
A Visual Programming Language for Soccer

António Belguinha

ISE, University of the Algarve
Campus da Penha

Faro, Portugal

a34442@ualg.pt

Pedro J.S. Cardoso
ISE, University of the Algarve

Campus da Penha
Faro, Portugal

pcardoso@ualg.pt

Pedro Rodrigues
ISE, University of the Algarve

Campus da Penha
Faro, Portugal

pgrodrigues@ualg.pt

J.M.F. Rodrigues
ISE and Vision laboratory, LARSyS,

University of the Algarve
Faro, Portugal

jrodrig@ualg.pt

Domingos Paciência
University of the Algarve

Faro, Portugal

ABSTRACT

The use of Information Technologies (IT) in high competition

sports is an instrument often used. However, the majority of the

performers, including technical teams, do not have skills to

program those IT tools to their needs. In this paper we present a

visual programming language that allows the user without

programming expertise to produce complex programs by drawing

them on a web application, and we illustrated the development of

this visual programming tool by applying it to situations from a

soccer game. Although, this tool can be applied to other collective

ball sports.

Categories and Subject Descriptors

D.1.7 [Visual Programming]

General Terms

Algorithms and Languages.

Keywords

Visual programming language, sports analysis.

1. INTRODUCTION
Aiming for excellence is the keyword to everyone involved in

soccer. While players need to show their physical and tactical

skills on the pitch, coaches and their remaining staff need to have

their own tools so that they can perform at higher levels. Granting

to all the parts a multi-functional information system (IS), with

the objective of minimizing the adverse effects from the most

critical and sensitive points of soccer is then critical. A match

analysis, for example, can generate a huge amount of statistics and

raw data. Consequently, it is very important to have a way to

process that data, providing only the most important information

to the coach, as soon as possible. Furthermore, a manual match

analysis of soccer games represents a huge amount of work,

which whenever possible should be an automatic process.

Footdata [1] is a project in development by Inesting, S.A., the

University of the Algarve and the soccer coach Domingos

Paciência. The goal is to build a web application product for

soccer, which integrates two fundamental components of this

sport's world: i) a social network (FootData-Social), which

provides the typical features adapted to the soccer reality, and ii)

the professional component (FootData-PRO), which can be

considered as a Soccer Resource Planning (SRP), featuring a

system for acquisition and processing of information to meet all

the soccer management needs. The latter includes (between other

things) an automated platform to gather information from the

teams. This platform will be based on a system that will process

live images acquired on-site, using a single or a group of cameras

placed together in the stands, or images gathered from a Full HD

Handycam. One of the main objectives is to automatically collect

information and on-the-fly alert the technical staff about specific

events. All the above should be presented in a web (browser)

environment, accessible from a personal computer or a mobile

device (smartphone or tablet).

Each technical staff has sometimes statistics that they would like

to be treated and analyses but, in the majority of the cases, they do

not have the programming skills to implement software capable of

such. In order to detect the different statistics from the different

coaches, we had to develop a tool that allow us to pass from a

visual component to a programming (code) component, i.e., a

visual programming language (VPL) framework for soccer (see

Figure 1). The main feature consists in the design of an Interface

Development Environment (IDE) and a compiler to transform the

sketch into a language understandable by computers.

In more detail, a VPL is any programming language that allows

users to create programs by using graphical elements rather than

specifying them textually. Many VPLs are based on the idea of

"boxes and arrows," where boxes or other screen objects are

treated as entities, connected by arrows, lines or arcs which

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

Conference’10, Month 1–2, 2010, City, State, Country.
Copyright 2010 ACM 1-58113-000-0/00/0010 …$15.00.

Figure 1 -- Architecture of the system.

represent relations. Usually, VPLs are used in the context where

the programmer has limited programming knowledge.

For example the Ktechlab [2] is a VPL for microcontrollers and

electronics that uses flowcharts to program microcontrollers

graphically. Another VPL example is Scratch [3] [4] which uses

an intuitive interface with blocks shaped to fit together only in

ways that make syntactic sense, allowing to program various

actions easily without having programming knowledge. Because

of this features, Scratch is successfully being used to teach new

programmers and for educational propose. Another similar web-

based VPL application is a google project called Blockly [5],

which allows making short programs in a web environment by

dragging and dropping programming blocks to interact with

virtual objects on the computer screen.

