : Γ∗ → Γ∗ is called emulable under G if there exists g ∈ G
and k = 2 +max(γ(Γ)) such that for any word w ∈ Γ∗ one has

g(Ψk(w)) = Ψk(f(w)) (2)

where Ψk(w) =
(∑|w|

i=1 γ(wi)k
−i, |w|

)
. In these circumstances we also say that

g emulates f (see diagram below).

Γ∗ Γ∗

R2 R2

Ψk

f

Ψk

g

Note that the above definition could be generalized to consider other encod-
ings from Γ∗ to Rn instead of Ψk. However, since the encoding Ψk as defined
above was used in [BGP17b], for simplicity and for coherence of the presentation
with what was done in [BGP17b], we will continue to use the encoding Ψk here.

As an intuition behind the above definition, a function g defined over a
continuous domain emulates a function f defined over a discrete domain if the
operation of encoding commutes with the applications of the functions. This
means that, given a fixed input word from a discrete alphabet, encoding from
the discrete to the continuous can be done either directly to the input before
the application of function g, either after the application of function f to the
input, yielding the same result.

For simplicity, later on we will use the notation 0.γ(w) to denote the quantity∑|w|
i=1 γ(wi)k

−i. In particular, Ψk(w) = (0.γ(w), |w|).

Theorem 21 ([BGP17b], FP equivalence) Let f : Γ∗ → Γ∗. Then f ∈ FP
if and only if f is emulable under ATSP.

To show that if f ∈ FP, then f is emulable under ATSP, recall that if
f ∈ FP, then there is some TM M and some polynomial p such that f(x) can be
computed by the TM M in time p(|x|). By Theorem 18, there is a function M ∈
ATSP such that M simulates M on R4 using the encoding given by Definition
17 (and a suitable µ. See [BGP17b] for more details). This function can then be

iterated using Theorem 19 to obtain a corresponding function M
∗
η ∈ ATSP. Let
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w ∈ Γ∗ be an input for f . Then 0.γ(f(w)) is given as π3(M
∗
η(c0(w), p(|w|))) =

g1(Ψk(w)), with g1 ∈ ATSP, where πi : Rn → R is defined as πi(x1, . . . , xn) =
xi. To show (2), i.e. that f is emulable under ATSP, it just remains to show
that |f(w)| can be computed from w and |w| by a function g2.

In [BGP17b], it was shown that there is a function tlengthM : R×N→ N in
ATSP such that tlengthM (0.γ(w), n) = |w| when n ≥ |w|. Furthermore, since
a TM can only add, at most, one symbol per computation step, we conclude
that |f(w)| ≤ |w| + p(|x|). Then |f(w)| = tlengthM (0.γ(f(w)), |w| + p(|x|)) =
tlengthM (g1(Ψk(w)), |w| + p(|x|)) = g2(Ψk(w)), where g2 ∈ ATSP. Taking
g = (g1, g2) ∈ ATSP, we conclude that f is emulable under ATSP. This yields
one direction of the proof of the above result. The reverse direction relies on
numerically simulating the ODE used in ATSP using the efficient simulation of
[PG16]. More details will be given in the following section.

4 Computing discrete functions: the exponen-
tial case

One might think that the class FEXPTIME of functions computable in ex-
ponential time by Turing machines can be obtained similarly as section 3 by
considering the class ATSE as the class formed by all functions in ATS(Π,Υ)
where Π,Υ are exponentials functions. Unfortunately, a detailed analysis of the
arguments used in [BGP17b] shows that to obtain the equivalence of FP with
ATSP, we need to use two closure properties of the ATSP class, the closure
under arithmetic operations and the closure under composition. As discussed
in section 3 the fact that these properties hold for the exponential ATSE class is
not obvious. Specifically, it can be easily shown that the closure by composition
of the analog class is only possible if the class of functions used as complexity
bounds in Definition 4 satisfies closure properties under composition. This is
not a problem when the bounds are polynomial, as in ATSP, since the compo-
sition of two polynomials is again another polynomial, but this poses problems
when composing exponential bounds, since the composition of two exponentials
is not necessarily exponential. Therefore ATSE as defined above in not closed
under composition.

In the present paper we solve the above problem and define a class ATSE
to characterize the exponential case in a manner that allows compositions com-
patible with the argument used in [BGP17b] to show that FP with ATSP are
equivalent. In this manner we will be able to show that ATSE is equivalent to
FEXPTIME. Although we use FEXPTIME in our arguments and definitions,
they can be applied to a broader class of (super-polynomial) functions as we
will later show in section 5 (see Theorem 35). In the following we are going to
define the class of boundaries that we are going to consider for the exponential
case, that we call exponential boundary functions.

Definition 22 We say that a function f : R→ R is an exponential boundary
if f(x) = q(x)cp(x) for some polynomials p, q and c ∈ RG.

12



We first define the class ATSE which will emulate FEXPTIME in the sense
of Definition 20. Following Definition 5, we might be tempted to define ATSE
similarly as ATSP, in the sense that f ∈ ATSE if f ∈ ATS(Π,Υ) for some
exponential functions Π and Υ. While that idea worked well for the polynomial
case, it no longer works for exponential functions. To see this with an example,
assume that we characterized ATSE as just described. Then given some f ∈
ATSE, to compute f(x) with accuracy e−µ, we would need to wait a time
t∗ = Π(‖x‖ , µ) exponential in ‖x‖ and µ to get an approximation of f(x) with
accuracy e−µ, due to the second condition of Definition 4. Moreover, at time
t∗, we would have that the norm of the solution y of the ODE computing f(x)
is bounded by Υ(‖x‖ , t∗) = Υ(‖x‖ ,Π(‖x‖ , µ)), which is a double exponential
in both ‖x‖ and µ, while what would be natural is that ‖y(t∗)‖ is bounded by
an exponential in ‖x‖ and µ, and not a double exponential in these parameters.
Note that this problem does not happen when both Π and Υ are polynomials:
since the composition of two polynomials is again a polynomial, when computing
f(x) with accuracy e−µ we will be able to use an approximation y(t∗) which
norm is bounded by a polynomial in ‖x‖ and µ.

Our main insight to solve the above problem is that, contrarily to what
was done for the case of ATSP, the complexity bounds for ATSE will depend
differently on each of the parameters ‖x‖ , µ, and t. Namely, the dependence
will be exponential (or belong to whatever class we are considering) on ‖x‖, but
only polynomial on the remaining parameters.

Another problem that we face is that we expect ATSE to not be closed
under composition. This is because it is natural that the exponential function
ex belongs to ATSE. Thus if ATSE would be closed under composition, then
the double exponential function ee

x

would also belong to it. However, this is
not natural since we expect that the double exponential function grows “too
quickly” to belong to ATSE. This poses a problem since in [BGP17b] one starts
from several “simple functions” in ATSP to build more complex functions, via
composition and other operations, which still belong to ATSP and perform
useful tasks such as simulating the transition function of a given Turing machine,
etc. Therefore we encounter an apparent contradiction, reaching a point where
closure by composition is required by the structure of the simulation, but at
the same time it is not natural and unfeasible at an exponential level. Here
we solve this problem by noting that to prove our main equivalence results it
will be enough to compose functions in ATSP with functions in ATSE and that
composing functions in ATSP with functions in ATSE still yields a function in
ATSE. Hence a pure composition at an exponential level (for the ATSE class)
is never needed. Nevertheless, extra care is still required in the analysis, since a
similar result has not been obtained for the other direction of the composition
between ATSE and ATSP functions (i.e. f ◦ g might not belong to ATSE if
f ∈ ATSE and g ∈ ATSP).

13



4.1 Definitions of the exponential analog classes

Definition 23 (ATSE) Let f ⊆ Rn → Rm. Then f ∈ ATSE if and only if
f ∈ ATS(Π,Υ) for some Π,Υ : R2→ R with the following properties:

• Π(‖x‖, µ) = Π1(‖x‖)Π2(µ) for an exponential boundary function Π1 and
a polynomial function Π2 (time bound);

• Υ(‖x‖, t) = Υ1(‖x‖)Υ2(t) for an exponential boundary function Υ1 and a
polynomial function Υ2 (space bound).

In other words, a function belongs to ATSE if and only if the complexity
bounds depend exponentially on ‖x‖ (x is the argument of f) and polynomi-
ally on the remaining parameters. Quite naturally, this exponential class is
closely related (by means of Theorem 25) to a class of Exponentially-Bounded-
Generable-Functions, or GEVAL, whose definition is a straightforward extension
of the polynomial version GPVAL described previously.

Definition 24 (GEVAL) Let D be a domain in Rk and let f : D → Rm. We
say that f ∈ GEVAL if and only if there exists an exponential boundary function
sp : R→ R , n ≥ m , a n×k matrix p consisting of polynomials with coefficients
in RG, x0 ∈ RdG ∩D, y0 ∈ Kn and y : D → Rn satisfying for all x ∈ D:

• y(x0) = y0 and Jy(x) = p(y(x));

• f(x) = (y1(x), . . . , ym(x));

• ‖y(x)‖ ≤ sp(‖x‖).

Note that, since exponential functions can be easily expressed as solutions
of polynomial ODEs (for example f(x) = ex is the solution of y′ = y, y(0) = 1)
and are always bounded by some exponential boundary function, they trivially
belong to the class GEVAL defined above.

4.2 Properties of the exponential analog classes

Using straightforward adaptations of the proofs presented for their polynomial
counterparts in [BGP17b], we get the following properties:

Theorem 25 If f ∈ GEVAL has a star domain with a vantage point in RG,
then f ∈ ATSE.

As a consequence of the above theorem together with our previous observa-
tion, exponential functions defined over star domains belong to ATSE.

Theorem 26 (Exponential bound of ATSE) Let f ∈ ATSE. Then there
exists an exponential boundary function E such that ‖f(x)‖ ≤ E(‖x‖).
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As mentioned earlier, the closure of the ATSE class by composition and
arithmetic operations is not straightforward, but can be obtained (in a limited
form for composition) under certain circumstances.

Theorem 27 (ATSE closure by arithmetic operations) If g, f ∈ ATSE,
then g + f, g − f, g · f ∈ ATSE, with the obvious restrictions on the domains of
definition.

Proof. We present the proof only for the closure by product, since the other
cases are similar. We prove the theorem for dimension one, but the proof
can be easily repeated for higher dimensions. Let us consider a function f ∈
ATSE(Π1Π2,Υ1Υ2) and a function g ∈ ATSE(Π∗1Π∗2,Υ

∗
1Υ∗2) with parameters

d, p, q and d∗, p∗, q∗ respectively, where d, d∗ represent the dimensions of the two
dynamical systems, p, p∗ the polynomials defining the right hand terms of the
differential equations and q, q∗ the exponential boundary functions defining the
initial conditions (recall that Definition 23 depends on Definition 4 which defines
ATS). Recall that, by definition of the class, we have that Π1,Υ1,Π

∗
1,Υ

∗
1 are

exponential boundary functions and that Π2,Υ2,Π
∗
2,Υ

∗
2 are polynomials. We

also assume, without loss of generality, that these functions are non-decreasing.
Let x ∈ dom f ∩ dom g and consider the following system:{
y(0) = q(x)

y′(t) = p(y(t))

{
z(0) = q∗(x)

z′(t) = p∗(z(t))

{
w(0) = y1(0)z1(0)

w′(t) = p1(y(t))z1(t) + y1(t)p∗1(z(t))

(3)
where we are using the notation p1, z1 and p∗1 to indicate the first component of
the vectors. Note that the solution of (3) for the variable w is: w(t) = y1(t)z1(t)
and that this system has polynomial right hand terms. We can now proceed with
the analysis of the boundaries. Since f, g ∈ ATSE, from Definition 23, we con-
clude (taking µ = 0) that for t ≥ Π1(‖x‖)Π2(0) we have ‖(y1(t), . . . , ym(t)) −
f(x)‖ ≤ e−0 = 1 and ‖y(t)‖ ≤ Υ1(‖x‖)Υ2(t). This implies that ‖f(x)‖ ≤
1 + ‖y(t)‖ ≤ 1 + Υ1(‖x‖)Υ2(t). In particular, taking t = Π1(‖x‖)Π2(0) gives
‖f(x)‖ ≤ 1 + Υ1(‖x‖)Υ2(Π1(‖x‖)Π2(0)). A similar argument yields ‖g(x)‖ ≤
1 + Υ∗1(‖x‖)Υ∗2(Π∗1(‖x‖)Π∗2(0)). Denote by l(‖x‖) and l∗(‖x‖) these two bounds
for ‖f(x)‖ and ‖g(x)‖, respectively (i.e l(‖x‖) = 1 + Υ1(‖x‖)Υ2(Π1(‖x‖)Π2(0))
and similarly for l∗(‖x‖)). Note that we get that l(‖x‖) and l∗(‖x‖) are exponen-
tial boundaries functions, and this would not have been true if Π2,Υ2,Π

∗
2,Υ

∗
2

were not polynomials. Now consider t ≥ Π1(‖x‖)Π2(µ + ln 2l∗(‖x‖)); then
‖f(x)− y1(t)‖ ≤ e−(µ+ln 2‖g(x)‖) and in the same way if t ≥ Π∗1(‖x‖)Π∗2(µ +
ln(2 + 2l(‖x‖))) then ‖g(x)− z1(t)‖ ≤ e−(µ+ln(2+2‖f(x)‖)). Therefore if we con-
sider times greater than the maximum of these two bounds we have:

‖y1(t)z1(t)− f(x)g(x)‖ ≤ ‖(y1(t)− f(x))g(x)‖+ ‖y1(t)(z1(t)− g(x))‖ ≤ e−µ

this proves the time bound of Definition 23. The space bound is verified by
observing that ‖y1(t)‖ ≤ l(‖x‖) and ‖z1(t)‖ ≤ l∗(‖x‖) and this concludes the
proof.
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Theorem 28 (Composition of ATSE and ATSP) Let f be a function, f ∈
ATSE and g be a function, g ∈ ATSP. Then g ◦ f ∈ ATSE.

