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A B S T R A C T   

Carbon isotopic analysis has been challenging our ideas about hominin diet for nearly 30 years. The first study in 
1994 revealed that Paranthropus robustus from South Africa consumed principally C3 foods (e.g., tree fruits and 
leaves) but also about 25% C4/CAM resources (e.g., tropical grasses and sedges). This result was largely 
consistent with morphological and dental microwear evidence suggesting P. robustus had a diet which included 
hard objects like nuts and seeds. Decades later, however, P. boisei from eastern Africa was shown to have eaten 
nearly 80% C4/CAM plants like the contemporaneous grass-eating primate Theropithecus. Moreover, dental 
microwear revealed no evidence of hard object consumption in P. boisei, suggesting a diet of tough foods such as 
grass or sedge leaf and stem. So Paranthropus presents us with two central problems: 1) Why do dietary proxies 
suggest different diets for the two robust australopiths despite their morphological congruity; and 2) How could 
P. boisei have consumed tough foods with teeth that seem unsuited to the task. Here we review these questions 
and more with a particular focus on new isotopic data from the Omo and insights that can be gleaned from 
mammals outside the haplorrhine primates. We argue that extant Primates do not capture the ecomorphological 
diversity of P. boisei and other extinct primates and should not narrowly circumscribe the behaviors we ascribe to 
extinct taxa. We also discuss possible digestive strategies for P. boisei in light of its morphology, dietary proxy 
data, food mechanical properties, and comparative data on mammalian digestive kinetics.   

1. Introduction 

Our understanding of early hominin diets has undergone significant, 
if not massive, revision since the first carbon isotope study of Para-
nthropus robustus was published almost 30 years ago (Lee-Thorp et al., 
1994). By 1994 carbon isotope analysis of bone collagen was well 
established as a method for investigating the diets of Holocene peoples 
(e.g., Vogel & Van Der Merwe, 1977; Tauber, 1981; Schoeninger et al., 
1983; Ambrose and DeNiro, 1986; Sealy & van der Merwe, 1988), 
particularly regarding the spread of C4 crops and marine resources. 
However, bone collagen is rarely well-preserved after 10,000 years, and 
thus studies of early hominins awaited methodological developments 
showing that enamel not only survived into deep time, but was suffi-
ciently resistant to diagenetic processes that it preserved biogenic car-
bon isotopic patterns in fossil herbivores (Lee-Thorp & van der Merwe, 

1987; Lee-Thorp & van der Merwe, 1991). Once this was established, 
Paranthropus was the first target for stable isotope study at least partly 
because its highly derived masticatory apparatus led some to argue it 
was a specialized herbivore of one sort or another (Robinson, 1954; 
Jolly, 1970a; Pilbeam and Gould, 1974; Du Brul, 1977; Grine, 1981; 
Kay, 1985; Susman, 1988; Vrba, 1988) and carbon isotopes held the 
potential for revealing whether or not it consumed 13C-enriched animal 
tissues. 

Stable carbon isotope analysis continued to challenge our ideas 
about hominin diets in subsequent decades (Sponheimer and Lee-Thorp, 
1999; Lee-Thorp et al., 2000, 2012; van der Merwe et al., 2003, 2008; 
Sponheimer et al., 2005a; 2006, 2013; White et al., 2009; Cerling et al., 
2011a, 2013a; Henry et al., 2012; Wynn et al., 2013, 2020; Levin et al., 
2015; Lüdecke et al., 2018). Australopithecus, for instance, was shown to 
have higher δ13C values than savanna chimpanzees, which was 
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unexpected given early dental microwear studies showing that 
A. africanus and frugivorous chimpanzees (Pan troglodytes) evinced 
molar occlusal surfaces with similar amounts of pitting (Grine, 1986; 
Grine and Kay, 1988). This suggested that when in woodland/savanna 
habitats, Australopithecus used the landscape more like baboons (Papio 
spp.) than savanna chimpanzees (Pan troglodytes), as the latter tend to 
focus nearly exclusively on the C3 resources therein (e.g., tree fruits and 
leaves; Schoeninger et al., 1999; Sponheimer et al., 2006; Codron et al., 
2007). Moreover, carbon isotopes revealed enormous δ13C variability 
within and between hominin individuals (van der Merwe et al., 2003; 
Sponheimer et al., 2005a; 2006; Lee-Thorp et al., 2010; Wynn et al., 
2013), suggesting remarkable dietary flexibility at both short (e.g., 
seasonal, yearly) and long (e.g., decadal, millennial) timescales. Only as 
we neared 4 Ma did we find potential hominins (Ardipithecus ramidus 
and A. anamensis) that approximated the low variability and C3-domi-
nated diets observed in savanna chimpanzees (White et al., 2009; 
Cerling et al., 2013a; Loudon et al., 2016). 

For many, however, the greatest surprise proffered by carbon iso-
topic analysis was the finding that P. boisei had a diet of over 75% C4/ 
CAM resources (e.g., C4 tropical grasses/sedges, CAM Euphorbia and 
Aloe; van der Merwe et al., 2008; Cerling et al., 2011a, 2013a). This 
presented a two-fold problem. First, this result was markedly different 
from what had been observed in P. robustus, which consumed only about 
30% C4/CAM vegetation on average (Lee-Thorp et al., 1994; Spon-
heimer et al., 2005a). This disparity in C4/CAM consumption is of the 
same magnitude seen in coeval Papio robinsoni and Theropithecus oswaldi 
in South Africa (Codron et al., 2005). But while Papio and Theropithecus 
are highly distinct craniodentally, so that such a dietary difference 
would be expected, the Paranthropus species have been labelled robust 
australopiths due to their shared craniodental robusticity, although 
P. boisei is characterized by an even greater degree of masticatory hy-
pertrophy (Tobias, 1967; Rak, 1983; Teaford et al., 2002; Smith et al., 
2015). Second, Paranthropus boisei, aka “Nutcracker man,” was often 
regarded as a hard object feeder (stress-limited foods like nuts, seeds, 
and corms) (Tobias, 1967; Rak, 1983; Peters, 1987; Teaford et al., 2002; 
Smith et al., 2015), but its δ13C values looked like contemporaneous 
Theropithecus and other herbivores that ate primarily, though not 
exclusively, tough (displacement-limited) grasses (Dunbar, 1983; Lee--
Thorp et al., 1989a; Codron et al., 2005; Cerling et al., 2011a, 2013a, 
2013b; Fashing et al., 2014; Shapiro et al., 2016; van der Merwe et al., 
2008). Moreover, its molar microwear fabrics are low complexity and 
lightly pitted and hence more resemble those of leaf consuming Ther-
opithecus than they do those of modern primates known to consume hard 
foods (Ungar et al., 2008; Grine et al., 2012; Scott et al., 2012). 

