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Abstract 

 

In this thesis I looked at different components of dispersal in the seagrass Zostera 

noltii, from the dispersal potential of both sexual and asexual propagules to indirect genetic 

estimation and landscape genetics analysis.   

Methodological approaches 

The first part of the work focused on understanding the dispersal biology of the 

species, previously undescribed. Dispersal is defined by three phases: propagule separation, 

transport and settlement. Initial phases of dispersal were studied in the experimental study 

aiming to define the dispersal potential of the propagules. In the following study I evaluated 

success of post-dispersal settlement of the fragments – propagules shown to have the 

highest dispersal potential. To evaluate dispersal potential of sexual and asexual propagules 

of Z. noltii I quantified spatial and temporal scales of possible dispersal in still water and 

under different currents. I estimated sinking rates of seeds and changes over time in shoot 

buoyancy, shoot viability, fragment breakage, shoot growth rate and spathe release rate of 

floating fragments. To determine the fate of fragments after the dispersal, I quantified 

survival, rooting and development of vegetative fragments following dispersal and 

settlement. In case of successful establishment I analysed parameters which might depict 

the future of the established fragment, i.e. state of the apical shoot, branching and biomass. I 

tested the effect of two independent factors - the initial fragment size and the dispersal 

regime, i.e. different ratios of period of floating and settlement in sediment within 10 weeks 

of experiment.  

The second part of this thesis aimed to estimate the spatial genetic structure across 

the whole population of Z. noltii in the Ria Formosa lagoon (about 84 km2), using an 

individual-based sampling design where four ramets were sampled in each of 803 sampling 

plots randomly distributed over this seagrass habitat. Sampled ramets were processed 

utilizing nine polymorphic microsatellite markers to identify their multi locus genotypes 

(MLGs). Then I looked at the frequency of sampling particular MLGs (clonal frequency) and 

the spatial distribution of MLGs sampled multiple times. Due to the wide spatial distribution 

of clones observed, I applied a commonly used clonal age estimation method which excludes 

the possibility of long distance dispersal of vegetative fragments (LDD), but iteratively 

corrected the age estimates in each step by combining sampling locations with spatially 
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explicit sea-level data for the time the clone would have been initiated. Finally, I looked at 

the association between disturbance, i.e. sediment dynamics associated with the barrier 

islands, and clonal richness at the landscape scale. 

The final chapter of this thesis presents the results of high resolution landscape 

genetics analyses carried out on the same data set as the clonal structure analysis. I used the 

digital terrain model to extract spatial variables (elevation, slope, aspect, curvature of the 

terrain), while the dynamic parameters (current velocity, direction and flow) were obtained 

from the hydrodynamic model EcoDynamo. Identification of clusters or groups was done 

using different clustering methods implemented in STRUCUTRE software, Geneland package 

and Discriminant Analysis of Principal Components. Spatial autocorrelation analysis was 

used to test the hypothesis of random spatial distribution of MLGs. Linear models served to 

test the association between landscape-derived pairwise distances and the pairwise genetic 

distances (Loiselle kinship coefficient). The dependent variables were Euclidian distance 

and four additional measures of connectivity across the landscape (cost distance, 

hydrographical distance and two tide-dependent resistance distances). I also modelled the 

per plot genotypic richness (R) as a function of the spatial and dynamic variables of the 

habitat; and looked into spatial organisation of plot-specific allelic richness (A). 

Hydrographical distance was derived from a propagule dispersal simulated within the 

lagoon using a transport routine implemented in EcoDynamo model. This simulation was 

also used to indicate important areas for connectivity of Z. noltii within the lagoon. 

Main findings 

Fast sinking rates of seeds suggest short spatial scale of dispersal, insufficient to 

connect disjunct meadows. Observed traits of floating fragments, i.e. shoot buoyancy and 

shoot survival (>55 d), suggest a potential for long distance dispersal (>2,300 km, assuming 

an unidirectional current) that could connect distant patches and allow colonization of new 

areas. These results indicate vegetative fragments have the potential to extend the dispersal 

achieved by detached seeds establishing asexual propagules as potential LDD vector in 

seagrasses. The subsequent experiments on post dispersal fragment establishment showed 

significantly higher survival for fragments which didn’t spend any time floating prior to the 

settlement (~60%) than for those subjected to floating periods (~30%). The state of the 

apical shoot showed a significant interaction between the initial fragment size and the 

experimental dispersal regime. Branching was only observed for settled fragments and was 

significantly higher for the initially larger fragments, decreasing with prolonged floating 

periods. Floating period did not have any effect on the average number of branches (overall 
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mean 1.8 branches per branching fragment), but the initial size of the fragments did. The 

ratio of above:below ground biomass at the end of the experiment revealed that fragments 

are in the state typical for colonizing meadows. These results demonstrate survival and 

rooting of floating Z. noltii fragments is possible (average success of 34%), but in case of a 

prolonged floating period during dispersal their success of establishment will be lower, i.e. 

survival, rooting and branching tends to decrease. Implementing these results to the Ria 

Formosa lagoon system, I estimated, dependent on many assumptions, that successfully 

dispersed and established fragments could occupy over 68 ha every year, representing over 

5% of the current Z. noltii coverage in the lagoon. 

Genetic analysis provided 3,185 valid genetic samples (R=0.63, A=15.0). In this data 

set 1,999 unique multi-locus genotypes were identified, whose spatial distribution revealed 

many clones sampled multiple times and found across distances as large as the available 

habitat in the Ria Formosa lagoon (up to 26.4 km). If the distances between clonemates 

were based on clonal growth alone, then I estimated that the majority of large clones would 

be older than 40,000 years. This would be older than the Ria Formosa system itself, 

therefore LDD of asexual propagules is a more parsimonious explanation for the large 

spatial separation among clonemates of many different Z. noltii clones in Ria Formosa. The 

same analysis was performed for the sympatric seagrass Cymodocea nodosa, where I 

estimated an even older age, over 53,000 years, for a single dominant clone. Again this 

supported that also in C. nodosa asexual LDD is the likely cause for the large distribution of 

this clone. The probability of sampling a given multi-locus genotype 5, or more times, 

increased together with the distance from Ria Formosa's barrier islands, a putative source 

of disturbance by increased sedimentation. This association between disturbance regime 

and clonal structure of the population has been elusive to demonstrate previously with 

smaller sample sizes. Future research can determine whether demography or sexual 

allocation, or both, are the processes behind this pattern. 

None of the clustering methods revealed clear spatially defined clusters. However, 

spatial autocorrelation analysis revealed a significant isolation by distance pattern where 

samples within 3 km were more genetically related than it would be expected under the null 

hypothesis of random mating, implying that natal dispersal is playing a role in shaping this 

small-scale structure. Regressions showed that the two resistance distances seem to be the 

best predictor of genetic distance (R2=0.80 and 0.85). The other distances were not good 

predictors of gene flow. Genotypic richness per sampling plot ranged from R=0 (all four 

samples sharing the same genotype) in 8% of the plots to R=1 (four different genotypes) in 
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37% of the plots. None of the modelled environmental variables indicated significant 

association with genotypic richness. I didn’t observe a particular spatial organisation of 

plot-specific allelic richness. Simulations of propagule dispersal in the Ria Formosa 

indicated possible sink and source areas, potentially relevant for connectivity within the 

lagoon.  

Conclusions 

My studies show that the dispersal biology of Z. noltii is very dependent on 

commonly underestimated asexual dispersal. This asexual LDD is the most parsimonious 

explanation for the wide distribution of clones in the lagoon and dramatically changes our 

view of the species’ life history. Furthermore, I propose that the observed lack of association 

between landscape features and spatial genetic structure is a consequence of this LDD of 

asexual propagules. The high dispersal capacity of Z. noltii combined with a tidal regime 

which homogenizes the otherwise complex lagoon habitat, are prevalent over any effects of 

landscape on gene flow caused by the lagoon complexity as shown by the landscape genetics 

analyses. Nevertheless, sexual reproduction also affects spatial genetic structure, as the 

positive kinship between clones within a 3 km range is a signature of restricted seed 

dispersal.   

 

Keywords: long distance dispersal, landscape genetics, seagrass, asexual dispersal, clonal 

structure, Zostera noltii, microsatellites. 
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Sumário estendido 

 

Nesta tese, investiguei as diferentes componentes de dispersão da erva marinha 

Zostera noltii, desde o potencial de dispersão de propágulos assexuados e sexuados até à sua 

estimação indirecta através de métodos genéticos e análise de genética paisagistica. 

Abordagem Metodológica 

A primeira parte deste trabalho focou-se na compreensão da biologia de dispersão 

desta espécie, a qual nunca tinha sido previamente descrita. A dispersão assexuada, tal como 

a definimos aqui, é definida por três fases: separação do propágulo (fragmento vegetativo), 

transporte e fixação. As fases iniciais da dispersão foram avaliadas num estudo 

experimental com vista a definir o potencial de dispersão de propágulos vegetativos de Z. 

noltii. Em seguida avaliei o sucesso de fixação deste fragmentos após a fase de transporte– 

As escalas espaciais e temporais de possível dispersão foram quantificadas sob o efeito de 

diferentes correntes, de forma a estimar o potencial de dispersão dos propágulos 

assexuados e sexuados de Z. noltii. Estimei as taxas de afundamento das sementes e 

alterações ao longo do tempo na flutuabilidade e viabilidade dos rebentos, ruptura dos 

fragmentos, taxa de crescimento dos rebentos e a taxa de libertação de espatas. A 

sobrevivência, enraizamento e desenvolvimento de fragmentos vegetativos após dispersão e 

fixação foram quantificados de modo a calcular o destino dos fragmentos após dispersão. 

Nos casos de successo de refixação, analisei parâmetros que me permitiram prever o futuro 

dos fragmentos refixados, tais como: estado do rebento apical, ramificação e biomassa. 

Testei o efeito de dois factores independentes – o comprimento do fragmento inicial e o 

regime de dispersão, i.e. diferentes rácios de períodos de flutuação e fixação no sedimento, 

num período de 10 semanas. 