Proof. Let f : Rn → Rm and let g : Rm → Rl. We will show that g ◦f ∈ ATSE
by using proposition 6 for g. Indeed, if g ∈ ATSP, by proposition 6, then there
are polynomials Π,Υ,Λ such that proposition 6 holds with corresponding r, δ, z0,
where r is the polynomial defining the differential equation, δ ∈ R is the same
parameter as in proposition 6, and z0 is the initial condition of the system. In
the same way we obtain that there exist two exponential boundary functions
Π′1,Υ

′
1, and two polynomials Π′2,Υ

′
2 such that f ∈ ATSE(Π′1Π′2,Υ

′
1Υ′2) with

corresponding parameters d, p, q for the dimension and polynomials defining
the system. Assume, without loss of generality, that all the functions used as
boundaries for definitions of f and g are increasing functions. Let x ∈ Rn and
consider the following system:{

y(0) = q(x)

y′(t) = p(y(t))

{
z(0) = z0

z′(t) = r(z(t), y1..m(t))

{
x(0) = x

x′(t) = 0

where y1..m(t) = (y1(t), . . . , ym(t)). Define v(t) = (x(t), y(t), z(t)). Then it
immediately follows that v satisfies a PIVP of the form:{

v(0) = poly(x)

v′(t) = poly(v(t)).
(4)

We will show that the polynomial IVP (4) computes g◦f according to Definition
23. First we check the space bound condition of that definition. By definition
of v we have

‖v(t)‖ = max(‖x(t)‖, ‖y(t)‖, ‖z(t)‖)
≤ max(‖x‖, ‖y(t)‖,Υ(supu∈[t,t−δ]‖y1..m(u)‖, t))
≤ exp(‖x‖) poly(supu∈[t,t−δ]‖y(u)‖, t)
≤ exp(‖x‖) poly(supu∈[t,t−δ]Υ

′
1(‖x‖)Υ′2(u), t)

≤ exp(‖x‖) poly(t)

where the notation poly and exp indicate an unspecified polynomial and an
unspecified exponential boundary function, respectively. This proves the space
bound.

Let us now tackle the time bound of Definition 23. Define x̄ = f(x), Υ∗(α) =
Υ′1(α)Υ′2(Π′1(α)Π′2(0))+1 and Π′′(α, µ) = Π′1(α)Π′2(Λ(Υ∗(α), µ))+Π(Υ∗(α), µ).
Note that Υ∗ is an exponential boundary function. Furthermore, we can easily
find two functions, Π∗1 and Π∗2, such that 0 ≤ Π′′(α, µ) ≤ Π∗1(α)Π∗2(µ) where
Π∗1 is an exponential boundary function and Π∗2 is a polynomial. From the fact
that f ∈ ATSE(Π′1Π′2,Υ

′
1Υ′2), by using time t∗ = Π′1(‖x‖)Π′2(0), we conclude
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that ‖y1..m(t∗)− f(x)‖ ≤ e−0, which implies that

‖x̄‖ = ‖f(x)‖
≤ ‖y(t∗)‖+ 1

≤ Υ′1(‖x‖)Υ′2(t∗) + 1

= Υ′1(‖x‖)Υ′2(Π′1(‖x‖)Π′2(0)) + 1

= Υ∗(‖x‖).

Let µ > 0. By definition of ATSE, if t ≥ Π′1(‖x‖)Π′2(Λ(Υ∗(‖x‖), µ)) then
‖y1..m(t) − x̄‖ ≤ e−Λ(Υ∗(‖x‖),µ)) ≤ e−Λ(‖x‖,µ). Therefore, due to proposition 6,
we have

t ≥ Π′1(‖x‖)Π′2(Λ(Υ∗(‖x‖), µ)) + Π(‖x̄‖, µ) ⇒ ‖v1..l(t)− g(f(x))‖ ≤ e−µ.

Note that Π′1(‖x‖)Π′2(Λ(Υ∗(‖x‖), µ))+Π(‖x̄‖, µ) depends exponentially on ‖x‖,
but only polynomially on µ. This shows the time bound for ATSE.

4.3 Analog characterization of FEXPTIME

Finally, we can state one of the main results of this paper. By adapting the
construction already developed in [BGP17b], we can show the equivalence be-
tween the class ATSE and the class of FEXPTIME of functions computable in
exponential time. This equivalence is described by the following theorem:

Theorem 29 (FEXPTIME equivalence) Let f : Γ∗ → Γ∗. Then f ∈
FEXPTIME if and only if f is emulable under ATSE.

Next we proceed with the proof of Theorem 29. We will prove the direct
and reverse direction of the theorem separately.

For the direct direction of Theorem 29, we have to show that if f ∈ FEXPTIME,
then f is emulable under ATSE. Suppose that f is computable by a Turing ma-
chine M . To achieve our purpose, we will need once again to be able to iterate
the transition function of M , which belongs to ATSP, due to Theorem 18, with
the help of Theorem 19. The main difference to the polynomial case will be the
number of iterations of the transition function required to simulate the func-
tioning of the Turing machine M until it halts. Since f ∈ FEXPTIME, the
number of steps which will have to be simulated is exponential on the size of
the input and not polynomial as in the original case analyzed in [BGP17b].
Nevertheless, an exponential version of Theorem 19 is not necessary, and the
original polynomial version is enough for our goal. More concretely, let us show
in more detail how the construction of the simulation is made.

Let us assume that M = (Q,Σ, b, δ, q0, F ), where Σ = {0, 1, . . . , k − 2} with
b = 0, and γ(Γ) ⊂ Σ\{b}, and consider an exponential boundary function
eM (|w|) ≡ K |w| ∈ N for some constant K ∈ N such that for any word w ∈
Γ∗ the TM M halts in at most eM (|w|) steps, that is M [eM (|w|)](c0(γ(w))) =
c∞(γ(f(w))). We assume that Ψk(w) = (0.γ(w), |w|) for any word w ∈ Γ∗ as
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before. Define µ = ln(4k2) and h(c) = M(c, µ) for all c ∈ R4. Define I∞ =
〈CM 〉, where CM is the set of all configurations of M , and In = I∞ + [εn, εn]4

where εn = 1
4k2+n for all n ∈ N. Note that εn+1 ≤ εn

k and that ε0 ≤ 1
2k2 − e−µ.

Due to Theorem 18, we have that the transition function of this machine, h,
satisfies h ∈ ATSP and h(In+1) ⊆ In. In particular ‖h[n](c̄)−h[n](c)‖ ≤ kn‖c−c̄‖
for all c ∈ I∞, c̄ ∈ In, and n ∈ N. Let δ ∈ [0, 1

2 [ and define J =
⋃
n∈N

In × [n −
δ, n+ δ]. Then apply Theorem 19 to the function h to get h∗δ : J → I0 ∈ ATSP
such that for all c ∈ I∞ and n ∈ N we have h∗δ(c, n) = h[n](c).

Let πi denote the ith projection, that is, πi(x) = xi. Then πi ∈ ATSP.
Take g(y, l) = π3(h∗δ(0, b, y, q0, eM (l))). Note that g is well defined. Indeed, if
(y, l) = Ψk(w) for some w ∈ Γ∗, then y = 0.γ(w), l = |w|, and (0, b, y, q0) =
〈(λ, b, γ(w), q0)〉 = 〈c0(γ(w))〉 ∈ I∞. Therefore, by construction, for any word
w ∈ Γ∗ we have

g(Ψk(w)) = π3(h∗δ(〈c0(γ(w))〉, eM (|w|)))
= π3(h[eM (|w|)]〈c0(γ(w))〉)
= π3(〈C [eM (|w|)]

M (c0(γ(w)))〉)
= π3(〈c∞(γ(f(w)))〉)
= 0.γ(f(w)) = π1(Ψk(f(w))).

Recall that to show the validity of the emulation we need to compute Ψk(f(w))
and so far we only have the first component, the output of the tape encoding,
but we miss the second component: its length. To complete the task, we can
proceed similarly as in section 3 and apply the function tlengthM from [BGP17b]
presented there.

In particular, we get that tlengthM (g(Ψk(w)), |w|+eM (|w|)) = |0.γ(f(w))| =
|f(w)|, since 0.γ(f(w)) does not contain any blank character by definition of γ
and |f(w)| ≤ |w|+ eM (|w|). What we have just showed above proves that

ḡ(Ψk(w)) ≡ (g(Ψk(w)), tlengthM (g(Ψk(w)), |w|+ eM (|w|))) (5)

emulates f according with Definition 20. To conclude the direct direction of the
theorem, the last result to prove is that ḡ ∈ ATSE.

Recalling that g(Ψk(w)) = π3(h∗δ(〈c0(γ(w))〉, eM (|w|))), we conclude from
Theorem 19 that h∗δ ∈ ATSP. It is trivial to show that eM ∈ ATSE. Then, due
to the composition theorem, Theorem 28, we obtain that h∗δ(〈c0(γ(w))〉, eM (|w|)) ∈
ATSE. Due to (5), where g(Ψk(w)) = π3(h∗δ(〈c0(γ(w))〉, eM (|w|))), and since
tlength, π3 ∈ ATSP and h∗δ(〈c0(γ(w))〉, eM (|w|)), eM ∈ ATSE, we can apply
again Theorem 28 to conclude that ḡ ∈ ATSE and thus prove the direct direc-
tion of Theorem 29.

We now proceed with the reverse direction of the proof. In other words, we
have to show that if f is emulable under ATSE, then f ∈ FEXPTIME. The
argument presented here is similar to the one already provided in [BGP17b] for
the ATSP equivalence. The main difference is the nature of the boundaries. To
be able to prove this result, it is necessary to introduce a theorem about the
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complexity of solving polynomial differential equations. The proof and more
details about the theorem can be found in [PG16]. Before we state this the-
orem, we need to introduce some notation. We use the multi-index notation
for multivariate polynomials as follows: a monomial xα1

1 . . . xαkk is represented
by xα, where x = (x1, . . . , xk), α = (α1, . . . , αk), |a| = α1 + . . . + αk is the
degree of the monomial. For any multivariate polynomial p(x) =

∑
|α|≤k aαx

α

we call k the degree of p, k = deg(p), if k is the minimal integer for which the
condition p(x) =

∑
|α|≤k aαx

α holds, and we denote the sum of the norm of the

coefficients by Σp =
∑
|α|≤k |aα|. For a vector of polynomials, we define the

degree and Σp as the maximum over all components. For any continuous y and
polynomial p, define the pseudo-length as:

PsLeny,p(a, b) =

∫ b

a

Σp max(1, ‖y(u)‖)deg(p)du

We are now in condition to state the above mentioned theorem.

Theorem 30 ([PG16]) Let I = [a, b] be an interval, p : Rn → Rn be such
that each of its one-dimensional components is a polynomial of degree at most
k, and let y0 ∈ Rn. Assume that y : I → Rn is a solution of the IVP y(a) = y0,
y′(t) = p(y(t)). Then y(b) can be computed with precision 2−µ in time bounded
by poly(deg(p), PsLeny,p(a, b), log ‖y0‖,Σp, µ)n.