So nearly 30 years and more than 200 isotopic analyses later, we are 
still struggling with the diet of Paranthropus. In the 1990s, evidence from 
morphology, dental microwear, and even carbon isotopes could be 
interpreted in similar ways, though there were debates as to the degree 
of its animal food consumption (e.g., Wolpoff, 1973; Sillen, 1992; 
Lee-Thorp et al., 1994; Mann, 1981). Now, fresh data have called into 
question old notions of ecological congruity within the genus and have 
arguably pitted dietary inferences from morphology against those 
derived from other proxies. We will revisit this controversy and more 
herein. We will begin by making a brief foray into the topic of 
diet-enamel isotopic fractionation as this has received attention of late in 
the hominin-related isotope literature and beyond (Malone et al., 2021; 
Quinn, 2019; Tejada-Lara et al., 2018). We will follow with a brief 
history of research on the diet of P. boisei and consider the implications 
of newly available carbon isotope data from the Omo. Lastly, we will 
reflect on ways that taxa beyond the haplorrhine primates might enrich 
our understanding of Paranthropus diets. 

We understand that the focus on Paranthropus, and especially 
P. boisei, herein might seem unnecessarily limiting given the myriad 
ways that diet has been implicated in the origin and extinction of 
hominin taxa (e.g., Dart, 1925; Foley, 1987; Vrba, 1988; Aiello and 
Wheeler, 1995; Potts, 1998). Nevertheless, we believe it is readily 

justified. After all, there can be little doubt that it is the taxon whose diet 
has occasioned the most consternation of late (e.g., Rabenold and 
Pearson, 2011; Macho, 2014; Scott et al., 2014; Yeakel et al., 2014; 
Smith et al., 2015; Paine et al., 2018). But more importantly, P. boisei is 
the quintessence of the hyper-masticatory trend in australopiths, so 
unraveling its diet might provide clues to the drivers of dietary evolution 
in the australopiths broadly. Lastly, it is probably not an overstatement 
that if we cannot uncover the diet of the hominin with the most 
distinctive craniodental morphology and a bulk carbon isotope 
composition that is only compatible with a handful of foods, we have 
little chance of deciphering the dietary ecology of more generalized 
hominins whose carbon isotope compositions could have been derived 
in innumerable ways. Consequently, focusing on Paranthropus allows us 
to take one meaningful step towards a much larger project. 

2. From food to tooth: a footnote on fractionation 

All isotopic studies of hominin diet are predicated on our having 
reasonable knowledge of the relationship between dietary and enamel 
carbon isotope compositions (called fractionation or discrimination). 
Recent studies have called into question some of the assumed fraction-
ations for early hominins and other taxa (e.g., Tejada-Lara et al., 2018; 
Quinn, 2019; Malone et al., 2021), so it is worth taking a few minutes to 
address these concerns here. We have long known that fractionation 
tends to be smaller for diminutive mammals like rodents (about 10‰; 
DeNiro and Epstein, 1978; Ambrose and DeNiro, 1986; Tieszen and 
Fagre, 1993) than larger mammals like suids or wildebeest (between 
about 12 and 14‰; Krueger & Sullivan, 1984; Lee-Thorp et al., 1989b; 
Balasse et al., 1999; Cerling and Harris, 1999; Passey et al., 2005; 
Cerling et al., 2021). This difference is largely, but not entirely, the 
product of differential methane production during digestive processes 
(see Cerling et al., 2021), as the methane produced is highly depleted in 
13C (Schulze et al., 1997), resulting in 13C-enrichment of the inorganic 
carbon in the blood, and consequently, enamel. 

Recently, Tejada-Lara et al. (2018) argued that fractionation differ-
ences with body size can be approximated with the equation ε* = 2.4 +
0.034 BM, where ε* is apparent fractionation and BM is body mass (kg). 
We think, however, that there is good reason for caution in applying this 
to isotopic ecology studies of hominins and contemporaneous fauna. For 
one, Tejada-Lara et al. (2018) contains marsupial and xenarthran 
mammals (e.g., koalas and sloths) that are physiologically distinct from 
the Epitheria we find at early hominin sites. For another, available data 
on fractionation suggest that above 4 kg there is little evidence that 
fractionation and body mass are related. As can be seen in Fig. 1, when 
fractionation for Epitheria is plotted against body mass the relationship 
is uninspiring. We would argue that fractionation is more closely linked 
to methane production and differential digestion than to body size per se 
(see Cerling et al., 2021). 

Another recent study calculated fractionation (11.8‰) for chim-
panzees at Kibale National Park, Uganda, and suggested this implies 
greater C4 consumption in hominins than was appreciated (Malone 
et al., 2021). We agree that a fractionation of 14‰ (from Cerling and 
Harris, 1999) is almost certainly inappropriate for most hominins. 
Indeed, a <14‰ diet-enamel fractionation is consistent with existing 
data on chimpanzees (Carter, 2001; Smith et al., 2010), baboons, and 
humans (Lee-Thorp et al., 1989a; Lee-Thorp, 1989; Kellner and Schoe-
ninger, 2007). However, it is crucial to note that few hominin isotopic 
studies employ a 14‰ fractionation. Most studies have either assumed a 
12‰ fractionation based upon Lee-Thorp et al. (1989b)(all earlier 
studies), made no explicit assumptions about fractionation (e.g., Wynn 
et al., 2013), or used 13‰ (e.g., Loudon et al., 2016). 

But this also raises the question, “Is there a proper fractionation that 
we should apply to all hominins?” We would argue that the answer is, 
“Probably not,” and that the notion of a proper species-specific frac-
tionation is a fantasy, albeit often a useful one. Animals living in the 
same room on the same experimental diet can have apparent diet-tissue 
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fractionations that differ by at least 0.5‰ (Passey et al., 2005). 
Furthermore, we know that factors like dietary fiber, secondary com-
pound, and digestive microflora differences impact methanogenesis 
(Jensen and Jørgensen, 1994; Min et al., 2020), so even one individual 
might have different diet-enamel fractionations over time if its diet or 
physiological state changes significantly. Moreover, it is possible, or 
even probable, that fractionation differed between early hominin taxa 
(Schoeninger, 2014). For instance, if P. boisei had microflora and 
digestive physiology that maximized digestion of refractory dietary 
components it was probably more methanogenic than either early Homo 
or contemporary chimpanzees and would have had a higher diet-enamel 
fractionation. Fortunately, however, the observed fractionation differ-
ences between large-bodied mammals are sufficiently small that they 
will engender few interpretive difficulties (see Fig. 1). For example, 
nothing significantly changes our understanding of P. boisei if their diets 
were 85%, 75%, or even 65% C4 vegetation. We are faced with the same 
basic problem–the importance of 13C-enriched resources–either way. 