Even for more advanced programmers, there are VPLs. For

example, Simulink® is a block diagram environment for multi-

domain simulation and Model-Based Design integrated with

Matlab®. Simulink supports system-level design, simulation,

automatic code generation, and continuous test and verification of

embedded systems. With some similarity we have the Scicos [6],

which is a graphical dynamical system modeler and simulator.

With Scicos the user can create block diagrams to model and

simulate the dynamics of hybrid dynamical systems and compile

models into executable code. Scicos is used for signal processing,

systems control, queuing systems, and to study physical and

biological systems. Other examples of Visual processing

Languages applied to specific situations are e.g. [7] [8] [9].

In this paper we describe a system that aims at creating an

interface which allows coaches to “program” their team's statistics

using a web-browser VPL environment. Satisfying the

prerequisites, and based on the transmitted experience of the

consultant technical teams, the interface is prepared to be intuitive

and easy to use, providing the necessary tools for the coaches to

describe their team performance. Besides, the developed

application is a web application, to run on the majority of the most

common web browsers (e.g., Firefox, Chrome, Safari and Internet

Explorer). The application includes tools to represent several

aspects of soccer, namely areas, movements from players and ball,

and passes. In this sense, there are obviously a large number of

scenarios where VPL are useful. This paper main focus isn't the

design itself (i.e., the IDE building) but passing from the visual

representation to code, and further testing in soccer game

environment. Our main contribution in this paper is to propose

VPL that can be applied to most collective ball sports.

The remaining document is structured as follows. Section 2

presents our soccer visual programming language. Section 3 and 4

show how the VPL is compiled and executed and Section 5

presents some experimental tests. Finally, we conclude the paper

with a brief discussion and the presentation of some future work

in Section 6.

2. FOOTDATA’S VISUAL

PROGRAMMING LANGUAGE

The FootData’s interface development environment is called Field

Editor. On the front end, the Field Editor is a visual programming

web-based tool created using HTML 5, CSS, and Javascript. As

intended, the Field Editor allows the coaches to compute his

statistics. The features already implemented in the Field Editor

include tools to draw and edit the configurations of players, ball,

areas and distances. The distance tool can be used to set the

distance between players, between player and other objects (e.g.,

areas, ball, line or points in the field), between objects or to

measure the distance between midpoint of two players to any

other object. On the other hand, areas can be any type of polygon

or ellipse, and can be used to detect if a player or the ball is inside

that area. It also includes areas inside areas allowing, for instance,

to draw situation were two players can move inside an area, which

can also move inside a larger area, limiting the distance between

them.

Figure 2 shows an example of a situation drawn in the Field

Editor. The figure contains four players (represented by the red

circles), a ball, three distances lines between the players and two

zones. The objective of this drawing is to verify that whenever the

ball is inside the green zone, the players should be inside the red

zone keeping a distance of 12 meters between them. We should

notice that although it is not shown in the picture, the distance

between the players admits an error of 3 meters, value

configurable in the Field Editor interface.

The main focus of this paper is not to explore the Field editor

interface. So, for more details about the Field Editor interface

please refer to [10].

When the user completes the draw of the desired statistics,

typically the coaches or some other member of the technical team,

this has to be passed to the FootData datacenter so that the

depicted statistics are committed to the database (allowing

posterior load and re-edition), and transformed into code which is

then matched against the acquired/tracked images.

Also outside the scope of this paper is the tracking framework,

developed inside the FootData project. In resume the tracking

framework is composed by a set application capable of doing the

tracking of the players and ball, given images of the full size

pitch. Please refer to [1] for further details.

3. SERIALIZATION OF THE DRAWN

SCHEMAS

Returning to the communication between the Field Editor (web

application) and the FootData datacenter, a serialization process

was thought tacking into consideration the fact that the Field

Editor is implemented over JavaScript and the FootData’s

libraries used for the verification of the statistics were

programmed in Python. In this case, the drawn is converted to

JSON (JavaScript Object Notation) documents [11], which is a

lightweight data-interchange format. Using the JSON type of

format allowed us to take advantage of (1) the JavaScript facilities

Figure 2 -- Example of a draw made on the Field Editor

representing four players that should be at the red zone when

the ball is inside the green one.