A segunda parte desta tese teve como objectivo estimar a estrutura genética espacial 

ao longo de toda a população de Z. noltii presente na Ria Formosa (cerca de 84 km2). Usei 

uma amostragem onde quatro rebentos foram amostrados em cada um dos 803 pontos 

selecionados aleatoriamente ao longo do habitat desta espécie. Os rebentos amostrados 

foram posteriormente processados usando nove microssatélites polimórficos com o 

objectivo de identificar os diferentes genótipos multi locus (GML) presentes e caracterizar a 

diversidade genética da espécie. Calculei a frequência com que determinado GML foi 

amostrado (frequência clonal) e a distribuição espacial dos genótipos amostrados múltiplas 
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vezes. Devido à ampla distribuição espacial dos clones observados, apliquei um método 

usado para a estimativa de idade clonal baseado na taxa de alongamento do rizoma da 

espécie e que exclui a possibilidade de dispersão a longa distância (DLD) de fragmentos 

vegetativos. As idades dos clones obtidas foram corrigidas iterativamente combinado a 

localização dos rebentos amostrados com o nível do mar para a ponto no passado durante o 

qual o clone teria sido iniciado. Finalmente, debrucei-me sobre a associação entre 

perturbação, i.e. dinâmica do sedimento associado às ilhas barreira, e probabilidade de 

amostrar clones de grande dimensão à escala paisagística. 

O capítulo final desta tese apresenta os resultados da análise de genética 

paisagistica, baseada nos mesmos dados usados para a análise de estrutura clonal. Usei um 

modelo digital terreno, obtido através de uma análise de LIDAR, para extrair variáveis 

espaciais (elevação, inclinação, aspecto, curvatura do terreno), enquanto que os parâmetros 

de dinâmica (velocidade das correntes, direcção e fluxo) foram obtidos a partir do modelo 

hidrodinâmico EcoDynamo. A identificação de possíveis aglomerados, ou grupos genéticos, 

foi feita usando diferentes métodos de aglomeração implementados no software 

STRUCTURE, Geneland e análise discriminante de componentes principais. A hipótese de 

distribuição espacial aleatória dos diferentes genótipos foi testada através de análises de 

auto-correlação espacial. Modelos de regressão linear foram usados de modo a testar a 

associação entre distâncias entre pontos de amostragem baseadas na paisagem e distâncias 

genéticas (coeficiente de aparentamento de Loiselle). As variáveis independentes foram a 

distância Euclidiana e quatro medidas adicionais de conectividade ao longo da paisagem 

(distância baseada em custo de dispersão através da paisagem, distância hidrogeográfica e 

duas distâncias ponderadas baseadas em resistência dependente da maré). Modelei a 

riqueza genotípica (R) por ponto de amostragem como função das variáveis dinâmicas do 

habitat e investiguei a organização espacial da riqueza alélica específica (A) de cada ponto 

de amostragem. A dispersão de propágulos foi simulada na Ria usando uma rotina de 

transporte implementada no modelo EcoDynamo e foi usada para derivar a distância 

hidrogeográfica e como modo de detecção de áreas de conectividade importantes para Z. 

noltii dentro da Ria Formosa. 

Resultados Principais 

As taxas de afundamento rápido das sementes sugerem uma curta escala espacial de 

dispersão, insuficiente para conectar pradarias separadas. No que respeita aos fragmentos 

flutuantes, as características observadas, i.e. flutuabilidade e sobrevivência dos rebentos 

(>55 d), sugere potencial para dispersão a longas distâncias (>2,300 km, assumindo uma 
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corrente unidireccional) possibilitando a conexão de pradarias distantes e permitindo a 

colonização de novas áreas. Estes resultados demonstram que os fragmentos vegetativos 

possuem potencial para estender a dispersão alcançada pelas sementes, estabelecendo os 

propágulos assexuados como potenciais vectores de DLD em ervas marinhas. As 

experiências posteriores, sobre a fixação dos fragmentos, mostraram uma sobrevivência 

significativamente mais elevada em fragmentos cuja fixação foi rápida (sem largos períodos 

de flutuação) (60%) comparativamente com aqueles que estiveram sujeitos a longos 

períodos de flutuação antes da fixação definitiva (30%). O estado do rebento apical 

demonstrou uma interacção significativa entre o tamanho inicial do fragmento e o regime de 

dispersão experimental. O processo de ramificação foi apenas observado em fragmentos 

fixados e foi significativamente mais elevada em fragmentes inicialmente maiores, 

decrescendo com o aumento do período de flutuação. Ao contrário do que se verificou para 

o tamanho inicial dos fragmentos, o período de flutuação não teve qualquer efeito no 

número médio de ramos (média geral de 1.8 ramificações por fragmento). O rácio da 

biomassa acima:abaixo do solo no final da experiência revelou que os fragmentos 

apresentavam um estado característicamente obervado  na fase de colonização. Estes 

resultados demonstram que a sobrevivência e enraizamento de fragmentos flutuantes de Z. 

noltii é possível (com uma média de sucesso de 34%) sendo no entanto mais baixa com 

longos períodos de flutuação durante a dispersão, i.e. a sobrevivência, enraizamento e 

ramificação tende a decrescer. Ao implementar estes resultados ao sistema lagunar da Ria 

Formosa, estimei que, dependente de muitas suposições, fragmentos dispersos e fixados 

com sucesso poderiam ocupar mais de 68 ha todos os anos, representando mais de 5% da 

actual cobertura de Z. noltii na Ria Formosa. 

As análises genéticas forneceram 3,185 amostras genéticas válidas (R=0.63, A=15.0). 

1,999 GMLs únicos foram identificados neste conjunto de dados, cuja distribuição espacial 

revelou um elevado número de clones amostrados múltiplas vezes e encontrados ao longo 

de distâncias tão grandes quanto todo o habitat disponível na Ria Formosa (até 26.4 km). Se 

baseadas apenas no crescimento clonal, as distancias entre copias do mesmo clone 

revelaram que a maioria dos clones seriam mais velhos que 40,000 anos. Esta idade 

antecederia assim o próprio sistema lagunar da Ria Formosa por mais de duas dezenas de 

milhar de anos. Tendo em conta estas datações, e os resultados do meu trabalho 

experimental acima citados, a DLD é uma explicação mais parcimoniosa, do que uma 

explicação baseada em enlongamento do rizoma apenas, para a elevada separação 

observada entre cópias do mesmo clone. A mesma análise de datação foi efectuada para uma 

outra erva marinha que vive em simpatria com a Z. noltii - Cymodocea nodosa. Neste caso 
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estimei uma idade ainda mais elevada, mais de 53,000 anos, para um único clone 

dominante. Mais uma vez, estes resultados suportam que, também para C. nodosa, DLD é a 

causa mais provável para a alargada distribuição espacial deste clone. A probabilidade de 

amostrar um determinado GMLs cinco ou mais vezes, aumentou juntamente com a distância 

para as ilhas barreira da Ria Formosa, uma possível fonte de perturbação através do 

aumento de sedimentação. Esta associação entre o regime de perturbação e a estrutura 

clonal da população tem sido difícil de demonstrar previamente com um menor número de 

amostras. Pesquisas futuras poderão determinar se a demografia ou distribuição sexual, ou 

ambos, são as causas deste padrão. 

Nenhum dos métodos de aglomeração revelou uma clara separação de grupos 

espacialmente definidos. No entanto, as análises de autocorrelação espacial revelaram um 

isolamento significativo por padrão de distância, onde amostras no espaço de 3 km eram 

mais relacionadas genéticamente do que seria de esperar sob a hipótese nula de 

cruzamentos aleatórios. Isso sugere que a dispersão natural desempenha um papel na 

formação desta estrutura de pequena escala. As regressões demonstraram que as duas 

distâncias baseada em resistência parecem ser o melhor indicador de distâncias genéticas 

(R2=0.80 and 0.85). As restantes distâncias não mostraram ser bons indicadores do fluxo 

genético. A riqueza genética por local de amostragem variou entre R=0 (todas as quatro 

amostras partilhavam o mesmo genótipo) em 8% dos locais e R=1 (quatro genótipos 

diferentes) em 37% dos locais de amostrais. Nenhuma das variáveis ambientais utilizadas 

nos modelos indicou uma associação significativa com a riqueza genotípica. Não observei 

nenhuma organização espacial da riqueza alélica específica do local de amostragem em 

particular. As simulações de dispersão de propágulos na Ria Formosa sugeriram possíveis 

áreas de origem e fixação, potencialmente relevantes para a conectividade dentro deste 

sistema. 

Conclusões 

O meu estudo demonstra que a dispersão da Z. noltii possui um importante 

componente assexual, geralmente subestimada. A DLD assexual é a explicação mais 

parcimoniosa para a larga distribuição de clones na Ria Formosa e altera drasticamente a 

nossa visão do ciclo de vida da espécie. Para além disso, proponho que a falta de associação 

observada entre as características da paisagem e a estrutura genética espacial é uma 

consequência da DLD dos propágulos assexuados. Esta elevada capacidade de dispersão da 

Z. noltii combinada com o regime de marés que homogeneíza o de outra forma complexo 

habitat lagunar, predominam sobre quaisquer efeitos da paisagem no fluxo genético 
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causado pela complexidade lagunar. No entanto, há também um efeito da reprodução 

sexuada na estrutura genética espacial, dado que o grau positivo de parentesco entre clones 

dentro de uma área de 3 km representa um sinal de dispersão restrita de sementes. 

 

Palavras chave: dispersão a longa distância, genética paisagistica, erva marinha, dispersão 

assexuada, estrutura clonal, Zostera noltii, microssatelites. 
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Structure of the thesis 

 

The thesis is divided in five chapters with two main sections. Chapter one gives the 

introduction to the field of study and defines overall and particular aims of the study. 