3. A brief history of dietary studies 

3.1. A tough nut to crack 

Despite the “Nutcracker Man” moniker bestowed upon OH 5, the 
hard-object feeding inference – for australopiths in general and Para-
nthropus in particular – was initially less central to discussions of diet. 
Leakey (1959) initially thought OH 5 was significantly carnivorous, 
which fit well with the idea that the stone tools at Olduvai were of 
Zinjanthropus’ making. Dart also mused that South African australopiths 
were skilled and enthusiastic hunters (Dart, 1957). Robinson (1954) and 
Du Brul (1977) speculated that the important axis of dietary adaptation 
among australopiths was one of omnivory and herbivory rather than an 
increasing reliance on durophagy. 

While linkage of australopith craniodental morphology and hard- 
object feeding existed early on, it only became de rigueur more 
recently. Evidence cited in support of this idea included 1) the massive 
and thickly-enameled postcanine dentition, 2) anteriorly positioned and 
hypertrophied zygoma, 3) sagittal crests, and 4) massive mandibular 
corpora with high rami in Paranthropus (Rak, 1983; Grine and Kay, 
1988; Strait et al., 2013; Smith et al., 2015). But this anatomical evi-
dence had obviously been present for a long time prior, and the notion 

on durophagy did not reach fruition until the “Man the Hunter” para-
digm began to collapse, in no small measure due to Jolly’s (1970a) 
gelada analogy. Jolly argued that hominins and Theropithecus shared 
craniodental, manipulatory, and environmental similarities that sug-
gested a dependence on monocots, although in the form of seed rather 
than grass leaf consumption. He argued this would have initially 
occurred in dambos where trees are few but high-quality grasses and 
sedges abound year round. The (implicitly hard) seed-eating adaptation 
received further support from dental microwear, as some P. robustus 
specimens display highly pitted and complex surfaces that we see in 
modern primates, such as Cercocebus atys, that eat hard foods (Grine and 
Kay, 1988; Scott et al., 2005, 2012; Daegling et al., 2011). 

Recent studies, however, slowed the momentum of the hard object 
train, and some might argue brought it to a crashing halt. Stable carbon 
isotope analysis of two P. boisei specimens from Tanzania (OH 5 and the 
Peninj mandible) suggested a diet of nearly 80% C4/CAM foods (van der 
Merwe et al., 2008) that was very different from what had been observed 
in South African P. robustus (Lee-Thorp et al., 1994). This was not only 
markedly different from expectations for typical primate hard object 
feeders, but was surprisingly similar to that of broadly contemporaneous 
grazing warthogs (Phacochoerus modestus)(van der Merwe, 2013). 
Furthermore, all living herbivores with δ13C values like those of P. boisei 
specialize on grass (primarily leaf and culm). Indeed, even carnivores 
that consume principally grazing herbivores (e.g., Serengeti lions) rarely 
have such high δ13C values, although they do get there from time to time 
(Codron et al., 2007, 2016; Lee-Thorp et al., 2007; Yeakel et al., 2009). 
So from the perspective of modern mammals, having such high δ13C 
values without grass being a major portion of the diet would be singular. 
While evidence from carbon isotopes, function morphology, and 
comparative ecology makes significant animal food consumption in 
P. boisei unlikely, we acknowledge that other isotopic systems and 
elemental ratios could potentially speak to animal food consumption in 
P. boisei. However, these proxies are not fully developed, beset by 
diagenesis concerns, or uninterpretable at present (e.g., Martin et al., 
2020; Leichliter et al., 2021). 

A similar problem arose from studies of P. boisei’s occlusal micro-
wear. Remarkably for a reputed “nutcracker,” its microwear lacks 
complexity, which is very unlike contemporary hard object feeders such 
as Cercocebus atys and Sapajus apella, but very similar to folivorous 
primates like Alouatta palliata and Semnopithecus entellus (Ungar et al., 
2008; Grine et al., 2012; Scott et al., 2012). Most notably, its complexity 
is virtually identical to that of extant Theropithecus, for which the leaves 
of graminoids are the most eaten foods (Teaford, 1993; Scott et al., 2012; 
Fashing et al., 2014; Shapiro et al., 2016), and indeed, this would be the 
default expectation for any primate with evidence of such high C4/CAM 
consumption. It is true that the P. boisei has less anisotropy or direc-
tionality than Theropithecus or other folivores (Ungar et al., 2008; Scott 
et al., 2012), but that would be expected on morphological grounds 
given that its flat postcanine dentition would constrain jaw movement 
less than teeth with well-developed shearing crests. The buccal micro-
wear of P. boisei also most resembles that of primate folivores (Martínez 
et al., 2016), although the interpretation of this is more difficult as its 
etiology is poorly resolved at present. 

This also comports well with evidence from tooth chipping, as the 
exceptionally low chipping frequency in P. boisei (2%) is more similar to 
that found in colobine folivores (~5%) than primates known to eat hard 
and/or underground foods like Cercocebus atys (60%) and Papio ursinus 
(52%)(Constantino and Konow, 2021; Ungar and Berger, 2018; Fannin 
et al., 2020; Towle et al., 2021). It also works well from the perspective 
of resource availability–grasses were abundant everywhere we find 
P. boisei as evidenced by the surfeit of co-occurring grazing ungulates 
and C4 consuming Theropithecus (Reed, 1997; Alemseged, 2003; Bobe 
and Eck, 2001). Indeed, P. boisei is most closely associated with Ther-
opithecus oswaldi and the grazing suid Metridiochoerus andrewsi in the 
Shungura and Koobi Fora formations (Bobe and Behrensmeyer, 2004; 
Alemseged and Bobe, 2009; Bobe et al., 2022). In short, carbon isotope, 

Fig. 1. The relationship between ε*diet-bioapatite and body mass (kg) for 
Epitheria over 4 kg (data from Cerling and Harris, 1999; Passey et al., 2005; 
Tejada-Lara et al., 2018 and references therein). The six lowest ε*diet-bioapa-
tite values are for camelids, suids, equids, and ursids–none of the lowest values 
are for Ruminantia. 
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dental microwear, tooth chipping analyses, and comparative mamma-
lian ecology are all consistent with, and in some cases, argue strongly for 
high levels of tough graminoid consumption by P. boisei (we will address 
hard or stress-limited C4 foods below). 

The only real problem with the consumption of such displacement- 
limited graminoids for eastern African Paranthropus is the argument 
that its morphology is inconsistent with such a diet. But is it? Arguments 
have been made from the facial architecture and dentognathic 
morphology of hominins like P. boisei that they were designed for 
withstanding high magnitude loads associated with hard object feeding, 
but others have argued that a large number of loads experienced during 
the consumption of tough foods is consistent with their facial and 
mandibular morphology (Hylander, 1988; Scott et al., 2014; Daegling 
and Grine, 2017; Marcé-Nogué et al., 2020). Thus, from the perspective 
of bone biology, there is nothing to argue that a tough diet is impossible, 
or in fact, even improbable. Indeed, it is notable that facial and 
mandibular morphology of Paranthropus more closely approximates that 
of folivorous colobines than hard-object specialists (Daegling et al., 
2011). 