{

"name": "schema 1",

"description": "BP",

"type": "DP",

"field_dimension": [105, 68],

"field_scale": [0.1, 0.1],

"players": [

 {"id": 1, "number": 1,"team": "A",

 "points": [514, 559], “radius”: 3},

 {"id": 2, "number": 2, "team": "A",

 "points": [486, 438], “radius”: 3},

 {"id": 3, "number": 3, "team": "A",

 "points": [483, 314], “radius”: 3},

 {"id": 4,"number": 4,"team": "A",

 "points": [507, 197], “radius”: 3}

],

"ball": {"id": 5,"points": [762, 320],

 "owner": "None"},

"zones": [

{"id": 7, "name": "Zone 7",

 "points": [[945, 498], [945, 198],

 [611, 198], [611, 498]]},

 {"id": 6, "name": "Zone 6",

 "points": [[546, 603], [546, 103],

 [409, 103], [409, 603]]}

],

"lines": [{"id": 10,"objects": [3, 4]},

 {"id": 9,"objects": [2, 3]},

 {"id": 8,"objects": [1, 2]}

],

"distances": [

 {"objects": [3,4], "distance": 12,

 "margin": 3},

 {"objects": [2, 3], "distance": 12,

 "margin": 3},

 {"objects": [1, 2], "distance": 12,

 "margin": 3}

],

"conditions": [

 [

 {"verify_location": [1, "IN", 6]},

 {"verify_location": [2, "IN", 6]},

 {"verify_location": [3, "IN", 6]},

 {"verify_location": [4, "IN", 6]},

 {"verify_location": [5, "IN", 7]},

 {"verify_distances": true}

],

 [{"alert": "True", msg": "Pressing the ball "}],

 [{"alert": "False","msg": ""}]

]

}

Figure 3 -- Example of JSON document generated at the FE.

to treat JSON documents, (2) the fact that those documents are

very similar to Python dictionaries avoiding intricate parsing

procedures, and (3) the fact that the database used to store the

document is MongoDB [12]. MongoDB is a cross-platform

document-oriented database system, classified as a noSQL

database, which eschews the traditional table-based relational

database structure in favor of JSON-like documents.

Figure 3Figure 4 shows as example of the JSON document

generated by the Field Editor to translate the drawing depicted in

Figure 2. The JSON document has a predefined structure, that

include the name of the scheme, the type, the field dimensions, the

field scale, the players, the ball, the lines, the distances and a list

of conditions.

In more detail, the name attribute refers to the name given by the

coach to the drawn schema and the type is used to know in witch

type of statistics is inserted. The attributes field_dimension and

field_scale have also to be passed, because the soccer pitch image

used in the field editor has been designed to a normalized field

dimension, which in general will not match the dimensions of the

majority of the stadiums, who have slightly varying sizes.

Knowing the field dimensions where the game will occur and

drawn the statistical schema to be detected, it is then possible to

adjust the tactic to a particular stadium.

 The players attribute has an array that takes an embed JSON

object, a subdocument, for each player inserted in the field editor,

following the structure: {"id": 1, "number": 1, "team": "A",

"point": [514, 559]}. As we will see, a different id is attributed to

each object inserted in the Field Editor, so we can refer to any

object by its id. The subdocument has also the player's team, its

number, and point which are the player's coordinates in the pitch

and radius that is a value in meters in which the player position

can vary.

When inserting the distances between two players, a line object is

created containing an id and the ids of the objects where the

distance line starts and where it ends. This results in the following

structure: {"id": 8, "objects": [1, 2]} which indicates that there is a

line between player with id 1 and 2. The distances information is

then placed in another attribute called distances, which contains

an array with objects having the information about the objects ids,

and the distance and a (error) margin in meters. The object with

that information has the following structure: {"objects": [3, 4],

"distance": 12, "margin": 3} which, for the presented case, says

that objects with id 3 and 4 (corresponding to the player with id 3

and 4, respectively) should maintain a distance of 12 meters,

allowing an error of 3 meters.

