Electron Pairing in One-Dimensional Anharmonic Crystal Lattices

M. G. VELARDE,¹ L. BRIZHIK,^{1,2} A. P. CHETVERIKOV,^{1,3} L. CRUZEIRO,^{1,4} W. EBELING,^{1,5} G. RÖPKE^{1,6}

¹Instituto Pluridisciplinar, Universidad Complutense, Paseo Juan XXIII, 1, Madrid 28040, Spain ²Bogolyubov Institute for Theoretical Physics, Metrolohichna Str., 14b, Kyiv 03680, Ukraine ³Faculty of Physics, Chernyshevsky State University, Astracanskaya 83, Saratov 410012, Russia ⁴CCMAR and FCT, Universidade do Algarve, Portugal, Campus de Gambelas, Faro 8005-139, Portugal ⁵Institut für Physik, Humboldt Universität, Newtonstrasse 15, Berlin 12489, Germany ⁶Institut für Physik, Universität Rostock, Universitätsplatz, 3, Rostock 18051, Germany

Received 9 September 2010; accepted 15 November 2010 Published online 8 March 2011 in Wiley Online Library (wileyonlinelibrary.com). DOI 10.1002/qua.23008

ABSTRACT: We show that when anharmonicity is added to the electron–phonon interaction it facilitates electron pairing in a localized state. Such localized state appears as singlet state of two electrons bound with the traveling local lattice soliton distortion, which survives when Coulomb repulsion is included. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem 112: 551–565, 2012

Key words: anharmonic lattice; lattice soliton; solectron; electron pairing; bisolectron

1. Introduction

t is known that the electron–phonon interaction results in the lowering of the energy of

Correspondence to: M. G. Velarde; e-mail: mgvelarde@pluri. ucm.es

Contract grant sponsor: Spanish Ministerio de Ciencia e Innovación.

Contract grant number: EXPLORA-FIS2009-06585-E.

Contract grant sponsor: Fundamental Research Grant of the National Academy of Sciences of Ukraine.

Contract grant sponsor: Ministry of Education and Science of the Russian Federation.

Contract grant number: 14.740.11.0074.

Contract grant sponsor: Portuguese Fundação para a Ciência e Tecnologia.

quasi-particles (dressed electrons, holes, excitons, etc.) [1-6]. Depending on the strength of the coupling and the ratio between the Debye energy of phonons and the characteristic energy of a quasiparticle (band width), the latter is either in an almost free band state or is trapped in a large polaron or small polaron state [1–6]. For instance, at moderate values of coupling, large polarons correspond to the lowest energy of the system [6]. From the point of view of conducting properties, the large polaron is the most important case, and there is a wide class of crystals where the necessary conditions for its formation are fulfilled. In one-dimensional (1D) molecular crystals, such large polarons have been described by solitonbearing nonlinear evolution equations and are

International Journal of Quantum Chemistry, Vol 112, 551–565 (2012) \circledcirc 2011 Wiley Periodicals, Inc.