Hyperthick enamel has also been posited as evidence of durophagy in 
Paranthropus and other primates (Vogel et al., 2008; Lucas et al., 2008; 
Constantino et al., 2010). However, Rabenold & Pearson (2011) found 
that enamel thickness was correlated with the quantity of silica phyto-
liths in primate diets, and hence may be principally a mechanism for 
resisting abrasion–and the steep wear gradient in Paranthropus molars 
may also indicate an abrasive diet (Grine, 1981; Cerling et al., 2013a). 
Moreover, if thick enamel was an adaptation for resisting fracture during 
the consumption of hard foods, enamel microstructure would also be 
expected to be so optimized. Strong prism decussation might be ex-
pected in enamel optimized to resist fracture due to heavy loads as it 
limits crack propagation (Shimizu et al., 2005; Bajaj and Arola, 2009; 
but see Macho, 2015), but it is notably lacking in P. boisei (Beynon and 
Wood, 1986; Ramirez Rozzi, 1998). So, once again, there is nothing 
about the enamel thickness of P. boisei that would make tough food 
consumption impossible. 

It is fairly clear that most of the masticatory package of Paranthropus 
is consistent with a diet dominated by tough graminoids. Nonetheless, it 
is unquestionably true that the flat teeth of P. boisei more resemble the 
teeth of frugivores than those of folivores (Jolly, 1970a; Kay, 1985; 
Venkataraman et al., 2014). Thus, it is the lack of shearing capability in 
Paranthropus’ teeth that presents the only solid argument against the 
consumption of tough graminoids. We suggest, however, that while the 
flat teeth of P. boisei are not optimal for a diet of tough foods, they might 
well be better suited for the consumption of such fare than the teeth of its 
more thinly enameled predecessors. Changes to tooth cusp architecture 
are genetically complex and require millions of years to effectuate, while 
numerous lines of evidence suggest that changes in enamel thickness can 
occur quite quickly (Ungar and Hlusko, 2016). Thus, increased tooth 
enamel thickness may have been the path of least evolutionary resis-
tance if the ancestors of Paranthropus began eating tougher foods–es-
pecially as those immediate ancestors already had flatter and more 
thickly enameled teeth than extant African hominoids. At the very least, 
this would have made the teeth more resistant to the additional wear 
necessitated by the larger number of chewing cycles required for a 
tougher diet. So, while the flat teeth of P. boisei may not have been 
optimal for a tough diet, they may still reflect selection for such diets 
given their phylogenetic constraints (Daegling and Grine, 2017). And 
indeed, the steep wear gradient between M1 and M3 on specimens such 
as OH 5 and the Peninj mandible makes it clear that these teeth are 
suboptimal. It is well known that excessive tooth wear can impact 
digestive efficiency and reproductive success (e.g., King et al., 2005) – 
though clearly these teeth were sufficient for the species to survive about 
a million years. 

3.2. Fallback foods to the rescue? 

One attempt to harmonize the hard object interpretation from 
morphology, and contrary evidence from microwear, and to a lesser 
extent carbon isotopes, is the fallback food hypothesis. The idea is that 
the morphological interpretations are correct, but that hard object 
feeding was uncommon or irregular, but adaptively important (Grine 
et al., 2006; Ungar et al., 2008; Strait et al., 2009, 2013; Smith et al., 
2015). In this interpretation, hard fallback foods were consumed during 
short periods of resource stress, and thus occlusal microwear, which 
only records a short period of dietary behavior before death (Grine, 
1986), might miss these relatively fleeting, if important, dietary excur-
sions. Indeed, this phenomenon has often been noted in the primato-
logical literature. For example, Yamashita (1998) argued that the dental 
morphology of lemur species better indicates the hardest foods eaten 
than those consumed most frequently, and Lambert et al. (2004) found 
that despite large differences in the enamel thickness of Lophocebus 
albigena and Cercopithecus ascanius, their diets only differed in hardness 
during times of fruit scarcity. So, on the face of it, hard fallback foods 
could explain the apparent discrepancy between morphology and dental 
microwear. We would argue, however, that in the light of the carbon 
isotope and tooth chipping data this explanation explains very little–at 
least for P. boisei. 

Why? Well let’s imagine that P. boisei consumed the hard C3 foods 
favored by Cercocebus atys (Sacoglottis gabonensis nuts) and Sapajus apella 
(e.g., Metrodoria stipularis seeds). We still must explain how this taxon 
ate about 80% C4/CAM foods–and most C4/CAM foods are tough. If we 
take as axiomatic that the flat teeth of Paranthropus are poor tools for the 
mastication of leafy material (Kay, 1985; Strait et al., 2013; but see 
below), then the C4/CAM consumption in P. boisei almost has to be some 
combination of the seeds and underground parts of grasses or sedge-
s–and these foods would have to dominate the P. boisei diet given its 
carbon isotopic composition. The idea that P. boisei consumed USOs of 
C4 plants like grasses and sedges is also hard to accord with dental 
microwear, as consumers of USOs tend to have highly pitted enamel 
(Daegling and Grine, 1999; Scott et al., 2012; but see Shapiro et al., 
2016). Such a diet would also be unlike that of any living mammal 
today, with the closest being USO-specialist mole rats, but even they 
have trouble reaching the high δ13C values of P. boisei (Yeakel et al., 
2007; Robb et al., 2012, 2016; Patterson et al., 2016). Moreover, these 
hard USOs would have to have been selectively important without 
leaving telltale traces by way of tooth chipping (Constantino and 
Konow, 2021). This is difficult to imagine, especially as a principal 
selling point for tooth chipping analysis is that it can reveal infrequent 
behavior since it is not overwritten like microwear (Constantino et al., 
2010). 