As already mentioned the zones inserted in the Field Editor can be

elliptical, rectangular or free draws. Instead of having a label in

the JSON document for each those geometric objects, we consider

them all as polygons (the elliptical objects are approximated

through the computation of a certain number of points so that the

representation as a polygon is as close as the original figure).

Those points (vertices), that represent coordinates in the soccer

field, are then inserted into a zones array in the JSON document.

As before, each zone as also a unique id and a representation that

follows the structure {"id": 6, "name": "Zone 6", "points": [[546,

603], [546, 103], [409, 103], [409, 603]]}.

Having all this information gathered, we added one last attribute

to the JSON document to allow the program to know what is to be

detected, that attribute is called conditions. As the name suggest,

in this field it is possible to create conditions, more specifically,

if-then-else statements. To do this we defined a structure with an

array with 3 sub-arrays: the first one is the condition of the if, the

second one is then statement and the last one is what to do if the

condition is false (i.e., the else statement).

Some combinations providing more complex programs are also

possible. For example: (1) it is possible to program chained if-

then-else statements, by adding inside the then or else statements

others if-then-else statement, i.e., including more “three element

arrays” that follow the previous presented structure. Furthermore,

it is also possible to (2) program conjunctions (“and”s) and (3)

disjunction (“or”s). The conjunctions are represented as single

conditions in a JSON document, as for example:

[{"verify_location": [1, "IN", 6]}, {"verify_location": [2, "IN",

6]}]. For the previous case, the results in true if “verify_location":

[1, "IN", 6] and “verify_location": [2, "IN", 6] are both true.

Disjunctions are made by inserting various conditions in the same

JSON object, e.g., [{"verify_location": [1, "IN", 6],

"verify_distances": true]}] results in true if at least one of the

conditions is true. As expected it’s also possible to combine both

“and”s and “or”s, e.g: [{condition1, condition2}, {condition3,

condition4}], which results in the (condition1 OR condition2)

AND (condition3 OR condition4) logical expression.

The conditions have their own structure. For example,

verify_location will call a function, implemented in the already

mentioned Python library, which verifies if a certain object is

inside or outside a zone. In this particular case, this is done by

passing a three element array which (1) receives de object id to be

verified, (2) the condition “IN” or “OUT” and (3) the zone id.

The verify_distances has a similar behavior, i.e., it calls a function

which returns a boolean value upon the verification of the

distances defined in the JSON document (see Figure 3).

4. CONVERTING THE SERIALIZED

DOCUMENT TO PYTHON

Having the serialization as JSON structure it is now necessary to

pass it to Python code. First the variables corresponding to the

players, distances, lines and zones objects (everything except the

conditions) are instantiated from the pre-implemented Python

classes. These Python instances are saved to a file using a

serializer, so that the objects will be simply loaded avoiding their

creation every time the verification of the schema is run. This

process is also justified by the fact that data from the Field Editor

is saved in a MongoDB and having the files with the objects

already instantiated will speed up the initialization process. The

next step is to convert the conditions to Python code, which is

done by accessing the conditions array, and creating the if-then-

else code from the sent statements. In more detail, after processing

the if condition each then and else statements are checked to see if

there is another if-then-else arrays inside. In this last case, of

nested conditions, the arrays are accessed recursively. Then each

condition is examined looking for “and” and/or “or” statements,

by checking the structures explained previously. The conditions

names are matched to their correspondent methods already

implemented in our Python library. For example the matching

method to the “verify_location": [5, "IN", 7]” in the JSON

document (Figure 3) corresponds to the function verify_location(

frame, ['ball', 'IN', zones7]) in our Python library which receives a

frame from the tracking system and checks if the ball is inside the

region defined as zone7.

While the conditions are processed the Python file with the if else

statements is created on the fly using our Python generator library.

Figure 4 shows the Python code which corresponds to the JSON

document presented in Figure 3.