Introduction is followed by three chapters organised in two sections. These are written in 

the format of scientific articles, and can be read independently. For each of them 

information about the co-authors and the status of the publication are given on the initial 

page of the chapter. First section brings together research done on the dispersal biology of 

Zostera noltii through two distinct chapters. Chapter two introduces the dispersal potential 

of Z. noltii presenting the results on its prolonged dispersal period and high survival rate of 

the transport phase of the dispersal. It emphasizes the before overlooked importance of 

asexual propagules in the species’ life history. Chapter three then shows the results of an 

experimental study carried out to estimate the success of post-dispersal settlement of these 

propagules, showing they can play an important role in dispersal and maintenance of the 

population. This concludes the work done on species dispersal biology. Following section 

looks at the genetics of the population within the Ria Formosa lagoon, aiming to establish a 

relation between previously described asexual dispersal of the species and population and 

landscape genetics. This section includes chapter four on individual based genetic analysis 

carried out in the study area. It reveals long distance dispersal of asexual propagules indeed 

happens in this study system and links the disturbance, through the landscape features, 

with the clonal structure of the population. Chapter five is a report of landscape genetics 

analysis and interpretation of the results in the light of previous chapters. Finally, an overall 

discussion of the results presented in this thesis is given in chapter six which ends with 

final conclusions and remarks for the future work. 
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Chapter  1.  

Introduction 

 

1.1. Gene flow through the landscape 

 

This thesis focuses on the landscape genetics of seagrasses. In order to reliably 

evaluate the effect landscape has on organism and population, it is necessary to understand 

gene flow through the landscape. I studied an intertidal seagrass species, a sessile organism 

attached to the bottom of the intertidal lagoon. Movement of the organism itself through the 

landscape is therefore limited and this could affect the genetic differentiation throughout 

the landscape. But an important adaptive trait in the life history of a species is dispersal. 

This is a process in which either an individual or just a part of it (its propagule) spreads 

across space, away from the point of origin and/or parental organism (Croteau, 2010). 

Potentially, this may lead to gene flow (sensu Ronce, 2007). Dispersal is generally viewed as 

a process of “moving away”, even though in its strict sense it also includes the settlement of 

juveniles in the vicinity of the parental organism. Besides active dispersal, where an 

organism actively moves with the purpose of reaching a specific location, we recognize the 

passive dispersal in the case of organisms which are unable to move and use propagules to 

disperse (Croteau, 2010).  

The process of dispersal can be divided in departure, vagrant phase and settlement 

(Ronce, 2007). Throughout this work I will refer to the vagrant phase as transport. The 

departure phase marks the initial movement of an organism from a given location, or the 

release/separation of the propagule from the parental organism. Transport is, as introduced 

above, either active or passive and ends with the organism or a propagule reaching a new 

location. Settlement refers to arrival and successful establishment of the organism or a 

propagule in the new location. 

Looking at a sessile species’ dispersal in particular, it is important to clarify the 

process of formation of propagules. Some authors refer to propagules as disseminules 

(Croteau, 2010) or diaspores, in case of the plant propagules (Matlack, 1987). Propagule can 
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be any part of the organism capable of independent establishment and survival. We can 

distinguish sexual and asexual propagules. Sexual propagules are spores, pollen, embryos, 

fruits, seeds or germlings, all reproductive units of the organism. Sexual dispersal can be 

either postmeiotic/prezygotic (e.g. broadcast spawned gametes, haploid algal spores, plant 

pollen) or postzygotic (e.g. plant seeds or planktonic larvae). These dispersal processes have 

been extensively studied and are the ones most frequently assumed in general 

considerations of dispersal.  

Less often studied are the evolutionary and ecological consequences of asexual 

dispersal, also referred to as clonal dispersal, driving strong unbalance in our perception of 

dispersal. This is exceptionally important because clonality is common throughout many 

taxonomic levels. About 45% of vascular plant families exhibit some aspects of clonality 

(Tiffney and Niklas, 1985), while this proportion is over 70% in animal phyla (Hughes, 

1989), but only 0.1% in vertebrates (Avise, 2008). Dispersal research thus needs to adjust 

its focus accordingly, to include the forms of dispersal occurring in clonal organisms. Clonal 

dispersal is defined by Lincoln (1998) as outward spreading of organisms or propagules 

from their point of origin or release, a definition which can also encompass the rhizome 

extension in clonal plants. It can take many forms and display a wide spectrum of processes 

(Sibly and Calow, 1982; Fischer and van Kleunen, 2002; Halkett et al., 2005; Cornelissen et 

al., 2014) resulting in dispersal distances from a few centimetres to thousands of kilometres. 

For clonal dispersal to occur, dispersal unit needs to get separated. Separation can be either 

the natural consequence of maturation (Oróstica et al., 2012) or a consequence of 

disturbance producing the fragment (Riis and Sand-Jensen, 2006). The propagule needs to 

survive through the transport phase across space, independently or using a transport 

vector. The distance travelled by the propagule prior to the settlement is defined by its 

viability and dispersal vector (Jackson, 1986). Asexual dispersal is shown to be particularly 

advantageous under conditions in which sexual dispersal is not effective, such as in some 

species distributional ranges (Billingham et al., 2003; Tatarenkov et al., 2005). 

As it was mentioned earlier, the terms clonal and asexual dispersal are used 

interchangeably in the literature. But while the term clonal dispersal is rather 

straightforward, the use of the term “asexual” in literature is somewhat ambiguous. When 

talking about asexual propagation of plants it often happens that only asexual production of 

reproductive units is looked at (e.g. Bengtsson and Ceplitis, 2000), clearly missing on 

propagule production as a consequence of environmental forcing and plant anatomy. It 

therefore seems that in case of clonal plants, ramets, i.e. modular units of a clonal plant, are 
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considered relevant for dispersal once when viewed detached from the mother plant, i.e. 

fragmented. This is just one example of partial consideration of asexual propagation in 

clonal organisms. Similar bias in definition and study of asexual propagules and asexuality is 

observed in other studies of clonal or partially clonal organisms, especially in studies 

looking at evolutionary benefits of sexual vs asexual reproduction (Butlin, 2002; 

Engelstädter, 2008). One way to approach this issue is to define the terms as Judson and 

Normark (1996) did in their review. They proposed an inclusive definition of the term 

“asexual”, taking into account apomixis, automixis and vegetative reproduction. Additional 

mechanism like pseudovivipary and fissiparity (Crump and Barker, 1985) should also be 

included here. In this thesis I use the term “asexual propagule” referring to fragments of the 

parental organism (i.e. one or more ramets linked together) which can establish in a new 

habitat. In sessile clonal organisms, a necessary condition for an asexual propagule to 

escape its population boundaries, and the classical modular replication pattern, is the 

production, separation or fragmentation of independent units.  

The circumstances by which organisms benefit from sexual or asexual reproduction 

and how both systems are maintained have been the focus of much study and debate in 

evolutionary biology (Barton and Charlesworth, 1998; Butlin, 2002; Silvertown, 2008). 

Besides the evolutionary advantages of sexual reproduction that are relevant at the 

population level, sexual derived bodies (gametes or zygotes) are often thought of as the 

relevant dispersal propagules, adding a between population component to the list of 

important life history traits associated with sexual reproduction. On the contrary, the 

strategies advanced to justify asexual reproduction are generally constrained to the 

population spatial limits. For example, resource foraging through clonal extension, physical 

and physiological integration and population maintenance under mate limitation. Rhizome 

extension within the population is often the single component of asexual dispersal 

accounted for (Gliddon et al., 1987; McMahon et al., 2014).  

While knowledge of dispersal can help explain observed population genetic 

structure, studying dispersal itself is a challenge. Dispersal can occur over large spatial and 

temporal scales, and is often carried out by very small propagules (Rius et al., 2010). Direct 

tracking of dispersal is very difficult, due to small propagule size, and the temporal and 

spatial scales over which the process happens. Traditionally, dispersal was inferred by 

looking at occurrence data or assumed from expert knowledge, but recently modelling 

approaches are growing in popularity (Driscoll et al., 2014). Expert knowledge was shown 

to be unreliable, particularly when it is used to expand the knowledge gained in one study 
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on a seemingly similar study system. In the review of modes of dispersal in marine 

organisms, Winston (2012) mentioned several paradoxes where dispersal in one species 

differs greatly from the rules observed for other species with similar natural histories. 

Direct observation of the dispersal process is rare and is generally reported for the 

vertebrates which are mostly radio-collared (Byrom, 2002) or ear tagged (Drygala et al., 

2010). But even in those cases, Koenig et al. (1996) argue that the reported dispersal often 

falls short of the indirect estimates based on population genetic analysis of gene flow. 

Tracking dispersal in marine systems, especially following miniature dispersing propagules, 

can be a particularly complicated venture. Marking methods have been developed allowing 

to identify the source of the larvae of marine organisms once they are recaptured, but still 

with considerable effort necessary to tag sufficient numbers of propagules (Thorrold et al., 

2002). Often direct tracking is so challenging that researchers turn to modelling (Dytham, 

2003; Leis, 2007; Travis et al., 2012; Nicolle et al., 2013). But even here, logistic constrains 

can lead to models which rely on data averaged over too long periods of time, leading to 

considerable inconsistencies with the field observations (Putman and He, 2013). Regardless 

of how our insights in dispersal process are obtained and theories made, the above 

considerations suggest these understandings should be tested in the real system. One way 

to do so, particularly in the case of complex and large systems, is employing population 

genetics tools (Gilg and Hiblish, 2003). Hypothesis about the type of the dispersal process 

can be tested by genetic analysis of patterns of differentiation, which can support or reject 

this hypothesis (Ouborg et al., 1999). Ibrahim et al. (1996), using computer simulations, 

showed that different dispersal strategies produce different signatures in the population 

spatial genetic structure. But to thoroughly investigate the dispersal of a species, one needs 

to consider both the species dispersal traits and the environment in which dispersal is 

occurring.  

Landscape genetics is a discipline (Manel et al., 2003) that builds its working 

framework on the methodology and results of population genetics and landscape ecology. 

This was made possible by advances in molecular biology techniques on one side and 

increased computational power enabling complex geostatistical and statistical analyses on 

the other side (Guillot et al., 2009). The main goal is to combine genetic, environmental, and 

spatial variation to understand how the environment shapes gene-flow and genetic 

divergence across space. This is done by linking spatially explicit ecological and 

environmental data with georeferenced genetics information (Riginos and Liggins, 2013). 