More precisely, the theorem states that there is a Turing machine M such
that for any oracle O representing (a, y0, p, b) and any input µ ∈ N, M outputs
a value MO(µ) satisfying ‖MO(µ) − y(b)‖ ≤ 2−µ, where y is the solution of
the previous differential equation and the number of steps of the machine is
bounded by the above expression.

Now we can continue with the proof of the reverse direction of Theorem 29.
Assume that f is emulable under ATSE. Let g be the function used in the
emulation which satisfies (2). Then g ∈ ATSE(Π1Π2,Υ1Υ2), where d is the
dimension and p, q are the polynomials generating the ATSE dynamical system
associated to g. Recall that, by definition of the class ATSE, Υ1,Π1 are ex-
ponential boundary functions and Υ2,Π2 are polynomials. Let w ∈ Γ∗. We
will now describe an FEXPTIME algorithm to compute f(w). Consider the
following system

y′(t) = p(y(t)), y(0) = q(Ψk(w)).

Note that the coefficients of p, q and q(Ψk(w)) are polynomially computable in
the sense of computable analysis. To show that f ∈ FEXPTIME, we have to
present an algorithm which, on input x computes f(x) in exponential time. The
algorithm works in two steps: first, we compute a rough approximation of the
output to be able to guess the length of the output. Then we rerun the system
with enough precision to get the full output.

Let tw = Π1(|w|)Π2(2) for any w ∈ Σ∗. Note that tw is computable and
that it is exponentially bounded in |w| because Π1 is an exponential boundary
function. Now apply Theorem 30 to compute ȳ = (ȳ1, ȳ2) ∈ R2 such that ‖ȳ −
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y(tw)‖ ≤ e−2. This operation takes a computational time that is exponential in
|w| because tw is exponentially bounded and because

PsLeny,p(0, tw) =

∫ tw

0

Σp max(1, ‖y(u)‖)deg(p)du

≤
∫ tw

0

Σp max

(
1, sup
t∈[0,tw]

‖y(t)‖
)deg(p)

du

= Σp max

(
1, sup
t∈[0,tw]

‖y(t)‖
)deg(p)

tw

= poly(tw, sup
[0,tw]

‖y(t)‖)

and, by construction, ‖y(t)‖ ≤ Υ1(‖Ψk(w)‖)Υ2(tw) for t ∈ [0, tw] where Υ1 is
an exponential boundary function and Υ2 is a polynomial (we assume, with-
out loss of generality, that Υ2 is an increasing function), which implies that
PsLeny,p(0, tw) ≤ poly(tw,Υ1(‖Ψk(w)‖)Υ2(tw)) = exp(|w|). Furthermore, by
definition of tw, we have ‖y(tw)− g(Ψk(w))‖ ≤ e−2 and thus ‖ȳ−Ψk(f(w))‖ ≤
2e−2 ≤ 1

3 . But, since Ψk(f(w)) = (0.γ(f(w)), |f(w)|), from ȳ2 we can find |f(w)|
by rounding to the closest integer. In other words we can compute |f(w)| in ex-
ponential time in |w|. Note that this implies that |f(w)| is at most exponential
in |w|.

Let t′w = Π1(|w|)Π2(2 + |f(w)| ln k). Note that there is always an expo-
nential boundary function on |w| such that it is greater than t′w. Indeed,
Π1 is an exponential boundary function, Π2 is a polynomial, and |f(w)| is
at most exponential in |w|. We can then apply the same reasoning and use
again Theorem 30 to get an ỹ such that ‖ỹ − y(t′w)‖ ≤ e−2−|f(w)| ln k. Once
again this operation takes a time exponential in |w|. Furthermore, ‖ỹ1 −
0.γ(f(w))‖ ≤ 2e−2−|f(w)| ln k ≤ 1

3k
−|f(w)|. We claim that this allows us to

recover f(w) unambiguously in exponential time in |w|. Indeed, it implies
that ‖k|f(w)|ỹ1 − k|f(w)|0.γ(f(w))‖ ≤ 1

3 . Unfolding the definition shows that

k|f(w)|0.γ(f(w)) =
∑|f(w)|
i=1 γ(f(w)i)k

|f(w)|−i ∈ N, thus by rounding k|f(w)|ỹ1

to the closest integer we recover γ(f(w)) and then f(w). This is all done in
polynomial time in |f(w)|, and so in exponential time in |w|. This completes
the proof of Theorem 29.

5 Going beyond the exponential case

As we have showed previously in this paper, the key intuition of splitting the
dependence of the time and space boundaries from one single term, Υ, into the
product of two separate components Υ1Υ2 with different behaviors has allowed
us to capture the full power of exponential time computation with the suitable
dynamical systems of polynomial differential equations. Since this procedure
has successfully divided the part of the construction that may continue to de-
pend polynomially on the input from the part that has to depend exponentially
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from the input in order to obtain the equivalence, and since this division process
does not seem to explicitly depend on properties possessed only by exponential
type of boundaries, it is natural to wonder if an equivalence can be obtained in
the same way for other standard complexity classes in a straightforward man-
ner. More precisely, if the second part of the time and space boundaries (Π2 and
Υ2 in the original ATSE definition) is kept polynomial, it is natural to wonder
which classes of functions can be used as first term (Π1 and Υ1) in order to
characterize other classes from standard complexity theory.
Following every step of the proofs, starting from the basic properties and defini-
tions of the GEVAL and ATSE classes, it is possible to see that four conditions
are sufficient for the construction to hold.

In this section we extend the result of Theorem 21 to other complexity
classes. More precisely, we list which conditions the analog classes involved
have to satisfy in order to repeat the simulation process already obtained for
the polynomial case. First, let us define a version of the ATS class in which the
time and space boundaries are defined using functions from a set A of functions
over the reals. More concretely, and in a similar manner to Definition 23, we
introduce the following definition.

Definition 31 Let f ⊆ Rn → Rm and let A be a class of functions from R+ =
[0,+∞[ to R+. Then f ∈ ATSp(A) if and only if f ∈ ATS(Π,Υ) for some
Π,Υ : R2→ R with the following properties:

• Π(‖x‖, µ) = Π1(‖x‖)Π2(µ) for some function Π1 ∈ A and a polynomial
function Π2 (time bound);

• Υ(‖x‖, t) = Υ1(‖x‖)Υ2(t) for some function Υ1 ∈ A and a polynomial
function Υ2 (space bound).

As we already discussed in the previous section, we need to be able to en-
force closure by composition and by arithmetic operations for the class ATSp(A)
to extend the result of Theorem 21 to other complexity classes. Nevertheless,
a more careful analysis of the details of the construction shows that the func-
tions in A should satisfy other additional properties that are trivially shared
by polynomials and exponentials, but that are not obvious for a generic class
A. Before stating sufficient conditions that ensure closure by composition and
by arithmetic operations for the class ATSp(A), we recall the notion of time-
constructible functions [Gol08].

Definition 32 (Time-constructible function) Let f : N→ N be a function.
We call f time-constructible if there exists a Turing machine M which, given as
an input a string 1n, outputs the binary representation of f(n) in time O(f(n)).

We now present conditions that ensure that the result of Theorem 21 can
be extended to other complexity classes.

Definition 33 (Sufficient conditions) Let A be a class of functions from R+

to R+ such that:
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(1) If f, g ∈ A then there exists h ∈ A such that f ? g(x) ≤ h(x) for every
x ∈ R+, where ? denotes any operator in the list of arithmetical operations:
(+,−,×)

(2) If p is polynomial and f ∈ A then there exists g ∈ A such that p ◦ f(x) ≤
g(x) and f ◦p(x) ≤ g(x) for every x ∈ R+. Moreover, the identity operator
belongs to A

(3) If f ∈ A, then there exists g ∈ A such that f(n) ≤ g(n) for every n ∈ N
and g ∈ ATSp(A)

(4) If f ∈ A then there exists g : N → N and h ∈ A and such that f(n) ≤
g(n) ≤ h(n) for every n ∈ N and g is a time-constructible function.

The first condition enforces a form of closure for the main arithmetical op-
erations which are of interest to us. The second condition provides enough
elements so that we can have a variant of Theorem 28 for the class ATSp(A) as
well as allowing us to replace a polynomial in the proofs by a member of A when
needed (polynomials may not belong to A). The third condition is sufficient to
show that if a function is computed by a Turing machine in time f |N, where
f ∈ A 1, then we may replace f by a function g ∈ ATSp(A) which will play a
role similar to the time bound eM in the proof of Theorem 29. The fourth and
final condition is due to the fact that we do not have any assurances about the
computability or complexity needed to compute elements of A. If some bound
f of ATSp(A) has these problems, we need to be sure that we can replace it by
a well-behaved bound g, which can be used to prove the reverse direction of 29,
e.g. when computing the value tw. Of course, the function g should not grow
quicker than any element of A, hence there is the need to ensure that there is a
function h ∈ A which grows at least as quickly as g over the naturals.

We recall that if f ∈ A is a function such that f(N) ⊆ [0,+∞[, then we
say that a Turing machine M computes a set of functions F in time O(f(n))
if there are some c, n0 ∈ N such that if w is a word of length n ≥ n0, then M
computes g(w) ∈ F in time ≤ cf(n). Now we can define FTIME(A) = {g|g :
N → N is a function computable in time O(f(n)) for some f ∈ A}. Another
important remark is the following:

Remark 34 We note that, similarly to what happens to GPVAL and GEVAL,
we can more generally define a class GVAL(A). If A satisfies the conditions of
Definition 33, then it follows from lemma 24 and corollary 26 of [BGP17a] that
GVAL(A) is closed under addition, difference, product, and ODE solving (i. e.,
if f ∈ GVAL(A), then a solution of y′ = f(y) also belongs to GVAL(A)).

At this point we can finally state the following generalized equivalence the-
orem.

1Note that f(N) ⊆ [0,+∞[. Hence, although f(n) might not belong to N when n ∈ N, we
can still say that a Turing machine computes in time ≤ f(n)
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Theorem 35 (Generalized equivalence) Let A be a class of functions that
satisfies the conditions of Definition 33. Then given a function f : Γ∗ → Γ∗, we
have that f ∈ FTIME(A) if and only if f is emulable under ATSp(A).

We will use this theorem to characterize the Grzegorczyk hierarchy with
ODEs. In particular, we will also be able to characterize the class of elementary
computable functions and the class of primitive recursive functions with ODEs.
Nonetheless, before proceeding with the application of Theorem 35 above to the
case of the Grzegorczyk hierarchy, in the next section we show that, similarly
to the case of the polynomial class ATSP, also the generalized class ATSp(A)
can be interpreted just by means of the length of the solutions of the ODEs
involved. This possibility is particularly relevant because it reduces the number
of parameters necessary to describe the complexity of the system. Indeed, while
the ATSp(A) class needed to make use of both a space boundary (on the norm
of the solution) and a time boundary (on the convergence rate), this interpre-
tation makes use of just the length of the solution curve. This perspective was
illustrated at a polynomial level in [BGP17b] introducing another analog class
called ALP, Analog-Length-Polynomial, defined using the length of the solution
y(t), and then proving the equivalence of this class with the class ATSP. In the
next section we follow a similar path and generalize this result to the case of
analog classes constructed over boundaries taken from a generic set of functions
A.

6 Generalization of the Analog Length class

We start this section by introducing the definitions required to understand the
meaning of the Analog Length class.

Definition 36 Let f ⊆ Rn → Rm. We say that f ∈ AL(Π,Υ), where Π :
R2→ R if and only if there exist a multivariate polynomial p with coefficients in
RG and a function q ∈ GPVAL such that for any x ∈ dom(f), there exists (a
unique) y : R→ Rd satisfying for all t ≥ 0:

• y(0) = q(x) and y′(t) = p(y(t));

• ∀µ > 0 if leny(0, t) ≥ Π(‖x‖ , µ) then ‖(y1(t), . . . , ym(t))− f(x)‖ ≤ e−µ;

• ‖y′(t)‖ ≥ 1.

In Definition 36 the first item has the same role of the first condition of
the definition of ATSp(A), which is to describe the evolution of the dynamical
system. The second item is related to the length of the solution y(t). Specifically,
we are requiring that whenever a certain length of the solution is reached by the
system, where the exact amount is dictated by the boundary Π, then it starts
the convergence of the system to the correct value of the function f . The way
this convergence is obtained is similar to one of ATSp(A). Finally, the third
item is necessary to exclude pathological cases in which the evolution of the
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dynamical system is too slow and where it might happen that there is some
M > 0 such that leny(0, t) ≤M for all t ≥ 0, thus making the second condition
meaningless. A example of such situation is provided by the ODE y′ = −y with
initial condition y(0) = 1. It is not difficult to see that its solution is y(t) = e−t

and that as t → +∞, y(t) moves monotonically from the value 1 to 0. Thus
the length of the solution curve of this ODE is bounded even when t → +∞.
We also note that we can avoid this situation, using different requirements. For
example, instead of requiring that ‖y′(t)‖ ≥ 1 for the last condition, we could
have required that there is an component yi of y such that |yi(t)| ≥ 1 for all
t ≥ 0.