So a fallback explanation for the hypertrophied masticatory appa-
ratus of P. boisei does not work very well: after all, sooty mangabeys 
crack Sacoglottis nuts daily, and their unremarkable papionin faces can 
produce the needed forces (and withstand the attendant stresses) 
without apparent difficulty (McGraw et al., 2011). If P. boisei were 
consuming hard C3 plant parts as fallback foods they still needed to eat 
tough C4/CAM foods to obtain their warthog-like δ13C values–so the 
morphological problem persists. Or if they ate enough hard C4 sedge 
corms to derive their δ13C values these would have constituted the bulk 
of P. boisei’s diet making a fallback argument problematic. It is worth 
noting that another way to salvage the hard object interpretation from 
morphology is to argue that hard object feeding does not lead to complex 
and pitted microwear (Lucas et al., 2013). This does not comport with 
decades of comparative ecological work in primates, artiodactyls, car-
nivores, and more, so we will not discuss it further herein (Ungar, 2015; 
Calandra & Merceron, 2016). However, we think it is important to note 
that even if this were true, most of the other objections above would still 
apply. Tough C4/CAM foods would have been consumed in abundance, 
which has been argued to be contrary to the morphological evidence, or 
abundant C4/CAM hard objects would have been consumed, which 
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would be difficult on ecological grounds and inconsistent with the lack 
of tooth chipping in P. boisei’s molars (Constantino and Konow, 2021). 

3.3. Update from the Omo 

Before we dive deeper into the likely nature of P. boisei’s diet, it is 
important to acknowledge new wrinkles introduced by recently avail-
able carbon isotope data from the Omo (86 hominins and hundreds of 
associated non-hominins) (Wynn et al., 2020; Negash et al., 2020). The 
Omo Australopithecus specimens are similar to coeval A. afarensis from 
Hadar and Kenyanthropus platyops from Turkana in that they are isoto-
pically variable–ranging from C4/CAM dominated diets to near pure C3 
ones, yet they are more C3 on average (− 9.5‰ vs. − 7.4 and − 6.2‰). 
The greater consumption of C3 vegetation makes sense in light of iso-
topic, taxonomic, and ecomorpohological studies pointing to closed and 
wet environments during Shungura Member B (Reed, 1997; Bobe and 
Eck, 2001; Alemseged, 2003; Cerling et al., 2011b; Barr, 2015; Negash 
et al., 2020). Homo from the Omo, in contrast, is unexpectedly C4/CAM 
dominant (− 2.7‰). Most Homo specimens from Turkana and South 
Africa indicate much less consumption of 13C-enriched foods (Lee-Thorp 
et al., 2000; Cerling et al., 2013a). This is especially perplexing as the 
Omo specimens inhabited areas with fewer C4 resources (Bobe, 2006; 
Cerling et al., 2011b). There is not enough evidence from morphology, 
microwear, or other sources to make sense of this at present, and the 
Omo hominins had more surprises in store. The earliest Paranthropus 
specimens, presumably P. aethiopicus, preserve little evidence of 
C4/CAM consumption, unlike contemporaneous P. aethiopicus from 
Turkana, which are already over 50% C4 consumers (Wynn et al., 2020; 
Cerling et al., 2013a). Even more unexpectedly, there is a major change 
in the δ13C values of late P. aethiopicus from the Omo–after about 2.37 
Ma the taxon’s carbon isotope composition indicates C4-dominated diets 
like P. boisei in the Omo and Turkana (Fig. 2). During Members C & D 
Paranthropus is most associated with Parapapio (primarily a C3-con-
sumer), but thereafter its closest association switches to Theropithecus 
oswaldi (primarily a C4-consumer), so some increase in the proportion of 
C4 foods eaten might be anticipated from a habitat perspective (Bobe 
and Behrensmeyer, 2004). 

However, there is no evidence elsewhere of such strong isotopic 
shifts within a hominin genus over time. Smaller changes exist, such as 
those within Kenyan early Homo, but they are much smaller and may 

occur across multiple species (H. rudolfensis, H. habilis, H. erectus) with 
divergent dietary proclivities (Patterson et al., 2019). There are also 
changes in the δ13C values of associated fauna, some of which are 
occurring over the same period, but these tend to be much smaller 
(Negash et al., 2020). Indeed, there is a much greater change in the 
Hominidae than in other families (Fig. 3), and it is not associated with 
either taxonomic or morphological change that might signal a transition 
in hominin dietary adaptations. 

To put this in perspective, this switch from C3 to C4 consumption is so 
massive that it is larger than that seen in grazing Equidae (~6.5‰) when 
C4 grasses first became important components of African ecosystems 
after 10 Ma (Uno et al., 2011). And in the case of Miocene African 
equids, there need not have been any meaningful change in their diets 
given that C4 grasses may have supplanted C3 grasses due to decreasing 
global CO2 concentrations (Feakins et al., 2013; Uno et al., 2016). As no 
changes of this scale are found in other families from the Omo (Negash 
et al., 2020), it is unlikely that the change in Paranthropus simply reflects 
changes in the photosynthetic pathways of available grasses. It is, 
nevertheless, plausible that a loss in the abundance of wetland- or 
river-associated C3 grasses like Phragmites, which could occur due to 
local tectonic activity rather than climate change, could have led to 
increased C4 graminoid consumption if Paranthropus had a greater pre-
dilection for moist environs than most grazing herbivores. Shifts in the 
relative proportions of C3 and C4 sedges could also be invoked to explain 
this change. Controls of sedge isotopic compositions are different from 
those of grasses. In both eastern Africa and southern Africa the vast 
majority of savanna grass biomass uses C4 photosynthesis (e.g., Codron 
et al., 2005b; Uno et al., 2016), whereas sedges can be mostly C3 in 
southern Africa (Stock et al., 2004; Sponheimer et al., 2005a) but pre-
dominantly C4 in eastern Africa (Hesla et al., 1982). The primary driver 
of this difference is probably the higher temperatures in eastern Africa, 
as temperature increases have been linked to greater percentages of C4 
sedges across multiple continents (Teeri et al., 1980; Ueno and Takeda, 
1992; Stock et al., 2004). But subtle changes in climate, tectonics, soil 
nutrients, hydrology, or some combination thereof, could plausibly lead 
to a large change in the abundance of C4 sedges (e.g., Kotze & O’Connor, 
2000). There were transformations in the Omo depositional environ-
ment at this time and a burgeoning dominance of Reduncini, especially 
Menelekia (Clark Howell et al., 1987; Bobe and Eck, 2001), so the pos-
sibility of changing hydrology and a concomitant transition in the 
abundance and type of wetland resources cannot be dismissed. 

This major isotopic shift within P. aethiopicus, with a lack of 
accompanying evidence for concomitant morphological change in its 
posterior dentition, may also make it less tenable to argue that the 

Fig. 2. Carbon isotope composition of early P. aethiopicus (blue), late 
P. aethiopicus (red), and P. boisei from the Omo. (For interpretation of the ref-
erences to colour in this figure legend, the reader is referred to the Web version 
of this article.) 