The typical questions addressed pertain to different time scales and hierarchical levels of 

organisation, from genes to populations (Riginos and Liggins, 2013). 
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Initially, landscape genetics was, as its name implies, mostly focused on terrestrial 

systems. Soon after the term was coined, the first studies applying this framework in marine 

systems were published (Gilg and Hiblish, 2003; Sköld et al., 2003; Jørgensen et al., 2005; 

Galindo et al., 2006; Hansen and Hemmer-Hansen, 2007). While some authors applying this 

particular framework to marine environment use the term “landscape”, others define their 

work as “seascape” genetics (Selkoe et al., 2008; Amaral et al., 2012). Either way, it is 

important to account for distinct conditions and parameters that need to be taken into 

account when the study area is submerged in the ocean (see Riginos and Liggins, 2013). 

This was shown as the models developed for terrestrial systems do not function for the 

marine systems (see Galindo et al., 2006).  

There are several tools commonly used to study the spatial genetic structure of a 

population, Mantel tests or regression analysis of distances between the samples (Mantel, 

1967), spatial autocorrelation (Griffith, 1992), Bayesian clustering (François and Durand, 

2010), multivariate analyses (James and McCulloch, 1990; Jombart et al., 2010), Monmonier 

algorithm and wombling (see Manel et al., 2003). Researches aim to determine in which way 

the landscape influences the genetic identity of the organisms living in it. Does it impose 

barriers to gene flow, or its configuration shapes corridors for connectivity? Do local 

characteristics of the habitat determine which genotype can be found in it? Starting with 

different initial questions, most of these questions can still be answered with application of 

Mantel test, or one of its modifications (Manel et al., 2003). These tests basically test 

correlations between matrices, either simply genetic and spatial distance ones, or including 

a third matrix referencing environmental distance, or some other putative driver of the 

observed genetic distances. Very recently though, Legendre et al. (2015) suggested Mantel 

test is being used wrong and its use should be restricted. Another basic goal in landscape 

genetic studies is to characterize spatially defined groups of individuals that share a 

common genetic background (i.e. Frantz et al., 2009). Sampling without a priori defining 

“populations” provides a somewhat more objective approach to identify groups based on 

their similarity. Clustering methods can help identify the genetic groups, which can be useful 

in studies of biology, biogeography, evolution, dispersal, mating systems, management and 

conservation. Spatial autocorrelation analysis of genetic coancestry tests the correlation 

between spatial and kinship distances using individual pair-wise data, against a null 

hypothesis of random distribution of pairwise kinship. Hardy and Vekemans (1999) 

discussed the power of spatial analysis to infer evolutionary processes and suggested under 

certain conditions it can be applied to estimate the variance of the parent-offspring 

dispersal distribution.  
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1.2. Overview of Seagrass biology and ecology with reference to Zostera 

noltii 

 

Seagrasses were mentioned for the first time rather early in the human history. In 

ancient Greece, Aristotle mentions Posidonia oceanica as early as the IV century BC (Larkum 

et al., 2006). Still, it was only in the last 40 years that science turned its attention to seagrass 

research (Larkum et al., 2006). To present day about 60 species have been described, 

distributed around the world in the shallow waters of all oceans and seas (Spalding et al., 

2003). They inhabit coastlines from intertidal mudflats to depths of 80-90m (Den Hartog, 

1970; Gamulin-Brida et al., 1973; Spalding et al., 2003). Seagrasses are marine angiosperms, 

and not true grasses. They evolved from the terrestrial monocotyledons during the 

Cretaceous period as a polyphyletic group with common habitat and adaptations to marine 

life (Les et al., 1997). Distinct lines of evolution led to five defining adaptations for this 

group: tolerance to submergence and salinity, developed anchoring roots system, submarine 

pollination and dispersal within the marine environment (Ackerman, 2006). They form 

meadows which are focal points of biodiversity, providing habitat, nursery and feeding 

grounds for many species of invertebrates (Cabanellas-Reboredo et al., 2010), fish (Beck et 

al., 2001), sea turtles (Bjorndal and Bolten, 2010), marine mammals (Heinsohn et al., 1977) 

and algae. So far literature reported about 350 epiphytic macroalgae species in seagrass 

meadows, 170 epiphytic invertebrate species, and up to 50 species of fish in any given 

seagrass meadow (Duarte, 2000). Seagrasses are ecosystem engineers (Coleman and 

Williams, 2002), meadows protect the coast from erosion (Hendriks et al., 2009), retain 

sediment particles (Bos et al., 2007) and are important for nutrient cycling in coastal waters 

(e.g. van Engeland et al., 2013), playing a crucial role in ocean carbon budget (Duarte and 

Chiscano, 1999; Duarte et al., 2013 a) and climate regulation (Duarte et al., 2013 b), which 

places them in the top spot of the economic evaluation of ecosystems (Costanza et al., 1997).  

Seagrass population genetics has been increasingly studied, particularly after the 

development of highly variable genetic markers (Procaccini and Waycott, 1998; Reusch, 

2000; Alberto et al., 2003 a; Alberto et al., 2003 b; Coyer et al., 2004 a; Ruggiero et al., 2004; 

van Dijk et al., 2007). As seagrasses are clonal organisms, balance between the clonality and 

genetic differentiation has been studied with special interest. Genetics were used to study 

historical processes shaping the studied population (Olsen et al., 2013), clonality (Zipperle 

et al., 2009; Becheler et al., 2014) and connectivity (Campanella et al., 2015), species 
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resilience to disturbance (Hughes and Stachowicz, 2004; Massa et al., 2013), taxonomic 

relations (Nguyen et al., 2014), restoration efforts (Reynolds et al., 2013; Olsen et al., 2014) 

and conservation (see Procaccini et al., 2007 and references therein). Some studies 

investigate the link between the environment and the genetics without strictly defining 

their field of studies as landscapes/seascape genetics (van Dijk and van Tussenbroek, 2010; 

Sinclair et al., 2014) and it was done so even before the definition of landscape genetics 

(Schlueter and Guttman, 1998). The body of research on this topic is growing, though like in 

other seagrass research area, it mostly focuses on larger species and neglects the smaller 

ones.  

Seagrass dispersal has often been studied in the light of restoration projects and 

mainly focusing on seeds, i.e. sexual propagation (Orth et al., 1994; Marion and Orth, 2009; 

Balestri et al., 2011; McMahon et al., 2014). But during the last decade scientists started 

looking more into dispersal via plant fragments, uncovering valuable information on species 

biology and ecology (Hall et al., 2006; Erftemeijer et al., 2008; Källström et al., 2008; 

McKenzie and Bellgrove, 2008; Kendrick et al., 2012). We now know that seagrass 

fragments can disperse drifting over large spatial scales and occupy previously uninhabited 

areas (Ceccherelli and Piazzi, 2001; McKenzie and Bellgrove, 2008) and a similar strategy 

has been implied for seagrasses in particular (Hall et al., 2006; Diaz-Almela et al., 2008; 

Virnstein and Hall, 2009). Filling the gaps on our knowledge of seagrass dispersal can 

therefore improve the success of restoration practices (Balestri et al., 2011) and help 

understand population connectivity and seagrass response to natural and human-induced 

disturbances (Thomson et al., 2014).  

When disturbance occurs in an ecosystem, two things matter for the survival of the 

population – resistance and resilience. Resistance determines how much change in the 

environment a species or a population can tolerate without changing its state (Downing et 

al., 2012). Resilience describes the degree to which a species or a population is able to 

return to its previous state after a disturbance has taken place, and how fast it achieves it. In 

general, how an organism or a population will respond depends on the disturbance – its 

quality and quantity, but also on the species itself and the environment. Seagrasses are 

anchored to the bottom of the sea and in case of disturbance recovery is most difficult for 

slow growing species. Organismal recovery capacity shortcomings can be minimized by its 

resistance to disturbance. Huges and Stachowitz (2004) found in their experimental study 

that higher genetic diversity can increase the population resistance to physical disturbance, 

although authors didn’t find it affects the resilience. Literature shows that when disturbance 
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is moderate seagrasses show high levels of resistance (e.g. Longstaff and Dennison, 1999), 

and if changes persists over long periods of time they can adjust both at the individual and 

population levels (e.g. Collier, 2006; Ralph et al., 2007). But in the case of a sudden and 

strong impact (such as sedimentation or shoot removal), seagrasses were not shown to 

respond equally fast, and in some cases do not recover from the impact (Duarte et al., 1997; 

Rasheed, 2004). Nonetheless, seagrasses developed a set of mechanisms which may not 

necessarily ensure survival of the individual itself, but ultimately will work towards 

ensuring survival of the species. Cabaço and Santos (2012) report in their review that in 

75% of studies seagrasses increased the reproductive effort in face of disturbance, this 

response being stronger in species with higher storage capacity (i.e. with bigger rhizome 

diameter). These authors suggested this type of response to be a mechanism to improve 

resilience. Specifically, increasing the reproductive effort increases genetic diversity which 

maximizes chances of adaptation to new conditions. Additionally, if the disturbance is 

strong enough to alter the habitat, it might become unsuitable for the species. In this 

scenario, the advantage of increased reproductive effort is the production of numerous 

propagules which are not attached to the bottom as parental plants, but are instead 

available for dispersal.  

European waters are home to four seagrass species, from the large subtidal species 

Posidonia oceanica, Cymodocea nodosa and Zostera marina, to the small, often intertidal, 

Zostera noltii (Green and Short, 2003). In addition, the recently introduced Lessepsian 

species Halophila stipulacea is nowadays spread throughout the Mediterranean Sea and two 

widgeon grasses Ruppia maritima and Ruppia chirrosa (Ruppia is not a seagrass in strict 

sense but still often mentioned as such) found in European coastal waters (Green and Short, 

2003). 