Definition 37 Let f ⊆ Rn → Rm and let A be a class of functions from R+ =
[0,+∞[ to R+. Then f ∈ AL(A) if and only if f ∈ AL(Π) for some Π : R2→ R
with the property that Π(‖x‖, µ) = Π1(‖x‖)Π2(µ) for some function Π1 ∈ A and
a polynomial function Π2.

Notice that Definition 37 is just the generalization of 36 when the boundary
Π is taken from a set A, exactly as definition of ATSp(A) was the generalization
of the class ATS.

To proceed with the arguments of this section we now need to introduce a
lemma showing some useful boundaries over multivariate polynomials.

Lemma 38 Let p : Rk → R be a multivariate polynomial of degree n, with
p(x) = Σ|α|≤naαx

α, where α = (α1, . . . , αk) ∈ Nk, |α| = α1 + . . . + αk, and
xα = xα1

1 · · ·xαkk . Then there are polynomials P1, . . . , Pk of degree at most n,
such that

‖p(x)‖ ≤ P1(|x1|) · · ·Pk(|xk|).

Proof. We have

‖p(x)‖ ≤
∑
|α|≤n

|aα| ‖xα1
1 · · ·xαkk ‖ ≤

∑
|α|≤n

|aα| |x1|α1 · · · |xk|αk

Now notice that |xi||α| ≤ max(1, |xi|)n since: (i) if |xi| ≤ 1, then |xi||α| ≤ 1 =

max(1, |xi|)n and (ii) if |xi| ≥ 1, then |xi||α| ≤ |xi|n = max(1, |xi|)n. This
implies that

‖p(x)‖ ≤
∑
|α|≤n

|aα|max(1, |x1|)n · · ·max(1, |xk|)n

≤
(∑

p
)

max(1, ‖x‖)n

≤
(∑

p
)

(1 + |x1|)n · · · (1 + |xk|)n

where
∑
p =

∑
|α|≤n |aα|. This concludes the proof of the lemma.

Let us now assume that the set A considered in this section satisfies the
conditions listed above in Definition 33. Then we obtain an equivalence between
the two analog classes in the form of the following theorem:
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Theorem 39 If A is a class of functions which satisfies the conditions of Def-
inition 33, then ATSp(A) = AL(A).

Proof. The proof of this theorem follows essentially the structure of the proof
of Theorem 18 in [BGP16a]. Let us first suppose that f ∈ ATSp(A), with f :
Rn → Rm. We want to show that f ∈ AL(A). Since f ∈ ATSp(A), there exist
a polynomial p, functions Υ1,Π1 ∈ A, and polynomials Π2,Υ2 satisfying the
conditions of Definition 4 when Π and Υ are given by Π(‖x‖, µ) = Π1(‖x‖)Π2(µ)
and Υ(‖x‖, t) = Υ1(‖x‖)Υ2(t), respectively. We also assume, without loss of
generality, that the polynomials Π2,Υ2 are increasing and take non-negative
values when they have non-negative arguments. Now consider the system{

y(0) = q(x)
z(0) = 0

{
y′(t) = p(y(t))
z′(t) = 1

We now show that this system computes f according to Definition 36. The first
and third condition of Definition 36 are trivially satisfied for the above system.
We now have to show that the second condition holds for some function Π∗,
where Π∗(‖x‖, µ) = Π∗1(‖x‖)Π∗2(µ) and Π∗1 ∈ A and Π∗2 is a polynomial.

We begin by noting that if t < Π(‖x‖ , µ) = Π1(‖x‖)Π2(µ), then by the third
condition of Definition 4

‖y(t)‖ ≤ Υ(‖x‖ , t) = Υ1(‖x‖)Υ2(t) ≤ Υ1(‖x‖)Υ2(Π1(‖x‖)Π2(µ)). (6)

By Lemma 38 applied to Υ2, we obtain two polynomials P̄1, P̄2 such that
0 < Υ2(Π1(‖x‖)Π2(µ)) ≤

(
P̄1 ◦Π1(‖x‖)

) (
P̄2 ◦Π2(µ)

)
. This and (6) imply

that there is some function Ψ1 ∈ A and some polynomial Ψ2 such that ‖y(t)‖ ≤
Ψ1(‖x‖)Ψ2(µ). Using again lemma 38, we can obtain polynomials P1, . . . , Pk, Q1, Q2

such that

‖y′(t)‖ = ‖p(y(t))‖
≤ P1(|y1(t)|) . . . Pk(|yk(t)|)
≤ P1(‖y(t)‖) . . . Pk(‖y(t)‖)
≤ P1(Ψ1(‖x‖)Ψ2(µ)) . . . Pk(Ψ1(‖x‖)Ψ2(µ))

≤ (Q1 ◦Ψ1(‖x‖)) (Q2 ◦Ψ2(µ))

for some polynomials P1, . . . , Pk, Q1, Q2 which we assume without loss of gener-
ality to be increasing. We now have (recall that t < Π1(‖x‖)Π2(µ) by assump-
tion)

leny(0, t) =

∫ t

0

‖y′(u)‖ du

≤
∫ t

0

(Q1 ◦Ψ1(‖x‖)) (Q2 ◦Ψ2(µ)) du

= (Q1 ◦Ψ1(‖x‖)) (Q2 ◦Ψ2(µ)) t

< (Q1 ◦Ψ1(‖x‖)) (Q2 ◦Ψ2(µ)) Π1(‖x‖)Π2(µ)

≤ Λ1(‖x‖)Λ2(µ)
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where Λ1 ∈ A and Λ2 is a polynomial. We have thus concluded that if t <
Π1(‖x‖)Π2(µ), then leny(0, t) < Λ1(‖x‖)Λ2(µ). This implies that if leny(0, t) ≥
Λ1(‖x‖)Λ2(µ), then it must be t ≥ Π1(‖x‖)Π2(µ) which, by assumption, im-
plies that ‖(y1(t), . . . , ym(t))− f(x)‖ ≤ e−µ, which proves the remaining second
condition of Definition 36, thus proving that f ∈ AL(A).

For the reverse implication, let us suppose that f ∈ AL(A). We now want
to show that f ∈ ATSp(A). We first note that f ∈ AL(A) does not necessarily
imply that f ∈ ATSp(A). For example, consider the following IVP{

y′1 = −y1y2

y′2 = y2

{
y1(0) = e−1

y2(0) = 1.
(7)

It is not difficult to see that its solution is y2(t) = et and y1(t) = e−e
t

. Hence
y1(t) converges to the value 0. Note that

leny(0, t) =

∫ t

0

‖y′(u)‖ du =

∫ t

0

eudu = et − 1.

Hence, if t∗ ≥ 0 is such that leny(0, t∗) ≥ µ, we have et
∗ − 1 ≥ µ which implies

that t∗ ≥ ln(1 + µ). When this happens we have that

|0− y1(t)| ≤ y1(ln(1 + µ)) = e−e
ln(1+µ) ≤ e−µ.

In other words, the IVP (7) shows that the constant function 0 belongs to
ALP. On the other hand, the IVP (7) cannot be used to show that 0 ∈ ATSP,
since when t ≥ Π(‖x‖ , µ) for some polynomial Π, we will have ‖y(t)‖ = et

which grows more quickly than any polynomial on t and therefore condition 3
of Definition 4 cannot be satisfied for any polynomial Υ. The solution to this
problem is to rescale the time variable of the system (7) so that the condition
leny(0, t∗) ≥ P (µ), where P is a polynomial, can only achieved for a time
t∗ greater than a polynomial on µ, instead of a time which is subpolynomial
(logarithmic, in the case of the preceding example).

Let us thus assume that f ∈ AL(A). This implies that there is some function
q ∈ GPVAL, a polynomial p, a function Π1 ∈ A, and a polynomial Π2 satisfying
the conditions of Definition 36 where Π is given by Π(‖x‖, µ) = Π1(‖x‖)Π2(µ).
Suppose that y is the solution of y′ = p(y), y(0) = q(x), with y(t) ∈ Rk. We
now wish to define a time rescaling τ such that if ŷ(u) = y(τ(u)), we get that
the condition lenŷ(0, u) ≥ P (µ), where P is a polynomial, only holds when
u ≥ Q(µ) for some polynomial Q. We begin by noting that there is (see lemma
44 of [BGP17a]) a GPVAL function norm : Rk → R with the property that
‖x‖ ≤ norm(x) ≤ ‖x‖ + 1/2. Furthermore, since p ∈ GPVAL and GPVAL
is closed under composition, we conclude that g = norm ◦p ∈ GPVAL, with
g : Rk → R. By definition of GPVAL, we conclude that there is a d × k
matrix r consisting of polynomials with coefficients in RP , with d ≥ 1 and
x0 ∈ RkG, z0 ∈ RdG such that g(x) = z1(x), where z = (z1, . . . , zd) is the solution
of

Jz(x) = r(z), z(x0) = z0. (8)
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Now take ψ : R→ R as ψ(t) = g◦y(t). Note that due to condition 3 of Definition
36.

ψ(t) = g ◦ y(t) = norm(p(y(t))) = norm(y′(t)) ≥ ‖y′(t)‖ ≥ 1.

Next we define the function ψ̂ : R→ R as ψ̂(u) =
∫ u

0
ψ(t)dt. Note that ψ(t) ≥ 1

implies that ψ̂(u) is strictly increasing and thus admits an inverse function ψ̂−1.
Furthermore, since ψ(t) ≥ 1, we have

ψ̂(u) =

∫ u

0

ψ(t)dt ≥ u. (9)

Let us now take ŷ(u) = y ◦ ψ̂−1(u), ẑ(u) = z ◦ ŷ(u), and ŵ(u) = (ψ̂−1(u))′ where
z is the solution of (8). We note that, by using the formula for obtaining the
derivative of an inverse function, we obtain

ŵ(u) = (ψ̂−1(u))′ =
1

ψ̂′(ψ̂−1(u))
=

1

ψ(ψ̂−1(u))
(10)

Using (8), we conclude that

ŷ′(u) = y′(ψ̂−1(u))(ψ̂−1(u))′ = p(y(ψ̂−1(u)))ŵ(u) = p(ŷ(u))ŵ(u)

ẑ′(u) = Jz(ŷ(u))ŷ′(u) = r(z(ŷ(u)))p(ŷ(u))ŵ(u) = r(ẑ(u))p(ŷ(u))ŵ(u).

Furthermore, from (10) we get

ŵ′(u) =

(
1

ψ(ψ̂−1(u))

)′

= −ψ
′(ψ̂−1(u)) · (ψ̂−1(u))′(

ψ(ψ̂−1(u))
)2

= −ψ′(ψ̂−1(u))
1(

ψ(ψ̂−1(u))
)3

= −ŵ3(u)ψ′(ψ̂−1(u)). (11)

Now remark that (z ◦ y)′(ζ) = Jz(y(ζ))y′(ζ) = r(z(y(ζ)))p(y(ζ)). Taking ζ =

ψ̂−1(u), we get

(z ◦ y)′(ψ̂−1(u)) = r(z(y(ψ̂−1(u))))p(y(ψ̂−1(u)))

= r(ẑ(u))p(ŷ(u)).

In particular, if r(1) denotes the first row of r and since ψ(t) = g ◦ y(t) and

g is the first component of the solution of z in (8), we get that ψ′(ψ̂−1(u)) =
r(1)(ẑ(u))p(ŷ(u)). This last equality and (11) yield

ŷ′(u) = p(ŷ(u))ŵ(u)

ẑ′(u) = r(ẑ(u))p(ŷ(u))ŵ(u)

ŵ′(u) = −ŵ3(u)r(1)(ẑ(u))p(ŷ(u)).
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This shows that ŷ, ẑ, ŵ ∈ GVAL. We now prove that this ODE, with the
initial conditions

ŷ(0) = y ◦ ψ̂−1(0) = y(0) = q(x)

ẑ(0) = z ◦ ŷ(0) = z(q(x))

ŵ(u) =
1

ψ(ψ̂−1(0))
=

1

ψ(0)
=

1

g(y(0))
=

1

g(q(x))

computes the function f according to Definition 4. First we remark that, due
to the property that ‖x‖ ≤ norm(x) ≤ ‖x‖+ 1/2, we get

‖y′(t)‖ = ‖p(y(t))‖ ≤ norm ◦p ◦ y(t) = ψ(t)

ψ(t) = norm ◦p ◦ y(t) ≤ ‖p(y(t))‖+ 1/2 = ‖y′(t)‖+ 1/2.