Now that we have the code generated, information about the

players and the ball position is needed in order to test in game

environment. As already mentioned, this information is obtained

using a tracking system [13] that returns, for each frame, the

players’ and ball’s positions in meters from the top left corner of

the pitch using an homography [14] to place the objects (players

and ball) in the model field. The frame’s data follows the

structure: {"frame_id": t, “teamA”: {“player_1”: (x_1, y_1),

“player_2”: (x_2, y_2), …, “teamB”: {…}, “ball”: (x,y)}.

The module gpm imported in Figure 4 has a set of pre-

implemented methods used to analyze the game, and also records

the information gathered by each method that is executed. To run

the code, first the file name is passed by parameter to a module

that is responsible to import the previously generated Python file

(Figure 4), and the previously serialized objects. The objects are

deserialized and loaded in to the already imported module with

the code from the game schema using the setattr built-in function

from Python.

from lib import gpm

def run():

 result = False

 if pm.verify_location(frame,['ball','IN',zones7]):

 if gpm.verify_location(frame,

 [players2,'IN',zones6]):

 if gpm.verify_location(frame,

 [players3,'IN',zones6]):

 if gpm.verify_location(frame,

 [players4,'IN',zones6]):

 if gpm.verify_location(frame,

 [players1,'IN',zones6]):

 if gpm.verify_distances(frame,

 distances) :

 gpm.sendmsg('Pressing the ball')

 gpm.sendalert('True')

 result = True

 else:

 gpm.sendmsg('')

 gpm.sendalert('False')

 result = False

 return result, gpm

Figure 4 - Python code generated from the JSON document.

Figure 5 - Architecture used to run the game schemas.

As mention before, it is possible that the field size in the field

editor is different than the field size from the game we are

analysing, so the coordinates from the field editor are adjusted to

the new pitch size. Since we have the pitch size used in the field

editor, the pitch size from the game and the coordinates in the

field editor, this is a direct calculation where it's only necessary to

do a cross-multiplication to adjust the coordinates from the field

editor to the new pitch size. The code can now be run for each

frame or for a set of n of frames. At the end a Python dictionary is

returned with the result for every frame analyzed. Figure 5

resumes the architecture explained above.

In our example, sketched in Figure 4, first is verified if the ball is

in the green zone. If the ball is in the green zone then it is verified

individually if the players are in the red zone and at last if the

distances are correct. Those verifications are made individually

because if one fails (returns false), the next verifications are no

longer made and processing resources are spared. For each frame

the verifications result are stored, enabling us to create statistics

for what or who is failing in this schema. Figure 6 shows an

example of the output obtained from the verify_distances method,

which is used to verify the distances between players. The output

is composed by an array with a Python dictionary for each

distance verified. The dictionary has the players’ objects, the

defined distance, the distance between the objects in that frame

and a key with the name True or False for easily verify if the

distance is correct or not.

5. COMPUTATIONAL TESTS

In this section we present some tests and results from the

application of the visual programing language. The first test is a

simple example of a player inside a zone (Figure 7). Figure 8

shows the corresponding JSON document and the Python code

obtained after compiling is presented in Figure 9. The second test

analyzes the results obtained from the example in Figure 2,

explained along the previous sections of this paper. The data used

to analyze the soccer game is returned by the tracking software

and has a length of 2.30 minutes.

With the output from each method is possible to statistically

analyze how a player performed in the game and analyze many

other possibilities with the data acquired.

5.1 Test 1

In this example is shown a simple application for the feature

“player inside zone” (Figure 7), in which will be verified if player

number ‘6’, from team ‘B’, is inside that zone. Figure 8,

represents the JSON document generated from de FE, and Figure

9 the compiled Python code.

Two examples of the output for this situation will be

{'verify_location': {False: None, 'first_arg': 'Number: 6, ‘Team’: B

', 'second_arg': <Zone object >, 'condition': 'IN'}, 't': 258} if the

'verify_distances': [

{

 'players':(<Player object>,<Player object>),

 'False': None,

 'distance_def': 12,

 'distance': 8.04

},

{

 'players':(<Player object>,<Player object>),

 'True': None,

 'distance_def': 12,

 'distance': 9.95

},

{

 'players':(<Player object>,<Player object>),

 'True': None,

 'distance_def': 12,

 'distance': 11.65

}

]

Figure 6 - Output from verify_distances function.