The dwarf eelgrass, Zostera noltii Hornem is a small, perennial or annual plant 

(Figure 1.1), inhabiting coastal waters of Europe and Africa from Norway to Mauritania. It is 

found along the Atlantic Ocean, Kattegat, Mediterranean, Black, Azov, Caspian and Aral Seas 

(Green and Short, 2003). It is mostly intertidal, except in the areas of the Mediterranean and 

the Kattegat Sea where it can be found subtidally (Den Hartog, 1970). It can inhabit brackish 

waters and is often present in coastal lagoons (Hily et al., 2003).  
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Figure 1.1. (a) Zostera noltii plant. (b) Zostera noltii meadow in the Ria Formosa (photo: 
Buga Berković) 

Its wide geographic and niche distribution imply that Z. noltii is an adaptive species, 

inhabiting temperate waters of northern Atlantic and tropical Mauritanian coast equally 

(Fig.1.2), from dynamic and harsh intertidal mudflats, to calm and stable subtidal zones. Z. 

noltii is considered a pioneer species, among the first to inhabit an area, relying mostly on 

phalanx strategy (Ruggiero et al., 2005; Brun et al., 2007). In phalanx strategy connections 

between the ramets are shorter creating dense canopies, opposing to guerrilla strategy 

where spacing between the ramets is longer. Both strategies can be used by one species as a 

response to environmental condition (Ye et al., 2006). Z. noltii spread is characterized both 

by fast rhizome growth (Marbà and Duarte, 1998) and frequent flowering as well as high 

seed production rates (Alexandre et al., 2006). Z. noltii is a dominant seagrass species in the 

Ria Formosa lagoon, southern Portugal. Guimarães et al. (2012) reported that in 2002 it 

occupied about 45% of the intertidal area in the lagoon. Habitat occupied by Z. noltii is of 

great interest for humans as it is suitable for clam farming and harvesting, leading to 

frequent disturbances to local seagrass meadows (Cabaço et al., 2005). 

 

Figure 1.2. Distribution of Zostera noltii (from Short et al., 2010) 
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Population genetics of Z. noltii have been studied since Coyer et al. (2004 a) 

developed nine microsatellite markers. Using this markers, Coyer et al. (2004 b) studied 

populations along the species’ distribution range and found both genotypic diversity, i.e. 

number of distinct genotypes, (R=0.10-1.00) and standardized allelic richness (A=3.8-7.8) 

decrease from south to north. The fact that some populations exhibit annual and others 

semi-perennial reproduction mode has been offered as an explanation for high diversity in 

different populations, among other factors (Procaccini et al., 2007). Researchers looking at 

isolation-by-distance (IBD) in Z. noltii found a limit of 100-150 km for a panmictic 

neighbourhood (Coyer at al., 2004 b), implying populations within this limits are susceptible 

to dispersal, possibly by rafting shoots (Procaccini et al., 2007). While Procaccini et al. 

(2007) assumes that rafting shoots are only relevant as a vector for fruit/seeds dispersal, in 

this thesis I will argue that vegetative shoots dispersal plays a more important role in the 

dispersal process. The general IBD pattern observed by Coyer et al. (2004 b) was not 

consistent throughout the biogeographic area, e.g. in the Black and Azov Sea where genetic 

differentiation was rising much faster with increasing distance. Billingham et al. (2003) 

suggested this type of pattern can be explained with clonal reproduction dominating the 

margins of the range, while sexual reproduction is more relevant in the core areas. Coyer et 

al. (2004 b) found within 33 populations at 11 locations that clones were present in almost 

all the populations, and had about 3 m2 in size. Clone size was varied geographically, as the 

populations in the Mauritania, Black and Azov Sea exhibited larger clones (Coyer et al., 

2004 b). Other population genetics parameters also varied greatly: expected heterozigosity 

Hexp between 0.279 and 0.675, observed heterozigosity Ho between 0.163 and 0.722 and 

percentage of unique alleles in population from 1.7 to 42.1% (Coyer et al., 2004 b).  

Seagrasses are clonal organisms, whose basic building unit is a ramet. A ramet is a 

plant segment comprised of one shoot, belonging rhizome and roots. Seagrass architecture 

(i.e. how ramets are organised in space) is shaped by apical dominance and clonal 

integration (Brun et al., 2007). Apical dominance relates to the role of the apical shoot for 

plant growth, e.g. for the direction of the growth of the plant (Phillips, 1975). Clonal 

integration refers to the level of communication between the units of one plant, e.g. 

exchanging the nutrients between the distant parts of the clone but also defence signals and 

pathogens (Quereshi and Spanner, 1971; Stuefer et al., 2004). In Z. noltii, both apical 

dominance and clonal integration strongly affect clonal architecture (Brun et al., 2007). 

Brun et al. (2007) showed that apical dominance restricts branching and regulates the 

length of internodes, i.e. sections between the successive levels of leaf or branch insertion. 

Clonal integration is estimated to persist in Z. noltii for about 30 days, based on the 
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maximum distance of resource translocation, and rhizome elongation rates (Marbà et al., 

2006). Marbà et al. (2002) estimated that the maximum distance of resource transport in Z. 

noltii was about 25 cm. In practice this means that even though the apical shoot is directing 

the growth of the rhizome and controlling the growth of branches (Brun et al., 2007), a plant 

with damaged apical shoot will continue to grow via secondary ramets (i.e. branches on the 

main rhizome), facilitated by the transport of resources from the neighbouring parts of the 

plant. These mechanisms display plasticity of the plant, its ability to “bridge” the unsuitable 

habitat by translocating resources suitable ones (Cain, 1994) and occupy space in an 

optimal way. 

Habitats in which Z. noltii is found are often highly dynamic and subject to both 

naturally occurring and anthropogenic disturbance. This can be observed in particular in 

the coastal lagoons and intertidal mud- and sand- flats along European shores, (e.g. 

Denmark, Flindt et al., 1997; Netherlands, Govers et al., 2014; Germany, Zipperle et al., 2011; 

France, Plus et al., 2010; Italy, Curiel et al., 1996; Spain, Brun et al., 2007; Valle et al., 2011; 

Portugal, Cunha et al., 2013). Intertidal populations need to adapt to prolonged periods of 

high irradiance and desiccation, high temperatures and freshwater inflow on occasion (e.g. 

rain), as well as hydrodynamics of incoming and leaving tides. Such environments often 

exhibit intense sediment dynamics, due to moving sand barriers or inlets (e.g. Cunha et al., 

2005). On the other hand, many habitats of Z. noltii coincide with areas of intense human 

activity. Multiple studies around the world evaluated impacts of human activities on coastal 

systems - either tourism related (Davenport and Davenport, 2006) different forms of 

agriculture (Lloret et al., 2005), aquaculture (Ruiz et al., 2001), fisheries (Blaber et al., 2000) 

and clam harvesting (Cabaço et al., 2005). Additionally, as they are often situated in shallow 

coastal lagoons, dredging for the purpose of maritime traffic is also an important stressor 

(Erftemeijer and Lewis, 2006). Dredging physically destroys the meadows but also leads to 

sediment loading, similarly to coastal construction, deforestation and sediment transport 

from inland via rivers. This was shown to have a strong negative impact on some seagrass 

species (Terrados et al., 1998). Finally, eutrophication as a consequence of waste water 

discharge and nutrient transport, from agricultural or industrial zones through the 

watershed, is a major impact in developed and developing parts of the world (Björk et al., 

2008). All of these disturbances led to the decline of seagrasses around the world, placing 

them on the list of endangered species and habitats (Waycott et al., 2009; Cabaço and 

Santos, 2014). 

 



32 

 

Studying the landscape genetics of an intertidal seagrass presents its own 

challenges. Habitat is changing with tidal cycle, from humid terrestrial one to the shallow 

coastal one. This means that for some individual’s suitable habitat allowing uninterrupted 

gene flow is available twice a day, with periods of zero connectivity for the rest of the day. 

Thus, this temporal variation needs to be considered, as well as the spatial variation, in 

order to describe the habitat’s dynamic character. No similar work has been done yet, 

regardless of the focus species. This study endeavours in unprecedented sampling effort 

focused on individuals, without a priori defined populations. Such design allows detailed 

insight into the structure of the population and landscape analysis with higher resolution 

than previously published body of work. 

 

1.3. Thesis aims 

 

The aim of this thesis is to understand the genetic spatial structure of the seagrass 

Zostera noltii in the mesotidal coastal lagoon Ria Formosa and link it to species’ dispersal 

biology and landscape it inhabits. In particular, this work aimed to: 

• give the insight in seagrass dispersal potential (Chapter 2), 

• evaluate the success of dispersal via vegetative propagules (Chapter 3) 

• providing description of species asexual dispersal biology (Chapters 2 and 3).  

Furthermore, to 

• use genetic analysis to support proposed dispersal pathways (Chapter 4) and 

• discuss the importance of landscape complexity for population genetics (Chapter 4). 
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Abstract 

 

The dispersal potential of sexual and asexual propagules of Zostera	 noltii was 

experimentally quantified in still water and under different currents in microcosm and 

mesocosm facilities. We estimated sinking rates of seeds and changes over time in shoot 

buoyancy, shoot viability, fragment breakage, shoot growth rate and spathe release rate of 

floating fragments. The fast sinking rates of detached Z.	noltii seeds suggest a small spatial 

scale of dispersal insufficient to connect fragmented populations, whereas the traits of 

floating fragments, particularly shoot buoyancy and shoot survival (>55 d), suggest a 

potential for long distance dispersal (>2,300 km) that could connect distant patches and 

allow colonization of new areas. We showed that the Z.	 noltii vegetative and reproductive 

fragments have the potential to extend the dispersal achieved by detached seeds alone. 

 

Keywords: dispersal, aquatic plant, propagules, seagrass connectivity, Zostera	noltii, seeds, 

fragments.  
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2.1 Introduction 

 

Dispersal is essentially any movement of an organism, or any of its propagules, that 

potentially leads to gene flow (sensu Ronce, 2007). It is a life history trait, most typically 

associated with sexual reproduction, whether postmeiotic or prezygotic (e.g. broadcast 

spawned gametes, haploid algal spores, plant pollen) or postzygotic (e.g. plant seeds or 

planktonic larvae). Compared to sexual dispersal, much less attention has been given to the 

evolutionary and ecological consequences of clonal dispersal, although it is widespread 

across many organisms, particularly in plants. Clonal dispersal can be defined as outward 

spreading of organisms or propagules from their point of origin or release (Lincoln, 1998), 

which also includes the shoot multiplication through rhizome extension. A unit of clonal 

dispersal is often a fragment of an adult organism, although other means of asexual 

dispersal are possible (e.g., apomixis). A dispersing fragment can be any unit capable of 

independent life. For clonal dispersal to occur, such a unit needs to get separated, either 

naturally as a consequence of maturation (Oróstica et	 al., 2012), or fragmented by any 

disturbance (Riis and Sand-Jensen, 2006), and survive temporarily during transport in an 

appropriate dispersal vector. Dispersal distance is, hence, a function of fragment viability 

and dispersal vector (Jackson, 1986). Clonal dispersal is especially advantageous as a mean 

of propagation under conditions in which sexual dispersal is not effective, such as in some 

species distributional ranges (e.g., Billingham, 2003; Tatarenkov et	al., 2005). 