Therefore

leny(0, t) =

∫ t

0

‖y′(u)‖ du ≤
∫ t

0

ψ(t) = ψ̂(t) (12)

ψ̂(t) ≤
∫ t

0

‖y′(u)‖+ 1/2 du ≤ leny(0, t) +
t

2
. (13)

Now note that lenŷ(0, u) =
∫ u

0
‖ŷ′(ζ)‖ dζ =

∫ u
0
‖p(ŷ(ζ))ŵ(ζ)‖ dζ and by using

the variable change t = ψ̂−1(ζ), we get ζ = ψ̂(t), dζ = ψ̂′(t)dt, and

lenŷ(0, u) =

∫ ψ̂−1(u)

0

∥∥∥p(ŷ(ψ̂(t)))ŵ(ψ̂(t))
∥∥∥ ψ̂′(t)dt

=

∫ ψ̂−1(u)

0

∥∥∥∥p(y(t))
(
ψ̂−1

)′
(ψ̂(t))

∥∥∥∥ ψ̂′(t)dt
=

∫ ψ̂−1(u)

0

‖p(y(t))‖ 1

ψ̂′(ψ̂−1(ψ̂(t)))
ψ̂′(t)dt

=

∫ ψ̂−1(u)

0

‖p(y(t))‖ dt

= leny(0, ψ̂−1(u)) (14)

≤ ψ̂(ψ̂−1(u)) (use (12))

= u.

Using the last inequality and noting that ‖ŷ(u)− ŷ(0)‖ =
∥∥∫ u

0
ŷ′(t)dt

∥∥ ≤ ∫ u
0
‖ŷ′(t)‖ dt =

lenŷ(0, u), we get that

‖ŷ(u)‖ ≤ ‖ŷ(0)‖+ ‖ŷ(u)− ŷ(0)‖
≤ ‖ŷ(0)‖+ lenŷ(0, u)

≤ ‖ŷ(0)‖+ u

≤ q(x) + u
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and thus ŷ(u) is bounded by a polynomial on x and u. Using this result together
with the fact that the solution z of (8) belongs to GPVAL, we conclude that
ẑ(u) = z ◦ ŷ(u) is also bounded by a polynomial on x and u. Concerning the
case of ŵ, we note that due to (10) we have (recall that ψ(t) ≥ 1 for any t)

‖ŵ(u)‖ =

∥∥∥∥∥ 1

ψ(ψ̂−1(u))

∥∥∥∥∥ ≤ 1.

Therefore ‖ŵ(u)‖ is also polynomially bounded. We have thus shown that
condition 3 of Definition 4 holds. We now only have to show that condition 2
holds. Let t ≥ 2Π(‖x‖, µ) = 2Π1(‖x‖)Π2(µ). We note that (9) yields us

ψ̂−1(u) ≤ u

This last inequality, together with (14) and (13), yields leny(0, u) ≥ ψ̂(u)− u/2
and

lenŷ(0, t) = leny(0, ψ̂−1(t))

≥
(
ψ̂(ψ̂−1(t))− ψ̂−1(t)

2

)
≥ t− t

2

=
t

2
≥ Π(‖x‖, µ)

which implies condition 2 of Definition 4 due to condition 2 of Definition 36.
This shows that f ∈ ATSp(A).

7 Application to the Grzegorczyk hierarchy

We start this section by briefly recalling the definition of the Grzegorczyk hier-
archy. The Grzegorczyk hierarchy, originally proposed by Andrzej Gregorczyk
in 1953 in [Grz53], is a hierarchy of classes of functions from the naturals to
the naturals, defined recursively. For our specific purpose, the first two levels
of the hierarchy are not relevant, since they only include trivial functions such
as addition and multiplication, which are obviously computable in polynomial
time. The third level, which we indicate with the notation ξ3 coincides with
the set of all elementary functions. The definition of each level of the hierarchy
for n ≥ 3 involves the generator functions, Gn, whose definition is also recur-
sive. Let G2 : N → N be the exponential function G2(x) = 2x and for n ≥ 2

define: Gn+1(x) = G
[x]
n (1), where the notation G

[x]
n (1) stands for the iteration

of the function Gn for x times evaluated on the value 1, i.e. G
[0]
n (x) = x and

G
[k+1]
n (x) = Gn(G

[k]
n (x)). Then, formally [Odi99, Definition VIII.8.12]:
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Definition 40 (Grzegorczyk Hierarchy) For n ≥ 3 the nth level of the hi-
erarchy, ξn, is the smallest class of functions containing the zero function, the
successor function, the projections, cut-off subtraction and Gn−1 which is closed
under composition, bounded sum and bounded product.

It can be shown that each level is properly included in the next one, ξn−1 (
ξn ( ξn+1, and that all together they constitute a hierarchy that satisfies⋃
n∈N

ξn = PR, where PR is the set of primitive recursive functions. This is

the reason way our analog characterization of the hierarchy naturally implies a
characterization of the class of primitive recursive functions as well. Moreover,

for any function f ∈ ξn, there is some m ∈ N such that f(x) ≤ G
[m]
n−1(x) (see

[Odi99, Theorem VIII.7.8]. Although this theorem is proved for the case of the
elementary functions ξ3, its proof generalizes to ξn for any n ≥ 3). We also note
[Odi99, Theorem VIII.8.14] that f belongs to ξn iff it is computable in time
belonging to ξn. Combining the last two facts we conclude that f belongs to

ξn iff it is computable in time bounded by G
[m]
n−1(x) for some m ∈ N. We will

use this last characterization to characterize ξn in the context of Theorem 35
to avoid having to deal with bounded sums and products.

7.1 Analog characterization of each level

In this section our objective is to use ODEs to characterize the classes ξn, n ≥ 3,
defining the Grzegorczyk hierarchy, with the use of Theorem 35.

However, a problem arises if one wants to use Theorem 35 to characterize
ξn for all n ≥ 3. When characterizing the classes FP and FEXPTIME, we
had to rely on the classes ATSP and ATSE which are defined using the class
ATS with polynomial and exponential/polynomial bounds, respectively, which
are defined over R+ = [0,+∞[. In the polynomial and exponential cases, this
was not problematic since polynomial and exponential functions over N admit

a trivial extension to R. This is not the case for the time bounds G
[m]
n−1 for

the Grzegorczyk hierarchy, which are defined using iteration and hence do not
admit a trivial extension to R. To solve this problem, in this section we show
how we can obtain functions in GVAL which essentially work as an extension

of G
[m]
n−1. To achieve this purpose, we have to be able to iterate a function with

ODEs over integers, since the definition of G
[m]
n−1 relies on the use of iterations,

as mentioned earlier.
With this objective in mind, we now present a construction to iterate func-

tions with ODEs which is based on the ODE

y′ = c(b− y)3φ(t). (15)

that was already studied in [Bra95], [CMC00], [GCB08]. This ODE is called the
targeting equation, for reasons that will become evident in a moment. In (15)

we assume that φ : R+ → R+ is such that
∫ 1

2

0
φ(t)dt > 0 (for example one could
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consider φ(t) = sin(2πt) as
∫ 1

2

0
sin(2πt)dt = 1 > 0), b ∈ R is the target and

c ≥ 1

2γ2
∫ 1/2

0
φ(t)dt

(16)

where γ > 0 is the targeting error. Let us consider separately two cases:

• Let us first assume that y(0) 6= b. Due to (16), we conclude that

γ2 ≥ 1

2c
∫ 1/2

0
φ(t)dt

.

Since (15) is a separable equation, we get that

1

(b− y(1/2))2
− 1

(b− y(0))2
= 2c

∫ 1/2

0

φ(t)dt =⇒

1

2c
∫ 1/2

0
φ(t)dt

> (b− y(1/2))2.

This implies that γ > |b− y(1/2)|, i.e. y(1/2) is γ-close to the value b (the
target).

• If y(0) = b, then it is trivial to notice that y(t) = b is the solution of (15)
and thus the condition γ > |b− y(1/2)| is true.

One can also consider the more general targeting ODE

z′ = c(b(t)− z)3φ(t), (17)

where b̄ : R→ R is a function with the property that
∣∣b(t)− b∣∣ ≤ ρ for all

t ∈ [0, 1/2], with b ∈ R (the target), ρ ≥ 0, c satisfies (16) where γ > 0 is the
targeting error. A similar analysis (see [GCB08] for more details) would yield
that |z(1/2)− b| < ρ+ γ, independently of the initial condition y(0) ∈ R.

We also note (to our knowledge, this was not mentioned in the literature be-
fore) that c might not be a fixed value, but instead some function c : R→ R. In

this case, if c(t) ≥
(

2γ2
∫ 1/2

0
φ(t)dt

)−1

for all t ∈ [0, 1/2], then γ > |b− y(1/2)|.
This follows from known facts of the ODE theory (see e.g. [HW95, pp. 511–514])
and from the conclusions that we obtained for the previous targeting ODE. A
variable value for c has the advantage of allowing a dynamic targeting error,
i.e. γ does not need to be fixed a priori and can be dynamically changed by
updating the value of c. However, for the purpose of this paper, it is enough to
assume that c is a fixed constant.

We will now show how the targeting ODE (17) can be used to obtain a
function f : R3 → R2 ∈ GVAL such that the solution of the IVP y′ = f(t, y),
y(0) = (1, 1) satisfies |y1(t)−G2(k)| ≤ 1/4 (i.e.

∣∣y1(t)− 2k
∣∣ ≤ 1/4) for all

t ∈ [k, k+ 1/2] and k ∈ N, where y = (y1, y2). But before presenting this result,
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Figure 3: The graph of the function l2 of Lemma 41 is depicted on the right
side (the red graph assumes x = 1.2 while the blue graph assumes x = 0.2).
The left graph depicts the function σ from Lemma 42.
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Figure 4: The graph of the function s defined on equation (18).

we have to present several auxiliary results. We begin by introducing the error-
correcting function l2 which was presented in [GCB08, Lemma 9]. Its graph is
depicted in Fig. 3.

Lemma 41 Let l2 : R2 → [0, 1] be given by l2(x, y) = 1
π arctan(4x(y−1/2))+ 1

2 .
Suppose also that a ∈ {0, 1}. Then, for any ā, x ∈ R satisfying |a− ā| ≤ 1/4
and x > 0, we obtain |a− l2(ā, x)| < 1/x.

We can see the function l2 as a function which reduces the error around a
1/4-neighborhood of the integers 0 and 1 by an amount specified by 1/x, where
x > 0 is the first argument of l2.

Proceeding again as in [GCB08], let us take the function s defined by

s(t) =
1

2

(
sin2(2πt) + sin(2πt)

)
. (18)
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Figure 5: Iterating a function with an ODE. Here the dashed (red) and blue
(solid) graphs represent the ideal behavior of y1 and y2, respectively, in (20).

The graph of this function is depicted in Fig. 4. A simple analysis shows that
this function takes values between 0 and 1 in [0, 1/2] and, in particular, between
3/4 and 1 when x ∈ [0.16, 0.34], and between − 1

8 and 0 on the time interval
[1/2, 1]. Therefore, if we take the GVAL function φ : R2 → [0, 1], defined by

φ(t, y) = l2(s(t), y), (19)

we conclude that
∫ 1/2

0
φ(t, y)dt > 3/4 × (0.34 − 0.16) = 0.135 > 0 (assuming

that y ≥ 4) and |φ(t, y)| < 1/y for all t ∈ [1/2, 1] (i.e. y allows us to provide an
upper bound 1/y for φ(t) in the time interval [1/2, 1]). Since φ has period 1 on

t, we conclude that
∫ k+1/2

k
φ(t, y)dt > 0.135 > 0 if y ≥ 4 and |φ(t, y)| < 1/y for

all t ∈ [k + 1/2, k + 1], where k ∈ N is arbitrary.
The following function σ is also from [GCB08, Proposition 5].

Lemma 42 Let σ : R→ R be a function defined by σ(x) = x − 0.2 sin(2πx).
Then given ε ∈ [0, 1/2), there is some contracting factor λε ∈ (0, 1) such that,
∀δ ∈ [−ε, ε], |σ(n+ δ)− n| < λεδ where n ∈ Z is arbitrary.

The function σ behaves as a uniform contraction in a neighborhood of the
integers Z. Contrarily to the function l2 which works only for the integer val-
ues 0 and 1, σ has the advantage of being a contraction around every inte-
ger. However, the rate of contraction is fixed for σ while it can be dynam-
ically prescribed for l2. We remark, as noted in [GCB08], that we can take
λ1/4 = 0.4π − 1 ≈ 0.2566371.