Figure 7 – Situation drawn in the FE, player inside a zone.

{

 "name": "Test1",

 "description": "",

 "type": "PO",

 "field_dimension": [105, 68],

 "field_scale": [0.1, 0.099],

 "players": [{

"id": 2,

"number": 6,

"team": "B",

"points": [324, 633]

 }],

 "ball": {},

 "zones": [{

 "id": 1,

 "name": "Zona 1",

 "points":[[421,686],[421,571],[236,571],

 [236,686]]

 }],

 "conditions": [

 [{"verify_location": [2, "IN", 1]}],

 [{"alert": "True", "msg": "Event Y"}],

 [{"alert": "False"}]

]

}

Figure 8 - JSON document for Test1 example (Figure 7).

player is outside the defined zone; and {'verify_location': {True:

None, 'first_arg': 'Number: 6, ‘Team’: B ', 'second_arg': <Zone

object >, 'condition': 'IN'}, 't': 538} if the player is inside the zone.

In this case, what change between the two outputs is the existence

of a dictionary key with the name True or False to validate or not

the situation.

A simple analysis of the output can be the counting of how long

the player stayed in the area. In our game example of 2.3 minutes,

the player was 39,36% of the time in that zone.

5.2 Test 2

In this section we present the results obtained from the analysis of

the example shown in the Figure 2. Figure 10 graphically shows

the data for frame 947 of a soccer game, returned by the tracking

software, along with the zones and distances between players in

the pitch. The image is a screenshot from a development tool used

for the visualization of what is being processed.

As mentioned before, for each frame we will have a Python

dictionary with the information gathered by the methods executed

to detect if the “drawing” is being accomplished.

Figure 11 shows the output for frame 947, in which is presented

the result from the verify_location and verify_distances. Each time

a method is run, the result is recorded in the dictionary key with

the same name as the method, and if the same method is run more

than once in the same frame, the results are recorded inside an

array, as shown in Figure 11. In verify_location each array

element contains the result from one object, in our case the ball

and four players, and as each element has a key with the name

True, that means that the players and the ball are inside their

predefined zone. The verify_distances follows the same principle,

having one element of the array for each distance verified.

As all the players are complying the distances between them,

being inside the predefined zone when the ball is at the other

zone, the output from Figure 11 confirms that they are doing what

was drawn in the FE.

6. CONCLUSIONS
This paper presented our Visual Programing Language for soccer

statistics analysis, built to help the coaches and technical teams in

the improvement of their players and team’s performance by

allowing them to drawn his team wonted statistics and verifying if

the players are complying with them. This VPL can also be

applied to other collective ball sports.

from lib import gpm

def run():

 result = False

 if gpm.verify_location(frame,[players2,'IN',zones1]):

 gpm.sendmsg('Event Y')

 gpm.sendalert('True')

 result = True

 else:

 gpm.sendalert('False')

 result = False

 return result, gpm

Figure 9 – Compiled Python code from Test1 example

(Figure 7).

Figure 10 – Visual scheme being processed.

{'verify_location': [

 {‘True’: None, 'first_arg': 'ball',

 'second_arg': Zones7,'condition': 'IN' },

 {‘True’: None, 'first_arg': 'Number: 2, Team: A’

,

 'second_arg': Zones6, 'condition': 'IN'},

 {True: None, 'first_arg': 'Number: 3, Team: A ',

 'second_arg': Zones6, 'condition': 'IN'},

 {True: None, 'first_arg': 'Number: 4, Team: A ',

 'second_arg': Zones6, 'condition': 'IN'},

 {True: None, 'first_arg': 'Number: 1, Team: A ',

 'second_arg': Zones6, 'condition': 'IN'}

],

't': 947,

'verify_distances': [

 {'players': ('Number: 3, Team: A ', 'Number: 4,

Team: A '),

 'True': None,

 'distance_def': 12,

 'distance': 9.83

 },

 {'players': ('Number: 2, Team: A ', 'Number: 3,

Team: A '),

 'True': None,

 'distance_def': 12,

 'distance': 11.44

 },

 {'players': ('Number: 1, Team: A ', 'Number: 2,

Team: A '),

 'True': None,

 'distance_def': 12,

 'distance': 14.14

 }

]

}

Figure 11 – Output from frame 947.