Fragment separation is a process of creation of asexual propagules that has been 

considered to be under selection (Highsmith, 1982). There is evidence that some aquatic 

plants may disperse only by vegetative fragments (e.g. Ranunculus	 lingua; Johansson and 

Nilsson, 1993), others propagate mainly via vegetative fragments (e.g. Elodea	 canadiensis	

and	Myriophyllum	spicatum;	Nichols and Shawn, 1986), while few spread via more specific 

dormant apices	(e.g.	Potamogeton	crispus;	Nichols and Shawn, 1986). Boedeltje et	al. (2003) 

found that out of all the propagules of 12 submerged plant species found in a stream almost 

99% were vegetative ones. For different species, buoyancy properties of the fragments 

define their dispersal pattern and fate. While e.g. E.	canadiensis floats under the surface of 

the water, and can therefore get entangled to other submerged vegetation, Ranunculus	

peltatus fragments float on the surface and more often strand on shallow sediments (Riis 

and Sand-Jensen, 2006). Still, relatively few studies have addressed the relevance of 

fragmentation in marine vegetation, which have the potential to disperse over much longer 

distances via drifting fragments (Ceccherelli and Piazzi, 2001; McKenzie and Bellgrove, 
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2008). Some seagrass genetic studies explicitly discuss populations’ genetic structure in the 

light of possible fragment dispersal paths (Reusch, 2002), but again emphasizing fragments 

as vectors carrying sexual propagules.  

Fragmentation and dispersal in aquatic clonal vegetation are concurrently thought to 

play a role in diminishing the negative effect of selfing, commonly observed in terrestrial 

clonal plants (Charpentier, 2002). Furthermore, for species with higher dispersal of 

fragments, clonal reproduction is more common (Silvertown, 2008). Dispersal is therefore, 

particularly in aquatic clonal plants, likely to be a crucial process in shaping populations’ 

distribution and structure. 

Seagrasses are marine clonal plants that disperse through both sexual and asexual 

propagules (Orth et	 al., 1994). Both vegetative and reproductive fragments (i.e. fragments 

with flowering shoots composed of spathes containing flowers, fruits and seeds; Setchell, 

1933) are important long distance dispersal vectors (Harwell and Orth, 2002; Hall et	 al., 

2006). In some seagrass species, floating seeds or fruits are as well a type of long distance 

dispersal (e.g. Enhalus	 acoroides	 and Thalassia	 hemprichii (Lacap et	 al., 2002), Posidonia	

oceanica (Buia and Mazzella, 1991)), but seeds of most seagrass species are negatively 

buoyant (Pettit, 1984), and thus, unlikely to disperse far. Seagrass fragment formation, 

dispersal and establishment have rarely been studied and only for a few species, e.g. Zostera	

marina	 (Ewanchuk and Williams, 1996; Erftemeijer et	 al., 2008; Källström et	 al., 2008), 

Thalassia	testudinum	(Kaldy and Dunton, 1999) and Posidonia	oceanica (Diaz-Almela et	al., 

2008).  

Understanding the dispersal and colonization potential of seagrasses is valuable to 

predict the natural potential for self-restoration and colonization (Rasheed, 2004; Boese et	

al., 2009; Kendrick et	 al., 2012) and in that way essential for the continuous efforts to 

conserve and restore the existing meadows (Harwell and Orth, 2002). Studies focused on 

restoration methods (e.g. Harwell and Orth, 1999; Marion and Orth, 2009) have revealed 

limited establishment success (Orth et	 al., 2009; Paling et	 al., 2009). Improving our 

knowledge on seagrass dispersal process can therefore improve the success of restoration 

practices (Balestri et	 al., 2011). It can also help understand population connectivity, and 

their response to natural or human-induced disturbances. Most dispersal studies focused on 

dispersal of sexual propagules (Orth et	al., 1994; Harwell and Orth, 2002; Erftemeijer et	al., 

2008; Källström et	al., 2008; Koch et	al., 2009), whereas less is known about the colonization 

potential of plant fragments (Barrat-Segretain and Bornette, 2000; Hall et	al., 2006).  
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Zostera	noltii	is the smallest seagrass among the native European species (Kuo and 

Hartog, 2001) exhibiting fast clonal growth rate (Peralta et	 al., 2005), with common 

flowering events and high seed production rates (Alexandre et	 al., 2006). The species 

inhabits mostly intertidal zones, even though some populations may develop in the subtidal, 

particularly where tides are very small. It is the dominant seagrass species in Ria Formosa 

lagoon, Southern Portugal, where it covers over 45% of the intertidal area (Guimarães et	al., 

2012). In this lagoon, intensive clam culturing and harvesting occurs in intertidal areas 

along the Z.	 noltii meadows (Guimarães et	 al., 2012). While the installation of clam beds 

removes local seagrass beds completely, clam digging within the remaining seagrass 

meadows decreases total biomass and shoot density (Alexandre et	al., 2005; Cabaço et	al., 

2005). The latter activity leads to breakage and release of seagrass fragments, probably 

increasing the dispersal potential of the species. In the long term, such disturbed meadows 

invest more into reproductive shoots (Alexandre et	 al., 2005), which can also become 

detached and dispersed with the vegetative ones. 

The aim of this study was to investigate the dispersal potential of sexual and asexual 

propagules of Zostera	 noltii. Here, we focus on clonal dispersal as the transport of a 

genetically identical vegetative fragment after breakage from the sessile clone, with 

potential to contribute to gene flow (Ronce, 2007). Dispersal potential was experimentally 

quantified for both spatial and temporal scales by measuring seed sinking rates and 

different properties of floating fragments, with and without reproductive structures, i.e. 

shoot buoyancy, shoot viability, fragment break down, shoot growth rate and spathe release 

rate. We hypothesize that both the vegetative and reproductive fragments play a crucial role 

in Z.	 noltii	 population maintenance in the Ria Formosa lagoon, allowing higher dispersal 

over larger spatial scales than detached seeds alone. 

 

2.2 Material and methods 

 

Seeds, vegetative and reproductive fragments were collected in summer 2011 during 

low tide from a Zostera	 noltii meadow in Ria Formosa lagoon, South Portugal (37.01°N, 

7.5°W). The dispersal potential of seeds, vegetative and reproductive fragments was 

evaluated in still water and under different currents in microcosm and mesocosm facilities. 
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2.2.1. Dispersal potential of seeds 

Seeds of Z. noltii were obtained from flowering shoots that were collected, brought to 

the laboratory and placed in a seawater aquarium (20 L, 24°C, 33‰) with moderate 

aeration (Cabaço and Santos, 2010; Fig. 2.1 a). Seeds that naturally fell out from the spathes 

were collected every two days from the bottom of the aquarium. Forty-seven seeds were 

obtained over a period of four weeks.  

The seed wet weight (precision of 0.1 mg) was determined after blotting each seed 

rapidly on a paper towel. The length and width of seeds (Fig. 2.1 b) were measured on 

photographs using the software ImageJ. Seed density was calculated by dividing the seed 

weight by their volume; seed volume was estimated using a formula for an ellipsoid body:  

V= 4/3*π*a*b*c, 

where a= half of width, b= half of thickness and c= half of length, assuming equality of width 

and thickness of the seed, independent of seed position along its longitudinal axis, as used 

by Koch et al. (2010) for seeds of similar shape. Seeds were kept separately in 1.5 mL tubes 

with autoclaved seawater until used in the still water and current dispersal experiments.  

Sedimentation rate of seeds in still water was tested in a 40 cm tall seawater 

aquarium (24°C, 33‰). Seeds were released immediately under the surface of the water to 

avoid an effect of surface tension on their sinking behavior. The time required for a seed to 

reach the bottom was recorded three times for each seed. The average time was used to 

calculate the sedimentation rate. Linear regression of biometric variables on sedimentation 

rate of seeds was used to determine if seed characteristics explain sinking behavior.  

The distance traveled by seeds was measured under three distinct current velocities 

(1.5, 4.0 and 6.5 cm/s) in a flume tank (1.5 m long, 7 cm water column depth, with a thin 

layer of sandy sediment on the bottom; Fig. 2.2 a) with re-circulating seawater (23°C, 33‰). 

The current velocity was measured by releasing a colored liquid in the flow. Experimental 

current velocities were chosen based on preliminary measurements used to determine the 

highest current velocity allowing tracking and retrieving seeds. This current velocity was 

within the range of currents measured 6 cm above Z. noltii canopy in Ria Formosa lagoon 

(ca. 3.5-8.0 cm/s; Urs Neumeier, pers. comm.). Seeds were placed immediately below water 

surface to avoid the surface tension effect and aligned with the longer axis in the direction of 

the current. The distance travelled by seeds until they reach the bottom was measured. The 
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same procedure was repeated three times for each seed and the average distance was used. 

    

Figure 2.1. (a) Tank with flowering fragments for seed collection. (b) Seed of Zostera	noltii. 

Squares in the back are 1x1 mm in size. 

In order to determine the critical current velocity causing seed transport along the 

bottom, batches of eight seeds were placed in a line across the bottom of the flume tank, far 

from the tank walls and from each other (ca. 5 cm). Water current was slowly increased and 

when an individual seed moved more than 1 cm, the current velocity was recorded. To avoid 

flow disturbance, seeds were only removed from the flume after all of them moved from the 

starting line. This procedure was repeated three times for each batch of seeds, and the 

average current velocity recorded. 

Seed viability was tested at the end of the experiments, by soaking them in a 0.5% 

tetrazolium solution at 25°C during 24 h (Conacher et	 al., 1994). Seeds were considered 

viable if the hypocotyl stained red and the radicle either red or brown. A t-test was used to 

investigate the difference in seed biometric characteristics and dispersal behavior between  

Figure 2.2. Flume tanks used to quantify (a) dispersal potential of Zostera	noltii	seeds and 

(b) damage of fragments occurring during exposure to currents, both in the 

biohydrodynamic laboratory of Sven Lovén Centre for Marine Sciences – Tjärnö, University 

of Gothenburg. (c) View of uncovered and covered outdoor tanks for still water experiments 

of the dispersal potential of vegetative fragments, in Ramalhete field station, University of 

Algarve. 

the viable and non-viable seeds, after checking for normal distribution. When t-test 

assumptions were not verified, the non-parametric Mann-Whitney U test was used (Lehman 
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and D’Abrera, 2006). For the analysis of dispersal in current and critical current velocity for 

bottom transportation only the viable seeds were considered, as dispersal of non-viable 

seeds has no biological meaning. 