Let us now show how we can obtain a function f : R3 → R2 ∈ GVAL such
that the solution of the IVP y′ = f(t, y), y(0) = (1, 1) satisfies

∣∣y1(t)− 2k
∣∣ ≤ 1/4
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for all t ∈ [k, k + 1/2] and k ∈ N, where y = (y1, y2). This will be done by
iterating the function f : N→ N defined by f(x) = 2x via the ODE{

y′1 = c(2σ(y2)− y1)3φ1(t, y1, y2)
y′2 = c(σ(y1)− y2)3φ2(t, y1, y2)

(20)

with initial condition y1(0) = y2(0) = 1, where

φ1(t, y1, y2) = φ(t, 16c((2σ(y2)− y1)4 + 1) + 4) (21)

φ2(t, y1, y2) = φ(−t, 16c((σ(y1)− y2)4 + 1) + 4)

and c = 1000. Its (ideal) behavior is depicted in Fig. 5. We note that φ1 is
essentially the function φ from (19), where the main change is made on the upper
bound for φ on the time intervals [k + 1/2, k + 1], where k ∈ Z. In this case,
noting that

∣∣x3
∣∣ ≤ x4 + 1 for all x ∈ R, we have that for any t ∈ [k+ 1/2, k+ 1]

we have

|φ1(t, y1, y2)| ≤ 1

16c((2σ(y2)− y1)4 + 1) + 4

<
1

16c(2σ(y2)− y1)3

which implies that |y′1(t)| < 1/16 whenever t ∈ [k + 1/2, k + 1] for some
k ∈ Z. Furthermore, since 16c((2σ(y2) − y1)4 + 1) + 4 ≥ 4, we conclude that∫ k+1/2

k
φ1(t, y1, y2)dt > 0.135 > 0 and therefore that the first equation of (20)

defines a targeting equation on the time interval [0, 1/2] (or, more generally, on
time intervals with the format [k, k + 1/2] where k ∈ Z) with targeting error
1/16, since according to (16)

c = 1000 >
1

2
(

1
16

)2
0.135

>
1

2
(

1
16

)2 ∫ 1/2

0
φ1(t, y1, y2)dt

.

Using a similar argument we conclude that |y′2(t)| < 1/16 whenever t ∈
[k, k + 1/2] for some k ∈ Z and that the second equation of (20) defines a
targeting equation on the time interval [1/2, 1] (or, more generally, on time
intervals with the format [k+1/2, k+1] where k ∈ Z) with targeting error 1/16.

Let us now analyze in more detail the ODE (20). When t ∈ [0, 1/2], we
have that |y′2(t)| ≤ 1/16, which further implies that |y2(t)− 1| ≤ 1/32 when
t ∈ [0, 1/2], since

|y2(t)− y2(0)| =
∣∣∣∣∫ t

0

y′2(t)dt

∣∣∣∣
≤
∫ t

0

|y′2(t)| dt

≤
(

1

2
− 0

)
1

16
=

1

32
.
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Now notice that, since |y2(t)− 1| ≤ 1/32, then

|2σ(y2(t))− 2 · 1| ≤ 2 |y2(t)− 1|
≤ 1/16.

Hence, since the equation for y1 in (20) defines a targeting equation with
targeting error γ = 1/16, we get that

∣∣y1(1/2)− 21
∣∣ < 1/16 + 1/16 = 1/8.

Now, on the next half-unit interval, we have that |y′1(t)| ≤ 1/16 which implies
that

∣∣y1(t)− 21
∣∣ < 1/8 + 1/32 = 5/32 for all t ∈ [1/2, 1]. This implies that∣∣σ(y1(t))− 21

∣∣ ≤ λ1/4

∣∣y1(t)− 21
∣∣ < 1/24 for all t ∈ [1/2, 1]. Hence y2 will be-

come a targeting equation in the time interval [1/2, 1] with targeting error γ =
1/16 and we will have

∣∣y2(1)− 21
∣∣ < 1/24 + 1/16 < 1/8. Now the procedure re-

peats itself in subsequent intervals. For example, when t ∈ [1, 3/2], we will have
that |y′2(t)| ≤ 1/16, which further implies that

∣∣y2(t)− 21
∣∣ < 1/8 + 1/32 < 5/32

when t ∈ [1, 3/2]. By a similar argument as in the previous case, we conclude
that ∣∣2σ(y2(t))− 2 · 21

∣∣ ≤ 2λ1/4

∣∣y2(t)− 21
∣∣

≤ 2λ1/45/32

≤ 1/12.

and since the equation for y1 in (20) defines a targeting equation with targeting
error γ = 1/16, we get that

∣∣y1(3/2)− 22
∣∣ < 1/12 + 1/16 = 7/48. On the next

half-unit interval, we have that |y′1(t)| ≤ 1/16 which implies that
∣∣y1(t)− 22

∣∣ <
7/48+1/32 = 17/96 for all t ∈ [3/2, 2]. This implies that

∣∣σ(y1(t))− 22
∣∣ < 1/22

for all t ∈ [3/2, 2]. Hence y2 will become a targeting equation in the time
interval [3/2, 2] with targeting error γ = 1/16 and we will have

∣∣y2(2)− 22
∣∣ <

1/22 + 1/16 < 1/8. The procedure repeats itself on subsequent intervals and we
conclude that

|y2(t)−G2(k)| ≤ 1/4 for all t ∈ [k, k + 1/2] and k ∈ N.

This result can be generalized as shown in the following theorem.

Theorem 43 Given the function Gn : N → N, n = 2, 3, . . ., there is an
IVP y′ = fn(t, y), y(0) = y0, where fn ∈ GVAL and y0 ∈ Nl, such that
|y1(t)−Gn(k)| ≤ 1/4 for all t ∈ [k, k + 1/2] and k ∈ N\{0}.
Proof. The proof is done by induction on n. The base case was performed just
before the proof of this theorem (note that y2 in the above argument corresponds
to y1 in the context of this theorem).

Now we go to the induction step. Suppose that y′ = fn(t, y), y(0) = y0

satisfies the conditions of the theorem. Then we want to show that there is
a system y′ = fn+1(t, y) which simulates Gn+1 in the sense mentioned in the
theorem. Consider the ODE z′ = fn(τ, y)τ ′ = cfn(τ, y)(w + 1/4− τ)3θ1(t, τ, w)

τ ′ = c(w + 1/4− τ)3θ1(t, τ, w)
w′ = c(σ(z1)− w)3θ2(t, z1, w)

(22)
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Figure 6: Iterating the function Gn with an ODE. Here the dashed (red), solid
(blue), and dotdashed (green) graphs represent the ideal behavior of z1, w, and
τ , respectively, in (22).

with initial condition z(0) = y0, τ(0) = 0, w(0) = 1 where

θ1(t, τ, w) = φ(t, 16c((w + 1/4− τ)4 + 1) + 4)

θ2(t, z1, w) = φ(−t, 16c((σ(z1)− w)4 + 1) + 4)

and c = 5000. Its (idealized) behavior is depicted in Fig. 6. We note that θ1

and θ2 behave like φ1 and φ2 of (21), respectively. By using arguments similar
to those presented after (21), we conclude that: (i) |τ ′(t)| ≤ 1/16 whenever
t ∈ [k + 1/2, k + 1] for some k ∈ Z and the equation for τ in (22) defines a
targeting equation on time intervals with the format [k, k + 1/2] where k ∈ Z,
with targeting error 1/32 and (ii) |w′(t)| ≤ 1/16 whenever t ∈ [k, k + 1/2] for
some k ∈ Z and that the equation for w in (22) defines a targeting equation on
time intervals with the format [k+ 1/2, k+ 1] where k ∈ Z, with targeting error
1/32.

We note also that, by construction z(t) = y(τ(t)), where y is the solution of
y′ = fn(t, y), y(0) = y0. Therefore the value of z only depends on the value of
τ . We now have to analyze the behaviour of τ and w. This simulation works
again in half-unit time intervals. We break the following analysis in parts, each
one related to one half-unit interval.

On the first half-unit interval, where t ∈ [0, 1/2], we have that w is (almost)
constant, since |w′(t)| ≤ 1/16, which implies that |w(t)− 1| ≤ 1/32 for all t ∈
[0, 1/2]. Therefore, since the equation governing the behaviour of τ in this time
interval [0, 1/2] is a targeting equation, we conclude that |τ(1/2)− (1 + 1/4)| ≤
1/32 + 1/32 = 1/16, since the targeting error is 1/32. This gives that τ(1/2) ∈
[1 + 3/16, 1 + 5/16].

We now proceed with the second time interval. Since |τ ′(t)| ≤ 1/16 in the
time interval [1/2, 1] we conclude that τ(t) ∈ [1 + 1/8, 1 + 3/8] ⊆ [1, 3/2] for
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t ∈ [1/2, 1]. This implies, by the induction hypothesis, that z(t) = y(τ(t)) is such
that |z1(t)−Gn(1)| ≤ 1/4 for all t ∈ [1/2, 1]. Note that |σ(z1(t))−Gn(1)| ≤
λ1/4 |z1(t)−Gn(1)| ≤ λ1/4/4 < 1/15 for all t ∈ [1/2, 1]. Since the targeting
error is 1/32, we conclude that |w(1)−Gn(1)| ≤ 1/32 + 1/15.

Now the procedure repeats itself on the time interval [1, 3/2]. On this in-
terval, we have |w′(t)| < 1/16 and thus |w(t)−Gn(1)| = |w(t)−Gn(1)| ≤
1/32 + 1/15 + 1/32 = 31/240 for all t ∈ [1, 3/2]. Therefore, the targeting equa-
tion for τ yields that |τ(3/2)− (Gn(1) + 1/4)| ≤ 31/240+1/32 = 77/480. Since
|τ ′(t)| ≤ 1/16 in the time interval [3/2, 2], we have that |τ(t)− (Gn(1) + 1/4)| ≤
77/480 + 1/16 = 107/480 < 1/4 and therefore τ(t) ∈ [Gn(1), Gn(1) + 1/2] for
t ∈ [3/2, 2]. This implies, by the induction hypothesis, that z(t) = y(τ(t)) is
such that |z1(t)−Gn(Gn(1))| = |z1(t)−Gn+1(2)| ≤ 1/4 for all t ∈ [3/2, 2].
Note that |σ(z1)−Gn+1(2)| ≤ λ1/4 |z1(t)−Gn+1(2)| ≤ λ1/4/4 < 1/15 for all
t ∈ [3/2, 2]. Considering the targeting equation for w in [3/2, 2], we conclude
that |w(2)−Gn+1(2)| ≤ 1/32 + 1/15 since the targeting error is 1/32. Notice
again that, for all t ∈ [2, 5/2], since |w′(t)| < 1/16, we have |w(t)−Gn+1(2)| ≤
1/32 + 1/15 + 1/32 = 31/240 < 1/4.

By repeating this procedure on subsequent intervals and by considering w as
the variable y1 of the statement of the theorem, we conclude the desired result.

We now know from the previous theorem that each function Gn admits an
GVAL-extension tn in the sense of Theorem 43. In other words, there is some
GVAL function tn such that |tn(t)−Gn(k)| ≤ 1/4 for all t ∈ [k, k + 1/2] and
k ∈ N\{0}.

Definition 44 For each n ≥ 3, we define the class Tn as the smallest class
of functions f : R → R containing tn−1, the identity, RG, and which is closed
under sum, difference, product, and composition for n ≥ 3.

Note that this definition of Tn implies that condition 1 and 2 in the list of
Definition 33 are immediately satisfied (for condition 2 remark that Tn includes
t2 which grows exponentially fast, and hence which grows more quickly than
any polynomial). Furthermore, it is also not difficult to see that condition 4 is
satisfied. Indeed, we have that tn−1(k) ≤ Gn−1(k) + 1 and since ξn is closed
under composition and arithmetic operations, this shows that any function in
Tn is dominated, over the naturals, by a function in ξn (note that all function
in ξn are time-constructible). Reciprocally, if f ∈ ξn, then there is some m ∈ N
such that f(k) ≤ G

[m]
n−1(k) ≤ tn−1(. . . tn−1(k) + 1 . . .) + 1, where tn−1 + 1 is

composed m times. Since (tn−1 + 1) ◦ (tn−1 + 1) ◦ . . . ◦ (tn−1 + 1) ∈ Tn, we
conclude that condition 4 is satisfied. Moreover, this also shows the following
lemma.