Fig. 3. Smoothed fits of Family δ13C values from the Omo (Negash et al., 2020; 
Wynn et al., 2020). Note the large jump at about 2.4 Ma within the Hominidae 
and the much smaller change, lack of change, or even opposite direction of 
change in other families at that time. 
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material properties of foods consumed changed during this transition. 
This argument would be stronger if we had evidence of cranial or 
mandibular morphology across the 2.37 Ma boundary, but the paucity of 
such evidence for P. aethiopicus outside of Omo 18-1967-18 and KNM- 
WT 17000 (the “Black Skull”)(Constantino et al., 2010) makes it 
impossible to evaluate. Dental microwear would also be ideal for testing 
the hypothesis for changes in food mechanical properties but is unten-
able at present given the extensive post-depositional damage in the Omo 
hominins analyzed thus far (Ungar et al., 2008). Fortunately, tooth 
chipping data are available for P. aethiopicus and they suggest a lack of 
hard foods in its diet as was found in P. boisei (Constantino and Konow, 
2021). So evidence for mechanical change within eastern African Par-
anthropus is currently non-existent. We cannot, however, rule out the 
possibility of exaptation at present, in which early Paranthropus or an 
earlier ancestor was a hard object feeder, and the attendant masticatory 
morphology was ultimately co-opted for the consumption of tough 
foods. In this scenario, subsequent change to C4/CAM foods could have 
begun with those of similar mechanical properties to C3 hard objects 
such as grass seed, rhizomes, or sedge USOs (Jolly, 1970a; Dominy et al., 
2008; Paine et al., 2018). However, the story of a co-opted masticatory 
apparatus is unconvincing for multiple reasons. For one, these foods are 
either in relatively low abundance seasonally (e.g., grass seeds) or 
difficult to square with data from dental microwear and tooth chipping 
(e.g., rhizomes, corms; Daegling and Grine, 1999; Constantino and 
Konow, 2021). Moreover, dental microwear and tooth chipping studies 
of A. afarensis, the likely lineal ancestor of Paranthropus, revealed no 
hard object signal (Grine et al., 2006, 2012; Constantino and Konow, 
2021). It is also notable that from the perspective of modern herbivores, 
having such high δ13C values without the above ground portion of grass 
being a major component of the diet would be singular. 

All told, there are many reasons to doubt that P. aethiopicus and 
P. boisei ate hard foods, or that they inherited the rudiments of their 
masticatory package from a hard object feeding ancestor. There are 
fewer reasons to doubt the consumption of tough foods, and current 
evidence is consistent with the notion that increasing consumption of 
tough foods drove the evolution of the australopith masticatory package. 
Therefore, it behooves us to ask if there are ways that Paranthropus could 
have consumed tough grass or sedge material that are congruent with its 
morphology. One way to proceed is to look for lessons from beyond the 
haplorrhine primates that form the comparative basis for most studies of 
hominin diets. 

4. Lessons from the phylogenetic hinterlands 

Attempts to reconstruct the ecology of fossil taxa are perforce 
grounded in the comparative method. If we find, for instance, that the 
degree of shearing crest development in catarrhine primates can be used 
to discriminate between folivores and frugivores, and that there are 
sound functional reasons for this discriminating power, we are happy to 
use this trait to ascribe dietary behavior to fossil catarrhines (Anthony 
and Kay, 1993). Nevertheless, it is a mistake to think that there can be 
only one solution to a particular adaptive problem. As noted by Anthony 
and Kay (1993), the discovery of a primate that solved the problem of 
folivory through digestive tract modification rather than increased 
molar shear would not falsify our ideas of this morphology-diet rela-
tionship. It might, however, force us to acknowledge that contemporary 
primates might provide an incomplete snapshot of the order’s historical 
adaptive diversity. This is the curse of presentism. It is reasonable to 
assume that most ancient species will solve adaptive problems in ways 
like those of their closest surviving kin, but if we are faced with multiple 
lines of evidence that suggest that our understanding of a form-function 
relationship is wanting for a given taxon, we should be willing to look 
for alternate solutions to the adaptive problem in question. And a pro-
ductive way to do this would be to broaden the taxonomic scope to glean 
hints from nature’s cornucopia, even if from phylogenetically distant 
sources. So with regard to P. boisei, which we know has a combination of 

carbon isotope composition, microwear, tooth chipping, morphology, 
and more that are in toto unmatched in contemporary primates, we 
should be willing to look beyond the primates to try to make sense of its 
perplexity. And, indeed, researchers have looked to bears (Hatley and 
Kappelman, 1980; Du Brul, 1977), pigs (Hatley and Kappelman, 1980), 
tapirs (DeSantis et al., 2020), carnivores (Thompson, 1975; Szalay, 
1975; Schaller and Lowther, 1969), and sea otters (Constantino et al., 
2011) to address questions about the dietary adaptations of early 
hominins. 

Sea otters (Enhydra lutris) have garnered interest in this regard 
because, outside of the primates, their bunodont molars are among the 
most similar to those we find in australopiths (Walker, 1981). An 
additional inducement to their study is that they are consumers of hard 
foods including mollusks, crabs, and sea urchins, which may be me-
chanically analogous to the hard nuts and seeds that some believe un-
derlie the evolution of dentognathic hypertrophy in robust 
australopiths. It is notable, however, that their enamel is much thinner 
than that of Paranthropus and more prone to fracture (Constantino et al., 
2011), suggesting that robust australopith molars were optimized for 
higher loads, or potentially, for resistance to abrasion that is the 
concomitant of diets requiring repetitive loading (Rabenold and Pear-
son, 2011). The dental adaptations of other marine mammals may also 
prove illustrative in other ways. Manatees (Trichechus spp.) have bilo-
phodont teeth comparable to those of savanna baboons which they use 
to process a diet of seagrass (Marsh et al., 1999; Allen et al., 2018). Their 
teeth lack the shearing potential associated with folivory in terrestrial 
mammals, but in compensation, they have a system of horizontal tooth 
replacement with the addition of supernumerary molars that prolongs 
the life of their dental batteries (Domning, 1982). Seagrass also has less 
fiber and is more friable than terrestrial grass (Lanyon and Sanson, 
2006a). With such facilitation the manatee’s occlusal morphology is 
clearly fit for the purpose of seagrass comminution. 

More remarkable is their fellow sirenian the dugong. Dugongs 
(Dugong dugon) also consume primarily seagrass (Marsh et al., 1999; 
André and Lawler, 2003; Lanyon and Sanson, 2006b) and their molars 
have exceptionally thin enamel that is worn away soon after birth, 
leaving them with flat dentine nubs. Moreover, the exposed dentine is 
much softer than that found in terrestrial herbivores (Lanyon and San-
son, 2006b), presumably leading to faster wear albeit in ever-growing 
teeth (hypselodonty). Dugongs also have horny pads that aid in trans-
porting seagrass through the mouth and mechanical breakdown. No one 
would argue that either of these grass eaters can serve as referential 
analogs for early hominins or any other primate, yet they demonstrate 
that closely related taxa can solve similar dietary problems in vastly 
different ways. Their diets also remind us that grasses are not mono-
lithic. Among savanna grasses, there are some that are astonishingly 
tough, while others are the consistency of lettuce or ripe fruit (Paine 
et al., 2018, 2019). Thus, when we talk about P. boisei as a potential 
consumer of grasses, we need not assume it would have required teeth fit 
to process the foods eaten by zebra or even geladas. 