This web environment tool allows, without previous programing

knowledge, to make fairly complex analysis just by using some of

the implemented features. The tool analyses the pretended

drawings for each frame, giving the chance to the coach to

analyze thoroughly a great number of game aspect that previously

would require traditional programming skills or exhaustive man

work. Using this structure is also possible to receive alerts to a

mobile device during the game if some particular event happens

or not, making it possible to send real time adjustments to the

team, in order to accomplish the pretended performance.

It is also important to refer that this tool can be also used to study

the opposite team statistics after or during a game. This gives the

coaches an opportunity to be better prepared when playing against

other teams, or once more, if used during a game, to be notified in

the bench and adjust how the team is performing. This tool can

become a game changer for the ones who use it bringing soccer to

a whole new level.

For future work, we plan to continue to develop our visual

programing language by implementing more features. Improve

our game statistics output, and since we have a huge quantity of

data it is possible to implement some data mining algorithm to

detect team patterns or some other interesting patterns.

7. ACKNOWLEDGMENTS

This work was supported by FCT project PEst-

OE/EEI/LA0009/2013 and project FootData QREN I&DT, n.º

23119. We also thanks to project leader Inesting, S.A.

[www.inesting.com], and the consultant soccer coach Domingos

Paciência and our colleague Carlos Gomes.

8. REFERENCES

[1] P. Rodrigues, A. Belguinha, C. Gomes, P. Cardoso, T. Vilas,

R. Mestre and J. M. F. Rodrigues, "Open Source

Technologies Involved in Constructing a Web-Based

Football Information System," in In Á. Rocha, A. M. Correia,

T. Wilson, & K. A. Stroetmann (Eds.), Advances in

Information Systems and Technologies SE - 66, vol. 206, pp.

715–723, Springer Berlin Heidelberg, 2013.

[2] "ktechlab," [Online]. Available: https://github.com/ktechlab.

[Accessed 04 04 2014].

[3] "scratch," [Online]. Available: http://scratch.mit.edu/.

[Accessed 04 04 2014].

[4] M. Resnick, J. Maloney, A. Monroy-Hernández, N. Rusk, E.

Eastmond, K. Brennan, A. Millner, E. Rosenbaum, J. Silver,

B. Silverman and Y. Kafai, "Scratch: programming for all,"

Commun. ACM, vol. 52, no. 11, pp. 60-67, 11 2009.

[5] "blockly," [Online]. Available:

http://code.google.com/p/blockly. [Accessed 04 04 2014].

[6] "scicos," [Online]. Available: http://www.scicos.org.

[Accessed 04 04 2014].

[7] Z. Dobesova, "Visual programming language in geographic

information systems," in 2nd Int. Conf. on Applied

informatics and computing theory. World Scientific and

Engineering Academy and Society (WSEAS), 2011.

[8] E. Marchiori et al., "A visual language for the creation of

narrative educational games," Journal of Visual Languages

& Computing, vol. 22, pp. 443-452, 2011.

[9] G. Tekli, R. Chbeir and F. Jacques, "A visual programming

language for XML manipulation.," Journal of Visual

Languages & Computing, vol. 24, pp. 110-135, 2013.

[10] P. Rodrigues, P. Cardoso and J. Rodrigues, "A Field,

Tracking and Video Editor Tool for a Football Resource

Planner," in In Proc. 8th Iberian Conf. on Information

Systems and Technologies, Lisbon, Portugal, 2013.

[11] "JSON," [Online]. Available: http://www.json.org. [Accessed

04 04 2014].

[12] "MongoDB," [Online]. Available:

https://www.mongodb.org. [Accessed 04 04 2014].

[13] J. Rodrigues, P. Cardoso, T. Vilas, S. Bruno, P. Rodrigues,

A. Belguinha and C. Gomes, "A computer vision based web

application for tracking soccer players," in accepted for 16th

Int. Conf. on Human-Computer Interaction, Crete, Greece.,

2014.

[14] N. Sebe and M. Lew, "Robust computer vision: Theory and

applications," The Netherlands: Kluwer Academic

Publishers, 2003.