Lemma 45 FTIME(Tn) = FTIME(ξn) = ξn.

It is then left to prove condition 3, which requires that given any function
f ∈ ξn there is a function g ∈ Tn such that f ≤ g and g ∈ ATSp(Tn), for
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all n ≥ 3. We will now show that this condition is satisfied, in a multi-step
argument.

From the above argument, we have just showed by means of the above proof
of Theorem 43 that each tn is generable, meaning that tn ∈ GVAL for each
n ≥ 3. We now show that (i) we have Tn ⊆ GVAL(Tn), where

GVAL(Tn) =
⋃
g∈Tn

GVAL(g),

and (ii) GVAL(Tn) ⊆ ATSp(Tn). This will show condition 3 of Definition 33,
since any function f ∈ ξn is bounded by a function in Tn, as we have already
seen.

To show condition (i), we first present the two following lemmas taken from
[BGP17a, Lemma 24, Corollary 26]:

Lemma 46 ([BGP17a], Arithmetic on bounded generable functions)
Let d, l, n,m ∈ N, sp, sp : R+ → R+, f :⊆ Rd → Rn ∈ GVAL(sp) and
g :⊆ Rl → Rm ∈ GVAL(sp). Then:

• f + g, f − g ∈ GVAL(sp+ sp) over dom f ∩ dom g if d = l and n = m

• f · g ∈ GVAL(max(sp, sp, sp · sp)) if d = l and n = m

• f ◦ g ∈ GVAL(max(sp, sp ◦ sp)) if m = d and g(dom g) ⊆ dom f

Lemma 47 ([BGP17a], Generable functions are closed under ODE) Let
d ∈ N, J ⊆ R an interval, sp, sp : R+ → R+, f :⊆ Rd → Rd ∈ GVAL(sp),
t0 ∈ K ∩ J and y0 ∈ RdG ∩ dom f . Assume there exists y : J → dom f satisfying
for all t ∈ J :

• y(t0) = y0

• y′(t) = f(y(t))

• ‖y(t)‖ ≤ sp(t)

Then y ∈ GVAL(max(sp, sp ◦ sp)) and is unique.

Since lemmas 46 and 47 show closure of GVAL(Tn) under the operations
used to define Tn, to show (i), i.e. that Tn ⊆ GVAL(Tn) it is enough to show
that tn ∈ GVAL(Tn+1) (note that the identity and all elements of RG belong
to GPVAL ⊆ GVAL(Tn)).

First, define T2 = {p | p ∈ poly} as the class of polynomials over RG. We
show that the above proof of Theorem 43 implies that fn ∈ GVAL(T2) and
tn = y1 ∈ GVAL(Tn+1) for each n ≥ 2, where fn and y1 are defined in the
statement of this theorem. This result can be showed by induction on n thanks
to the closure by composition of each class Tn.

To show that fn ∈ GVAL(T2) and tn = y1 ∈ GVAL(Tn+1) for each n ≥ 2,
we proceed by induction. For the base case n = 2, consider f2 as defined in (20)

38



and note that f2 ∈ GVAL(T2) = GPVAL since all the right-hand terms in the
system (20) belong to GPVAL. Moreover, note that, from the arguments which
follow (20), the norm of the solution y of that dynamical system is bounded by a
function sp2 ∈ T3, where sp2(k) = t2(k+ 1). Therefore, since T2 ⊂ T3 and each
class is closed by composition, applying lemma 47 above yields y ∈ GVAL(T3)
and, in particular, t2 = y1 ∈ T3. This proves the base case.

Let us now assume that fn ∈ GVAL(T2) and that tn ∈ GVAL(Tn+1). We
now want to show that fn+1 ∈ GVAL(T2) and tn+1 ∈ GVAL(Tn+2). First we
note that fn+1 is defined as the function used in the right-hand side of the ODE
(22) and applied to the variables z, τ , and w. Since fn+1 is built using arithmetic
operations, elements of RG, and the functions fn, θ1, θ2, σ ∈ GVAL(T2), we
conclude by lemma 46 that fn+1 ∈ GVAL(T2). Also, from the analysis done in
the proof of Theorem 43, we conclude that the solution x(t) of (22) is bounded
by tn+1(t+1) ∈ GVAL(Tn+2), which shows by lemma 47 that x and hence tn+1

belongs to GVAL(Tn+2).
At this point we have shown that tn ∈ GVAL(Tn+1) and hence we have

proved (i). Now the last element left is condition (ii), which follows from the
following theorem, that is a variant of Theorem 11, but now applied to Tn:

Theorem 48 If f ∈ GVAL(Tn) has a star domain with a generable vantage
point, then we have f ∈ ATS(Tn).

We note that (necessarily univariate) functions of GVAL(Tn+1) are always
defined at any point of R+ = [0,+∞[. This implies that such functions have
a vantage point over this domain (e.g. 0 or 1 may be used as vantage points).
Hence, we can conclude from Theorem 48 that if f ∈ GVAL(Tn), then f ∈
ATS(Tn), which immediately implies condition 3 of Definition 33. To prove
Theorem 48, we need another result from [BGP17a, Proposition 28].

Lemma 49 Let sp : R+ → R+, f ∈ GVAL(sp). There exists a polynomial
q : R → R, with coefficients in RG, such that for any x1, x2 ∈ dom f then
‖f(x1)− f(x2)‖ ≤ ‖x1 − x2‖ q(sp(max(‖x1‖ , ‖x2‖))).

This lemma tells us that each function in GVAL(sp) has a modulus of conti-
nuity expressed by the function q ◦ sp where q is a polynomial; therefore, since
GVAL(Tn) is closed by composition with polynomials, this implies that each
function in GVAL(Tn) has modulus of continuity in Tn.

Proof of Theorem 48. Let f : R+ → R be a function in GVAL(Tn) and
let 0 ∈ RnG ∩ dom f be a generable vantage point. By definition of GVAL(Tn)
we know that there exist a function sp ∈ Tn, a polynomial p, two initial points
t0, y0 and a solution y that satisfy Definition 2. In particular, y is the solution
of the ODE y′ = p(y) and we have y(t) ≤ sp(t) for all t ≥ 0. Moreover, since
the point 0 belongs to the generable field RG, and by definition of a generable
field, we know that y(0) ∈ RdG (note that since y ∈ GVAL(Tn), we have that y
is defined over [0,+∞[ and hence y(0) is defined). Let x ∈ dom f , which implies
that x ≥ 0, and consider the system:

39




x(0) = x

γ(0) = 0

z(0) = y(0)


x′(t) = 0

γ′(t) = x(t)− γ(t)

z′(t) = p(z(t)) (x(t)− γ(t))

(23)

We notice that all the differential equations of (23) are expressed as polynomials
of the variables x(t), γ(t), z(t). It is immediate to check that the variable x(t)
is constant and takes the value x ≥ 0. This implies that the ODE for γ is
separable and can be explicitly solved, yielding γ(t) = x(1− e−t). Hence γ(t) ⊆
[0, x] ⊆ dom f for all t ≥ 0. It is also not difficult to directly check that z(t) =
y(γ(t)) is the solution of the last ODE of (23), which also implies that ‖z(t)‖ ≤
‖y(γ(t))‖ ≤ sp(γ(t)) ≤ sp(x) for all t ≥ 0 assuming, without loss of generality,
that sp is an increasing function. This shows that ‖(x(t), γ(t), z(t))‖ ≤ sp(x),
where sp is some function satisfying sp(x) ≥ max(x, sp(x)) which belongs to
Tn. This shows that sp ∈ Tn defines a space bound for the solution of (23),
where the only argument of sp is the initial condition x of (23) (there is no
dependence of sp on the time variable t). Note also that, due to Definition
2 and because the first m components of the solution y(t) of y′ = p(y) yield
f(t), we have (z1(t), . . . , zm(t)) = (y1(γ(t)), . . . , ym(γ(t))) = f(γ(t)) and this
last value converges to f(x) by continuity of f .

Therefore, according to Definition 31, we have just shown that the second
condition of this definition is satisfied when using (23) to approach f(x), i.e. we
can take Υ(‖x‖, t) = Υ1(‖x‖)Υ2(t) in this definition, where Υ1 = sp ∈ Tn
and Υ2(t) = 1. We now just have to show the first condition of that defi-
nition. In other words, we have to show that for any µ > 0, there is some
Π1 ∈ Tn and a polynomial function Π2 such that if t ≥ Π1(‖x‖)Π2(µ) then
‖(z1(t), . . . , zm(t))− f(x)‖ ≤ e−µ.

By lemma 49, we know that there exists h ∈ Tn such that, ∀x1, x2 ≥ 0, we
have:

‖f(x1)− f(x2)‖ ≤ ‖x1 − x2‖h(max(‖x1‖ , ‖x2‖)).
In particular, since ‖γ(t)‖ ≤ x and (z1(t), . . . , zm(t)) = f(γ(t)), we get

‖f(x)− (z1(t), . . . , zm(t))‖ = ‖f(x)− f(γ(t))‖
≤ ‖x− γ(t)‖h(x)

= xe−th(x)

Hence, we have that if
t ≥ x+ h(x) + µ

then

‖f(x)− (z1(t), . . . , zm(t))‖ ≤ xe−th(x)

≤ xe−(x+h(x)+µ)h(x)

≤ x

ex
h(x)

eh(x)
e−µ

≤ e−µ.
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By taking Π1(x) = 1+x+h(x) and Π2(µ) = (1+µ), we easily see that, by assum-
ing without loss of generality that x, h(x), µ ≥ 0, that we have Π1(x)Π2(µ) ≥
x+ h(x) +µ and Π1 ∈ Tn and Π2 is a polynomial. This implies from the above
argument that if t ≥ Π1(x)Π2(µ), then ‖f(x)− (z1(t), . . . , zm(t))‖ ≤ e−µ, thus
showing that f ∈ ATSp(Tn).

Hence, the classes Tn defined above satisfy all the four conditions in the list
of Definition 33, and therefore Theorem 50 holds. We then have the following
result.

Theorem 50 (Analog characterization of the Grzegorczyk hierarchy)
Let n ∈ N. Let f : Γ∗ → Γ∗, then f ∈ ξn if and only if is emulable under
ATS(Tn).

8 Characterizing the class EXPTIME

Until now we have described connections between analog classes of functions
(e.g. ATSE) and discrete classes of computable functions such as FEXPTIME.
At this point a very natural question arises: is it possible to extend these results
to discrete classes of computable sets as well, such as EXPTIME? The answer to
this important question is yes, and the latter can be done by providing a criterion
of acceptance/rejection in the definition of the analog classes. Indeed, we will not
require any convergence of the dynamical system, but instead that the solution
of the PIVP, with initial condition dependent from the input word as usual,
reaches an accepting or rejecting region in a certain amount of time to determine
whether the input word w belongs or not to the considered set. This modification
will allow solutions of ODEs to decide a certain class of sets of words over the
considered alphabet Γ, and therefore it will be possible to introduce new classes
of sets closely related to EXPTIME. A very similar procedure has been followed
by the authors of [BGP17b] to extend their results obtained for polynomial
computable functions to the complexity class P.

8.1 Definitions of the analog classes

We start with a definition of a new class of sets, that we will call Exponential-
Analog-Recognizable, or EAR.

Definition 51 (EAR) A language L ⊆ Γ∗ is called exponential analog rec-
ognizable if there exist a vector q of bivariate polynomials and a vector p of
polynomials with d variables, both with coefficients in RG, and an exponential
boundary function Π : R → R such that for all w ∈ Γ∗ there exists (a unique)
y : R→ Rd satisfying for all t ≥ 0 (see Fig. 7):

1. y(0) = q(Ψk(w)) and y′(t) = p(y(t));

2. if |y1(t)| ≥ 1 then |y1(u)| ≥ 1 for all u ≥ t;
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Not allowed

Figure 7: Graphical depiction of Definition 51. A word w is accepted (rejected)
if after following the solution curve for a length exponential in |w| the first
component y1 of the solution curve takes values ≥ 1 (≤ −1, respectively).

3. if w ∈ L (respectively, w /∈ L) and leny(0, t) ≥ Π(|w|) then y1(t) ≥ 1 (
respectively, y1(t) ≤ −1);

4. leny(0, t) ≥ t, where leny(0, t) represents the length of the solution y in
the interval [0, t].

Informally, the definition above states that a language L belong to the EAR
class if there exists a dynamical system, whose evolution is ruled by a polynomial
differential equation, such that, for each word of the alphabet representing a
starting point for the system, the trajectory described by the solution enters
either the accepting region or the rejecting region as soon as the length of the
solution is exponential on the size of the input word. Specifically, condition (1)
defines the dynamical system, condition (2) ensures stability once the decision
is taken, condition (3) enforces the entrance within the accepting or rejecting
region and condition (4) excludes from the classes pathological cases in which
the evolution of the system is too slow.