2.2.2. Dispersal	potential	of	vegetative	fragments	

To estimate the time period during which floating vegetative fragments of Z.	 noltii 

remain viable, a mesocosm experiment (still water) was conducted using 34 vegetative 

fragments. The length of the rhizomes was measured and the number of shoots was counted 

for each fragment. Fragments were on average (± SE) 15.7±1.1 cm long and had 6.0±0.5 

shoots. They were marked individually using colored, numbered, adhesive tape that was 

loosely fixed around the rhizome (1 cm away) to avoid any type of damage. Marked 

fragments were placed in outdoor tanks (550 L; Fig. 2.2 c) with low seawater renewal and 

covered with white plastic mesh to avoid overheating. Fragments were monitored after 5, 

10, 15, 40 and 55 days for the number of shoots to estimate shoot production rate, as a 

proxy for growth. At the end of the experiment, the fragment production potential was 

evaluated by monitoring for tissue necrosis (brown-to-black colored leaves and rhizome 

with emphasis on meristems). Fragments were categorized as: growing (green leaves, 

without decaying tissue), stagnant (greenish–yellowish leaves with some decaying tissue) 

and dying (no green leaves, most of the tissue decaying). 

To evaluate the damage occurring during exposure to currents, we mimicked the 

conditions observed in Ria Formosa lagoon where drifting patches of Zostera	 noltii 

fragments get entangled in the canopies of semi-submerged vegetation or physical 

structures set by humans; the flow of water current over these stationary fragments can 

cause breakage. To estimate the rate of fragment breakage, vegetative fragments were 

exposed to three distinct current velocities of 15, 30 and 40 cm/s. Batches of 30 fragments 

per treatment were placed in a flume tank (7 m long, re-circulating water, 23°C, 33‰; Fig. 

2.2 b) with a plastic net (1 cm mesh) at the end of the working section to hold the fragments, 

exposing them to continuous water flow. The current velocity in the tank was monitored 

using an acoustic Doppler velocimeter (ADV). The current was measured 15 cm upstream of 

the working area and the probe was removed before fragment release. Fragments were 

released together, at the beginning of the tank and were exposed to the current during two 

hours. To synthesize our observations we categorized fragments in interval classes of 

number of shoots. All the fragments placed in the tank had more than three shoots, meaning 

that all fragments with one, two or three shoots at the end of experiment were a 

consequence of damage caused by the current. Therefore, we defined the first category to 
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have three or less shoots and kept the range in shoot number for all other categories equal. 

Change rate of fragments in each shoot number class was calculated as: (Na/ Nb) – 1, where 

Na is the number of fragments in a given shoot number class after the exposure to the 

current and Nb is the number of fragments in the same class at the start. Positive change rate 

indicated an increase of fragments in a particular shoot number class, due to the damage of 

fragments from bigger size classes. Negative change indicated breakage of fragments in that 

shoot number class and their reclassification into a smaller shoot number class. 

2.2.3. Dispersal	potential	of	reproductive	fragments	

Twenty fragments with flowering shoots were kept in a seawater aquarium (20 L, 

24°C, 33‰, as described in section 2.2.1.), and monitored for the natural release of the 

spathes and seeds in still water for 30 days. We assumed that reproductive fragments have 

the same dispersal potential as the vegetative ones, because there are no structural 

differences between them except for the presence of spathes in 1-2 shoots. 	

To test the damage caused by water current on the reproductive fragments, spathe 

release from the flowering shoots was quantified after two hours of current exposure (15, 

30 and 40 cm/s) using the same experimental design as described for vegetative fragments 

(see section 2.2.2.). The change rate in the number of spathes per flowering shoot after 

exposure to current was used to quantify the damage imposed by water current. Change rate 

was calculated as before (see section 2.2.2.). Positive change rate was caused by the increase 

in number of fragments with target spathe – shoot ratio. As no new spathes could have been 

produced, this was indicative of spathe release for fragments with more spathes per shoot 

than the observed group. Negative change rate was considered to be indicative of spathe 

release in fragments of observed group. 

 

2.3. Results 

 

2.3.1. Dispersal	potential	of	seeds	

Sixty–six percent of Z.	noltii seeds were viable, and viable seeds had higher density 

and weight than the non–viable ones (t-test, p<0.05, Tab. 2.1). Viable seeds showed a 

significant (p<0.001), three–fold faster sedimentation rate than the non–viable ones 
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(2.5±0.8 and 0.9±0.6 cm/s respectively). The seed weight had a significant effect on still 

water sedimentation rate (R2=0.35, p<0.001); whereas the other biometric variables 

explained a smaller proportion of the variation (R2<0.15, e.g. seed density, p=0.01). The 

critical resuspension current velocity for viable seeds was 8.2 cm/s. 

Table 2.1. Biometric characteristics and dispersal behaviour of viable and non-viable seeds 

of Zostera noltii (mean ± SE). 

Characteristic (units) Viable seeds Non-viable seeds 

Length (mm) 2.3±0.2 2.3±0.2 

Width (mm) 0.9±0.1 0.9±0.1 

Weight (mg) ** 1.4±0.5 1.0±0.4 

Density (mg/mm) * 0.9±0.4 0.7±0.4 

Sedimentation rate (cm/s) *** 2.5±0.8 0.9±0.6 

Critical current for bottom 

transportation (cm/s) 
8.2±1.2 N/A 

Percentage (N) 66 (31) 34 (16) 

 

The distance traveled by Z. noltii seeds increased with increasing currents (Fig. 2.3); 

seeds dispersed 2.3, 10.4 and 15.5 cm in current velocities of 1.5, 4.0 and 6.5 cm/s, 

respectively.  

 

Figure 2.3. Observed Zostera noltii seed dispersal in experimental current velocities of 1.5, 

4.0 and 6.5 cm/s. Dashed line inside the box shows the mean value, open circles represents 

outliers; the boundary of the box closest to zero indicates the 25th percentile, and the 

boundary of the box farthest from zero indicates the 75th percentile. Whiskers above and 

below the box indicate the 90th and 10th percentiles, respectively. 

Seed dispersal distance was significantly related to the seed weight in currents of 4.0 and 

6.5 cm/s (p<0.05), but the association was poor (R2=0.26 and 0.22, respectively). 



53 

 

2.3.2. Dispersal	potential	of	vegetative	fragments	

Zostera	noltii	 fragments floating in still water showed almost no change during the 

first five days of experiment, i.e. after the detachment from the sediment. Most of the 

fragments tested (68%) were viable and growing (0.40 shoots/d) after 15 days. After 40 

days, half of the fragments were decaying although at a lower rate (-0.02 shoots/d) than the 

ones growing (0.11 shoots/d). At the end of the experiment, after 55 days, 15% of the 

fragments were still viable and growing (0.13 shoots/d; Fig. 2.4). 

 
Figure 2.4. Zostera	noltii capacity to produce new shoots while floating in still water (n=34). 

(a) Production potential shows proportion of fragments growing, stagnant or declining. (b) 

Production or decay of shoots per day; whiskers indicate standard error. 

The proportion of damaged fragments increased with current velocity (Fig. 2.5). Ten 

percent of the fragments were damaged at 5 cm/s velocity, as indicated by the small positive 

change rate of the smallest shoot number class. A similar level of damage of 52 and 58% was 
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observed for the current velocities of 15 and 30 cm/s, respectively, visible as higher positive 

change rates of the smallest shoot number class (Fig. 2.5). The damage caused by currents 

on Z.	noltii vegetative fragments caused mostly the separation of single shoots, mainly in the 

older (terminal) part of the plant. 

 

Figure 2.5. Change in size of Zostera	noltii fragments after 2 h exposure in current velocities 

of 5, 15 and 30 cm/s. X-axis shows the fragments’ size class. 

2.3.3. Dispersal	potential	of	reproductive	fragments	

Spathe release in still water occurred exclusively for the spathes carrying mature 

seeds, which had decaying tissues. The tissue decay precluded the precise quantification of 

the number of spathes released from the flowering shoots. None of the immature spathes 

was released from the flowering shoots during the whole experiment. 

When the flowering shoots were exposed for 2 h to currents of 5 and 15 cm/s a 

similar low spathe release (3%) was observed. However, spathe release increased to 15% 

after 2 h exposure to 30 cm/s current. An increase in the number of flowering shoots with 

only one spathe per shoot (50% in 5 cm/s, 20% in 15 cm/s and 83% in 30 cm/s) was 

observed for the three tested currents, resulting from the transfer of flowering shoots from 

higher classes that lost all spathes except one. The release of spathes was strongest in 

fragments with more spathes per flowering shoot at the beginning of the experiment as 

shown by the negative change rate for the group of 5-7 spathes per flowering shoot (Fig. 

2.6).  
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Figure 2.6. Change in number of spathes per flowering shoot of Zostera	noltii	reproductive 

fragments after 2 h exposure in current velocities of 5, 15 and 30 cm/s. The X-axis shows the 

number of flowering shoots class in relation to their number of spathes. 

 

2.4. Discussion 

 

Our results showed that floating asexual propagules of the seagrass Zostera	 noltii 

have a dispersal potential (in the order of thousands of km) that is not comparable to the 

dispersal of seeds (in the order of cm). Considering that fragments were still viable and 

growing after 55 days, that the average current velocity in Ria Formosa is about 50 cm/s 

(Duarte et	 al., 2008) and assuming unidirectional and constant flow for the whole period 

and no wind effect in enhancing the transport of fragments, the potential dispersal of Z.	

noltii fragments would be 2,300 km. However, it is important to consider reestablishment 

success of floating fragments to assess effective dispersal. In any case, considering the Z.	

noltii fragments viability and the elevated number of fragments always floating in Ria 

Formosa it is expected that fragment dispersal is important for population connectivity. 