Du Brul (1977) noted that craniodental adaptations in pandas 
(Ailuropoda melanoleuca) are also well developed in Paranthropus. These 
include a flattened face, flaring zygomatic arches, massive temporalis 
muscles, and expanded and rounded (by carnivore standards) molars 
and premolars. This convergence invites speculation that the highly 
derived masticatory systems of Paranthropus and pandas are responses to 
similar mechanical demands. For pandas, this is the need to process 
large amounts of tough bamboo (C3 grasses that can be hard depending 
on part and phenophase)(Yamashita et al., 2009). The teeth of pandas 
are very different from those we find in grass-eating ungulates or pri-
mates (Davis, 1964), which is to be expected given their phylogenetic 
inheritance from omnivorous ursid ancestors. But if we can allow that 
the panda is not dentally optimized for consumption of its staple food 
given its phylogenetic baggage, is it inconceivable that P. boisei, with its 
flat teeth, also had a predilection for graminoids? 

In considering this question we need to go beyond hard tissue 
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morphology and food mechanical properties to understand how pandas 
really do what they do from the perspective of dietary adaptation. 
Pandas digest the bamboo astonishingly poorly—they digest only 20%– 
30% of what they ingest (Dierenfeld et al., 1982; Senshu et al., 2007; 
Sims et al., 2007; Finley et al., 2011). Ruminant grazers and primate 
folivores including geladas, on the other hand, typically digest 60–80% 
of the dry matter they consume (Robbins, 1983; Dunbar and Bose, 1991; 
Iwamoto, 1993; Edwards and Ullrey, 1999; Remis and Dierenfeld, 
2004). Given pandas’ pathetic digestive performance, they have very 
different digestive strategies than most graminoid consumers. They pass 
bamboo through their digestive tracts very quickly, typically within 12 
h, and in so doing make little attempt to digest the refractory compo-
nents of their diets. Indeed, panda gut microflora shows little ability to 
break down plant cell walls (Senshu et al., 2014), although they do 
appear to have some efficacy in breaking down secondary cyanide 
compounds in bamboo (Zhu et al., 2018). Thus, the panda’s digestive 
strategy is to eat massive quantities of bamboo to access easily obtained 
cell solubles and pass the remaining fraction quickly and largely intact 
(Schaller et al., 1985). 

If P. boisei ate food that its dental battery was ill-equipped to process, 
could it have followed a related, if less extreme, digestive strategy? 
Perhaps breaking down vegetation just enough to access suitable 
quantities of cell solubles while passing it through its digestive tract very 
quickly? This would have required the consumption of massive amounts 
of vegetation and would certainly be consistent with the thick enamel 
and high wear gradient on their molars. This might seem unlikely as 
short transit times are not typically observed in hominoids (Lambert, 
1998), although there is no reason that selection could not favor changes 
in a hominoid’s digestive kinetics. Chimpanzees and orangutans (Pongo 
spp.) handle foods with highly indigestible components in a different 
way–they chew it to obtain cell solubles and expectorate the remaining 
residual wadge (Tutin et al., 1997; Remis and Dierenfeld, 2004; Dominy 
et al., 2008; Vogel et al., 2008; Yamagiwa and Basabose, 2009). Humans 
eating the rhizomes of the C4 sedge papyrus (Cyperus papyrus) do the 
same (van der Merwe et al., 2008). If a primate were to do this regularly 
it would present a considerable challenge to its masticatory apparatus 
and would be evoke the panda digestive strategy, only the refractory 
material would be leaving from the front rather than the back end. Once 
again, this might appear to be an unlikely strategy, but given the per-
plexing constellation of data we possess on the diet and masticatory 
adaptations of P. boisei, should we be expecting the unexpected? Others 
have asked about the possibility that P. boisei practiced coprophagy to 
maximize assimilation of complex carbohydrates with the added benefit 
of providing vitamins, minerals, and amino acids (see Soave and Brand, 
1991). Coprophagy is practiced by hominoids in the wild, although it is 
mostly focused on the consumption of seeds ostensibly softened by 
passage through the digestive tract and never represents more than a 
small fraction of the diet (Harcourt and Stewart, 1978; Krief et al., 2004; 
Sakamaki, 2010). And while sitatunga (Tragelaphus spekei) and river 
hogs (Potamachoerus porcus) consume surprising quantities of large 
seeds from forest elephant (Loxodonta cyclotis) dung in streams 
(Magliocca et al., 2003), we think such behavior was unlikely to have 
been of adaptive significance for P. boisei, or that the “Nutcracker Man” 
moniker will need to be updated to something scatologically tinged. 

A little closer to our phylogenetic home we find the curious case of 
Hadropithecus stenognathus. Hadropithecus shares masticatory features 
with Paranthropus including a short face, flaring zygoma, small anterior 
dentition coupled with molarized premolars and large molars, and thick 
mandibular corpora with high ascending rami (Jolly, 1970b; Godfrey 
et al., 2016). In contrast, Hadropithecus is notably different from robust 
australopiths in having much thinner enamel and occlusal morphology 
more like that of Theropithecus, and thus more like a classic tough food 
consumer. Given our earlier discussion of how most of Paranthropus’ 
masticatory architecture is consistent with tough foods, and the fact that 
Hadropithecus’ occlusal morphology is like that of folivores, one might 
imagine that Hadropithecus had a gelada-like dependence on grass. 

Carbon isotope data for the taxon are largely consistent with this, but its 
δ15N values are higher than would be expected from grass consumers, 
leading to speculation that Hadropithecus was a specialist on CAM 
vegetation (Godfrey et al., 2016). As unique as this would be from the 
perspective of comparative mammalian ecology, there are several points 
in its favor beyond the fact that this is one of the few diets that works 
with its known isotopic composition. The most important of these is that 
Madagascar has spiny forests in which CAM plants from the Didier-
eoideae and Euphorbiaceae are important components (Winter, 1979; 
Waeber et al., 2015). The Didiereoideae are particularly important in 
this context as their leaves are protected by spines that closely related 
species from mainland Africa lack (Applequist and Wallace, 2003). This 
suggests significant predation was experienced by the Madagascan clade 
(Cooper and Owen-Smith, 1986), even if today they experience only 
light predation by Lemur catta and Propithecus verreauxi (Norscia and 
Palagi, 2011; LaFleur and Sauther, 2015). In fact, Hadropithecus is the 
only species we know that presumably had the capacity and stable 
isotope compositions to have predated upon these CAM plants regularly 
(Crowley and Godfrey, 2013). 