8.2 Equivalence relation between EXPTIME and EAR

We can now state the equivalence result related to the EAR class:

Theorem 52 (EXPTIME equivalence) For any language L ⊆ Γ∗, L ∈
EXPTIME if and only if L is exponential analog recognizable.

Proof. Let L ∈ EXPTIME. Then there exists a function f ∈ FEXPTIME
and two distinct symbols 0̄, 1̄ ∈ Γ such that for any w ∈ Γ∗, f(w) = 1̄ if
w ∈ L and f(w) = 0̄ otherwise. By Theorem 29 there is some g ∈ ATSE that
emulates f . Since for any w ∈ Γ∗ one has f(w) ∈ {0̄, 1̄}, this implies that
Ψk(f(w)) = (k−1γ(0̄), 1) or Ψk(f(w)) = (k−1γ(1̄), 1). Next define a function
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res : {k−1γ(0̄), k−1γ(1̄)} → {−2, 2} which is defined by res(k−1γ(0̄)) = −2
and res(k−1γ(1̄)) = 2. Using Lagrange interpolation, by proposition 12 we
can extend res to a function Lres ∈ ATSP which extends res to R. Now take
g∗(x) = Lres(g1(x)), where g(x) = (g1(x), g2(x)). Since g∗ is the composition
of an ATSP function with an ATSE function, by Theorem 28 we conclude that
g∗ ∈ ATSE. Moreover, g∗(Ψk(w)) = 2 if w ∈ L and g∗(Ψk(w)) = −2 if w /∈ L.

From the definition of the ATSE class we know that g∗ ∈ ATSE (Π1Π2,Υ1Υ2)
for some exponential boundary functions Π1,Υ1 and some polynomials Π2,Υ2

with corresponding d, p, q as parameters and functions defining the dynamical
system. Assume, without loss of generality, that these four functions used as
boundaries are increasing functions. Let w ∈ Γ∗ and consider the following sys-
tem, where v is a constant variable used to store the input and in particular the
input length (v2(t) = |w|), τ(t) = t is used to keep the time, z is the decision
variable, and τ∗ = Π1(v2(t))Π2(ln 2) = Π1(|w|)Π2(ln 2)

y(0) = q(Ψk(w))

v(0) = Ψk(w)

z(0) = 0

τ(0) = 0


y′(t) = p(y(t))

v′(t) = 0

z′(t) = lxh[0,1](τ(t)− τ∗, 1 + τ(t), y1(t)− z(t))
τ ′(t) = 1

where y is the solution of the ODE computing g∗. Let t ∈ [0, τ∗]. Then, by the
properties of lxh (see proposition 14), one has |z′| ≤ e−1−t. This implies that

z(t) =

∫ t

0

z′(u)du ⇒

|z(t)| ≤
∫ t

0

|z′(u)| du ≤
∫ t

0

e−1−udu ≤ e−1 − e−1−t ≤ e−1. (24)

In particular we conclude that |z(t)| < 1 for t ∈ [0, τ∗] and therefore that the
system has not decided whether w should be accepted or rejected for times ≤ τ∗.

Let us now consider the case when t ≥ τ∗. By definition of ATSE , we have
‖y1(t) − g∗(Ψk(w))‖ ≤ e− ln 2. Recall that g∗(Ψk(w)) ∈ {−2, 2} and let s ∈
{−1, 1} be such that g∗(Ψk(w)) = 2s. Then ‖y1(t)−2s‖ ≤ 1

2 , which means that
y1(t) = sλ(t), where λ(t) ≥ 3

2 . By (24), we conclude that z(τ∗) ∈ [−e−1, e−1].
From proposition 14, we also conclude that z satisfies, for t ≥ τ∗

z′(t) = φ(t)(sλ(t)− z(t)),

where 1 > φ(t) > 0. Let us assume, without loss of generality, that s = 1
(a similar reasoning can be applied for the case s = −1). Then the previous
equation gives us, for t ≥ τ∗,

z′(t) = φ(t)(λ(t)− z(t)) ≥ φ(t)

(
3

2
− z(t)

)
. (25)

Furthermore, since z(τ∗) ∈ [−e−1, e−1], we conclude that z is strictly increasing
when t ≥ τ∗. To see this, consider a variable r(t) defined by r′(t) = 3/2− r(t)
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and r(τ∗) = z(τ∗). We can explicitly solve the ODE for r and conclude that it
converges to 3/2 with a rate of convergence of the order of e−t and stays below
3/2 for all t ≥ τ∗. Furthermore, using standard results from ODEs we can
conclude that 3/2 > r(t) ≥ z(t) for all t ≥ τ∗. Knowing that z(τ∗) ∈ [−e−1, e−1]
this implies that z(t) is strictly increasing for all t ≥ τ∗. By proposition 14, we
have that for t ≥ τ∗ + 1∣∣y1(t)− z(t)− lxh[0,1](τ(t)− τ∗, 1 + τ(t), y1(t)− z(t))

∣∣ ≤ e−1−τ(t) ≤ e−1.

This inequality and the definition of z(t) yield that

|y1(t)− z(t)− z′(t)| ≤ e−1. (26)

We will now show that if t ≥ τ∗∗ = τ∗ + 4/(1− 2e−1), then z(t) ≥ 1. To show
that it suffices to show that z(τ∗∗∗) ≥ 1 for some τ∗∗∗ ∈ [τ∗, τ∗∗] since z is
increasing for t ≥ τ∗. Suppose, by absurd, that there is no such τ∗∗∗. Then
z(t) < 1 for all t ∈ [τ∗, τ∗∗] which implies that y1(t) − z(t) > 3/2 − 1 = 1/2.
Then using this last inequality and (26), we conclude that z′(t) ≥ 1/2 − e−1.
Since z(τ∗) ∈ [−e−1, e−1], this implies that

z(τ∗∗) = z(τ∗) +

∫ τ∗∗

τ∗
z′(t)dt

≥ −e−1 + (τ∗∗ − τ∗)
(
1/2− e−1

)
≥ −1 +

4

1− 2e−1

(
1

2
− e−1

)
= −1 +

2
1
2 − e−1

(
1

2
− e−1

)
= 1.

which is absurd. Therefore z(t) ≥ 1 for all t ≥ τ∗∗. This proves conditions 1
and 2 of Definition 51.

Note that ‖(y, v, z, τ)′(t)‖ ≥ 1 for all t ≥ 1 so condition 4 of Definition 51
is also satisfied. To show condition 3, recall that |g∗(Ψk(w))| = 2. Therefore
from (24) for t < τ∗ and from the previous analysis for t ≥ τ∗, it is possible to
conclude that |z(t)| ≤ |g∗(Ψk(w))|+ 1/2 = 5/2 for all t ≥ 0. This shows that if
Y = (y, v, z, τ), then ‖Y (t)‖ is bounded by an exponential boundary function on
‖Ψk(w)‖ and by a polynomial on t because ‖y(t)‖ ≤ Υ1(‖Ψk(w)‖)Υ2(t) for all
t ≥ 0. Because y′(t) = p(y(t)) and, by proposition 14 |z′(t)| ≤ |y1(t)− z(t)| ≤
|y1(t)|+ 5/2, we conclude that there are an exponential boundary function Υ∗1
and a polynomial Υ∗2 such that ‖Y ′(t)‖ ≤ Υ∗1(‖Ψk(w)‖)Υ∗2(t) and, without loss
of generality, we can assume that Υ∗1 and Υ∗2 are increasing functions. Now,
since ‖Y ′(t)‖ ≥ 1, we have that

t ≤ lenY (0, t) ≤ t sup
u∈[0,t]

‖Y ′(u)‖ ≤ tΥ∗1(‖Ψk(w)‖)Υ∗2(t). (27)

Define the function Π∗ by Π∗(|w|) ≡ τ∗∗Υ∗1(|w|)Υ∗2(τ∗∗) which is an exponential
boundary function in ‖Ψk(w)‖ = |w|, because τ∗∗ is an exponential boundary
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function on |w|, Υ∗2 is a polynomial, and Υ∗1 is an exponential boundary function.
Let t be such that lenY (0, t) ≥ Π∗(|w|). Then, by (27),

tΥ∗1(|w|)Υ∗2(t) ≥ Π∗(|w|) = τ∗∗Υ∗1(|w|)Υ∗2(τ∗∗)

which implies that tΥ∗2(t) ≥ τ∗∗Υ∗2(τ∗∗). Since Υ∗2 is increasing, this last con-
dition is only true when t ≥ τ∗∗ which, by the previous analysis, implies that
|z(t)| ≥ 1, that is, the system has decided. This concludes the direct direction
of the proof of Theorem 52.

We will now proceed with the reverse direction of the proof of Theorem 52.
Assume that L ∈ EAR. Apply the definition of the class EAR to get the
parameters and polynomials d, p, q characterizing the dynamical system and
an exponential boundary function Π which satisfies the third condition of the
definition of the class. Let w ∈ Γ∗ and consider the following system

y(0) = q(Ψk(w)), y′(t) = p(y(t)).

We will show that we can decide in time exponential in |w| whether w ∈ L or
not. Note that q is a polynomial with coefficients in RP and Ψk(w) is a rational
number. Therefore q(Ψk(w)) ∈ RdP. Finally, note that

PsLeny,p(0, t) =

∫ t

0

Σpmax(1, ‖y(u)‖)deg(p)du

≤ tΣpmax(1, sup
u∈[0,t]

‖y(u)‖deg(p))

≤ tΣpmax(1, sup
u∈[0,t]

(‖y(0)‖+ leny(0, t))deg(p))

≤ t poly(leny(0, t))

≤ poly(leny(0, t))

where the last inequality holds because leny(0, t) ≥ t. We can now apply Theo-
rem 30 to conclude that we are able to compute y(t)± 2−µ in time polynomial
in t, µ and leny(0, t).

At this point some extra care is necessary. Indeed, the temptation is to use
Theorem 30 to compute with a desired precision the value of the curve y(t)
at time Π(|w|). Nevertheless, it is possible that, at time Π(|w|), the length of
the solution could be already over exponential in |w|. Therefore, it is essential
to use carefully the algorithm developed for the proof of Theorem 30 and stop
the computation as soon as the length of the solution is greater than Π(|w|).
This is possible due to the particular nature of the algorithm developed for the
proof of Theorem 30 in [PG16]. Let t∗ be the time at which the algorithm
stops. Then, the running time of the algorithm will be polynomial in t∗, µ and
leny(0, t∗) ≤ Π(|w|) + O(1). Finally, by definition of the EAR class, we have
t∗ ≤ leny(0, t∗) and so, because leny(0, t∗) ≤ Π(|w|) this algorithm has running
time exponential in |w| and polynomial in µ. Take µ = log 2. Then we can
obtain ỹ such that ‖y(t∗)− ỹ‖ ≤ 1

2 . By definition of Π we have that y1(t∗) ≥ 1
or y1(t∗) ≤ −1, so we can decide from ỹ if w ∈ L or not. This finishes the proof
of the theorem.
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9 Conclusions and open problems

In this paper we have showed that the analog characterization obtained in
[BGP17b] for polynomial complexity classes can be applied to other classes
of computable functions. To reach this conclusion we had to overcome the fact
that the equivalence established at a polynomial level was tailored over proper-
ties of polynomials, and therefore not trivially applicable to more general classes
of functions. We started by analyzing the exponential case and we proved that
the key ingredient to obtain the analog characterization was to modify the ana-
log classes involved in such a way that could ensure closure by basic arithmetic
operations and closure by composition with functions in ATSP. This led us to
Definition 23 of the ATSE class and provided us enough elements to be able to
apply the characterization for both the class of functions FEXPTIME and the
class of sets EXPTIME by means of Theorems 29 and 52 respectively. More-
over, taking the exponential case as an inspiration and as a starting point, we
established which set of conditions on the boundary functions are sufficient for
being able to repeat the process applied to the exponential functions and obtain
characterizations of greater complexity classes. This analysis has brought us to
the formulation of the set of conditions 33 that implied Theorem 35. Then, we
applied this generalization to the concrete case of the Grzegorczyk hierarchy,
which implies a characterization of the class of elementary function as well as
the class of primitive recursive functions.

As a natural consequence of the work presented with this paper, one can
wonder whether a similar characterization can be obtained for complexity classes
such as NP. The framework used in this paper only deals which classes of
languages decided in deterministic time. It would be interesting to know if this
framework could be extended to non-deterministic time.
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