Could Paranthropus have consumed CAM leaves too? There is reason 
to believe that CAM plants existed in the vicinity of early hominins. 
Indeed, the eponymous Olduvai Gorge derives its name from Oldupai 
(Sansevieria ehrenbergii), a succulent CAM plant. Modern baboons 
consume it sparingly (~1% of time spent feeding; Barton et al., 1993), 
and humans are more likely to use it as rope or antiseptic than they are 
for food (Khalumba et al., 2005). African savanna primates eat other 
CAM plants, especially Euphorbia, though they are typically a small 
fraction of their diets (Barton et al., 1993; Codron et al., 2006; Lent et al., 
2010). The low levels of CAM plant consumption among most primates 
is unsurprising given that they are often toxic, unpalatable, and a small 
fraction of available plant biomass (Peters and Vogel, 2005; Johnson 
et al., 2006), although CAM plants can be abundant in a few places such 
as the Cape Floristic Region of South Africa (van der Merwe et al., 1990; 
Cowling et al., 2004). Outside of Euphorbias, some of the best CAM 
targets for hominins would be the corms of Isoetes in seasonal wetlands, 
and the flowers, nectar, and leaves of Aloe in drier habitats, although the 
latter are considered purgatives (van Wyk and Gricke, 2000; Peters and 
Vogel, 2005). So, in short, there is little reason to think that CAM plants 
would have been available in sufficient abundance or would have been 
palatable enough to have had a large and consistent impact on the 
carbon isotope composition of P. boisei or any other early hominin. 

Lastly, despite the convergence evident in Paranthropus and Hadro-
pithecus, and even the likelihood that both processed large quantities of 
displacement-limited vegetation, it is likely that their digestive strate-
gies would have been very different given the dissimilarity in their 
occlusal morphology. The high shear in the molars of Hadropithecus 
would allow reduction of ingested food to finer particles than would the 
flat teeth of Paranthropus leading to faster and/or more complete 
digestion (Clauss and Hummel, 2005; Fritz et al., 2009; Matsuda et al., 
2014). In fact, this appears to be one of the chief digestive differences 
between living Papio and Theropithecus. Both taxa can eat the same foods 
and display similar rates of microbial fermentation (Mau et al., 2011), 
but the teeth of Theropithecus enable it to break ingesta down to finer 
particles than can Papio (Dunbar and Bose, 1991). So the occlusal 
morphology of Hadropithecus would allow a digestive strategy similar to 
that of bamboo-eating Hapalemur which has a higher digestive efficiency 
and slower food passage rate than other Malagasy primates (Overdorff 
and Rasmussen, 1995; Campbell et al., 2004). A dietary strategy focused 
on quantity rather than digestive efficiency might have made more sense 
for P. boisei given its flat molars and would also be consistent with its 
hyperthick yet heavily worn enamel. The alternative, slowing the pas-
sage rate to allow more time for digesting much larger particles, is 
possible in principle for very large animals (e.g., sauropod dinosaurs) 
and those with low metabolic rates (e.g., herbivorous lizards), but would 
be energetically unrealistic in a hominoid (Karasov et al., 1986; Franz 
et al., 2009). 
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5. Conclusions 

Conversations about the diet of Paranthropus have come a long way 
since the original carbon isotope study of Lee-Thorp et al. (1994). We 
have had to wrestle collectively with isotopic, dental microwear, and 
tooth chipping studies that have not always confirmed expectations. 
And while our understanding of robust australopith ecology remains 
nascent, one lesson is clear. The inference of behavior from morphology 
can be complicated. Few would surmise that goats in the Argan tree 
woodlands of Morocco spend over 70% of their time feeding in trees 
from the principles of biomechanics, but despite the functional 
implausibility of such behavior, and the goats’ phylogenetic distance 
from arboreal taxa, they forge right ahead (El Aich et al., 2007). 
Form-function relationships will remain the bedrock of paleoecological 
inquiry, but the structuralist approach of Lauder (1981) and others in 
the late 20th century offers a sober response to unbridled functionalist 
logic: constraint is real and is discoverable in the investigation of 
development and phylogeny. 

What this means with respect to Paranthropus is not entirely clear. 
However, a shift from trying to understand if robust australopiths could 
consume tough foods, to understanding how they might have done so, 
might be rewarding. Furthermore, while paleodietary proxy studies 
from isotopes and microwear may continue to shape our understanding 
of the ecology of ancient hominins, it is worth considering if they may 
help us develop a sounder basis for functional interpretation from 
hominin morphology. Perhaps not. But still, conventional fixed-wing 
aerodynamic theory suggested that bees should not be able to fly 
(Magnan, 1934). The reply to this counterfactual was not to be found in 
the domain of Harry Potter, but in continued observation and experi-
mentation leading to the discovery of the physical principles that 
permitted a life aloft (e.g., Altshuler et al., 2005). 

As for the diet of Paranthropus, continued investigation of the 
abundance, nutritional, and mechanical properties of plant foods should 
prove revealing about the diets of its eastern and southern African 
representatives. Is it possible, for instance, that a greater abundance of 
highly digestible C4 foods in eastern Africa could underlie the higher 
δ13C values in P. boisei than in P. robustus (Paine et al., 2019)? And could 
the longer dry season and relatively poor dolomitic soils of the Sterk-
fontein Valley have required P. robustus to consume seeds, nuts, or USOs 
seasonally, while hard and/or gritty fallback resources were superfluous 
given the richer volcanic soils of eastern Africa, explaining the lack of 
complexity in P. boisei’s microwear (Scott et al., 2005; Ungar et al., 
2008; Paine et al., 2019)? Furthermore, do we really understand the 
dietary differences of P. robustus and P. boisei? We have a paleodietary 
proxy record for Paranthropus in eastern Africa spanning more than a 
million years and over a thousand kilometers, and the variation 
observed therein is relatively limited–generally (though not always) less 
than the amount we see in Theropithecus. For P. robustus, in contrast, we 
have data from specimens that were found within 6 km of each other and 
which suggest greater dietary variability. Would a broader sample of 
P. robustus reveal that its dietary behavior was similar to that of P. boisei 
when in comparable ecosystems? 

Finally, it is difficult to look at the totality of evidence for P. boisei’s 
diet and see just another primate. The present diversity within Primates 
does not comfortably encompass what we see in P. boisei, 
H. stenognathus, and a host of other taxa. Extant primates must inform, 
but should not narrowly circumscribe the behaviors we ascribe to 
extinct taxa. Lessons from beyond the primates may be especially 
important when considering the ways that food material properties, 
masticatory morphology, and digestive kinetics interact, as modern 
primates remain understudied in this regard. 
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