Other estimates obtained here, such as the fragment temporal viability, breakage and decay 

parameters, can provide valuable information to parameterize a hydrodynamic-based 

transport model that will allow a more accurate estimation of dispersal. 

The observed long–term viability, survival and growth of Z.	 noltii vegetative 

fragments was similar to results found for Zostera	marina	with ca. 60% of fragments being 

viable six weeks after detachment (Ewanchuk and Williams, 1996). Prolonged viability of 
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detached fragments is also frequently observed in macroalgae (e.g. Coleman and Brawley, 

2005; Macaya et al., 2005; McKenzie and Bellgrove, 2008), with reports of kelp viable 

propagules almost 18 weeks after detachment (Hernández-Carmona et al., 2006). This 

prolonged viability indicates that floating fragments are a common dispersal vector in 

macrophytes (McKenzie and Bellgrove, 2008) and that fragmentation can be considered 

part of their life history, as is considered for corals (Highsmith, 1982). Survival capacity of Z. 

noltii fragments observed in this study was larger than that of other seagrasses, such as 

Halophila johnsonii and Halodule wrightii (Hall et al., 2006). This higher survival may be 

related to the species adaptation to the dynamic intertidal habitat, where tidal currents and 

waves can easily brake off fragments, enhancing plant fragmentation and release of 

propagules. Seagrass fragmentation by hydrodynamic forces or human disturbances such as 

trampling or clam harvesting therefore appears to be an important factor mediating the 

species dispersal. To cope with habitat disturbances, Z. noltii may have been selected to 

promote fragmentation of the older parts of the clone, far from the apical shoot where clonal 

growth occurs. As such, the plant can still maintain its physiological integration (Marbà et 

al., 2002) and also keep the meristem intact, increasing the chances of survival. Indeed, 

Cabaço et al. (2005) showed that damage had negative, significant effect on plant growth 

and survival only when the apical shoot was removed. Due to these mechanisms, even with 

high fragment damage (up to 58% in currents of 30 cm/s), the potential colonization 

capacity of Z. noltii fragments does not seem to be diminished. Even though in this study all 

the fragments were >10 cm long, which was described as the species’ minimal functional 

length for clonal integration (Marbà et al., 2002), variable success (growing vs. decaying) 

was observed. 

The small dispersal capacity of individual Z. noltii seeds (<30 cm) was similar to 

what has been observed for other Zostera species (Orth et al., 2000), suggesting that seeds 

falling from the spathes within a meadow are not likely to be exported to other areas. Other 

seagrass species generally have larger and heavier seeds, with faster sinking rates than Z. 

noltii (e.g. Enhalus acoroides and Thalassia hemprichii; Lacap et al., 2002). Even in 

comparison to other submerged angiosperm species of similar seed size (e.g. Ruppia 

maritima, Potamogeton perfoliatus and Stuckenia pectinata; Koch et al., 2010), viable Z. noltii 

seeds showed lower density, lower sinking rate and higher critical re-suspension velocities. 

The Z. noltii seed sedimentation rate in still water was partially explained by the seed weight 

(35%), as observed for some freshwater species by Koch et al. (2010), and both were 

significantly related to seed viability, suggesting that seed weight can be used as a quick, 

non-destructive proxy of seed viability. Seed weight explained 26% of variance in dispersal 
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distance at higher current velocities. This is probably due to the fact that the drag force is 

directly related with the surface exposed to the current and not to the weight of the seed 

(Denny, 1988). According to our observations, the current velocity at critical resuspension 

approached the level necessary to resuspend sandy sediment particles, which may bury the 

seeds and prevent their further dispersal. 

The limited seed dispersal of Z.	 noltii	 suggests that reproductive fragments are 

necessary vectors for long distance seed dispersal, as observed for Z.	marina, (e.g. Orth et	al., 

1994), and reinforces the importance of fragments as seagrass dispersal propagules. 

Currents had a positive effect on the spathe release from the flowering shoots and, 

consequently, on the seed release to the bottom, as shown by the change in the number of 

spathes per flowering shoot subjected to high currents (positive change rate for fragments 

with only one spathe per flowering shoot after 2 h exposure to 30 cm/s current). More 

spathes were released during exposure to current in flowering shoots that had initially more 

spathes, independently of the current velocity. This may be related to the reproductive 

biology of Z.	noltii, i.e. the successive spathe production within the flowering shoot (Eichler, 

1875), which results in presence of spathes of different age and maturation stage in the 

same flowering shoot. Hence, flowering shoots with more spathes probably carry spathes in 

advanced stage of maturation, which naturally start to decay and release the ripe seeds. The 

higher release of spathes from the more developed flowering shoots with increasing current 

velocity, highlights currents as an important factor for the species dispersal. Previous studies 

showed that seagrass flowering fragments could travel up to 150 km and for periods of 

almost a month (Källström et	al., 2008), but the importance of flowering shoot dispersal is 

reduced by the limited flowering season and the low persistence of the spathes on the 

flowering shoots, which is dependent on their maturation stage (Alexandre et	 al. 2006). 

Hence, considering that the difference between reproductive and vegetative fragments is the 

presence of flowering shoots, the potential dispersal of reproductive fragments can only be 

equal or lower than that of vegetative ones, which are present all year around. In addition, 

this study showed fragments can stay viable for a prolonged period of time. This may be 

common in seagrasses, as Balestri et	al. (2011) found that Posidonia	oceanica fragments can 

stay viable for three years without losing the capacity to root and grow. Considering this, we 

can conclude that the dispersal of vegetative fragments plays an important role for the 

species’ dispersal and future research should reveal how this dispersal translate into 

migration.  

The considerably higher dispersal potential of asexual propagules of Zostera	noltii in 
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comparison to that of detached seeds is of fundamental relevance for the classical 

interpretation of the species life history, and likely to be extended to other seagrasses or 

other clonal aquatic plants (Gliddon et	al., 1987; Fischer and van Kleunen, 2002). The sexual 

component producing dispersal vectors in the form of pollen and seeds are classically 

considered as the component that can reach areas beyond the close neighborhood of the 

parental plant, despite substantial evidence for clonal dispersal across long distances to 

potentially outreach sexual propagules in many taxa (Highsmith, 1982; Johansson and 

Nilsson, 1993).  

While addressing the importance and maintenance of clonal life history, studies have 

focused primarily on population level topics, such as phenotypic plasticity (Alpert and 

Simms, 2002; Bergamini and Peintinger, 2002; Donohue, 2003), foraging strategy and micro-

habitat variability (De Kroon and Hutchings, 1995; Poor et	 al., 2005), and density 

dependence effects on the balance of clonal versus sexual allocation (Ikegami et	al., 2012). In 

our study, by experimentally replicating the conditions clonal fragments face naturally, we 

showed that broken fragments are viable for long periods of time (more than 50 days), are 

able to grow and produce shoots, and can carry and release seeds for long distances. These 

traits are likely to increase the chances of effective asexual dispersal (i.e., migration). If the 

fragments establish in new area after the dispersal they will become a part of the dispersal 

strategy of the plant (Hall et	al., 2006). Therefore, these could be adaptive dispersal traits 

that play a role in the ultimate causes explaining the maintenance of clonal growth. Our 

findings should attract attention to processes that go beyond the local population in order to 

understand the evolutionary implications of clonal growth. To the best of our knowledge our 

study was the first comparison of the sexual and vegetative dispersal capacities of a clonal 

marine plant species. However, additional research is necessary to understand the 

probability of rooting and growth of seagrass fragments after dispersal and settlement. 
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Abstract 

Floating fragments of Zostera noltii have high dispersal potential but their 

establishment success after dispersal is unknown. In this study we quantified survival, 

rooting and development of vegetative fragments following dispersal and settlement, in 

relation to the initial fragment size (3 or 6 shoots) and dispersal regime, i.e. different ratios 

of period of floating and settlement in sediment (0, 2, 4 and 10 weeks). After 10 weeks, 

survival (considered only when rooting was observed) was significantly higher for 

fragments which didn’t spend any time floating prior to the settlement (~60%) than in 

those subjected to floating periods (~30%). There was a significant interaction between the 

effect of dispersal regime treatment and the initial size of fragments on the condition of the 

apical shoot (intact, broken, 2nd apical). Prolonged floating decreased branching of 

fragments, relative to the treatment where fragments didn’t float. Branching was only 

observed for settled fragments and was significantly higher for the initially larger 

fragments. The average number of branches of the branched fragments (1.8) was 

independent of the floating period but was dependent on the initial size of the fragments. 

The ratio of above: below ground biomass at the end of the experiment reveals the 

colonizing-type response in the fragments. Our results indicate that rooting of floating Z. 

noltii fragments is possible, but that prolonged floating period in the dispersal regime 

decreases their success of establishment, i.e. survival, rooting and branching. Applying these 

results to the Ria Formosa lagoon, Portugal, if several assumptions are met we estimated 

that successfully dispersed and established fragments could occupy more than 68 ha every 

year, representing over 5% of the actual Z. noltii coverage in the lagoon. 

 

Keywords: seagrass; Zostera noltii; dispersal; settlement success; establishment. 
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3.1. Introduction 

 

Dispersal is a life history trait relevant for both maintaining existing populations and 

for colonizing new areas. It is defined here as any movement which might lead to gene flow 

(Ronce, 2007). To fulfil the dispersal role, an organism either moves itself, or it produces 

propagules. Propagules are units of dispersal, which can be of sexual or asexual origin. 

Among sexual propagules we recognize spawned gametes, algal spores, plant pollen or 

seeds and planktonic larvae. Asexual propagules are produced by a single parent, a process 

most evident in propagation of clonal organisms. Asexual propagules can be special 

structures (e.g. bulbils or rosettes) or simply a fragment of a parental organism. For 

effective dispersal, propagules need to successfully go through three phases – departure, 

transfer and settlement (Bonte et al., 2012). Partially clonal organisms rely on both clonal 

and sexual propagation to maintain and expand their populations. Sexual propagation is 

advantageous for genetic diversification, a benefit for adaptation to changing environments 

(Barton and Charlesworth, 1986; Becks and Agrawal, 2012). Asexual propagation is often 

viewed as a more cost-efficient space occupying strategy in stable environments, by 

avoiding the need for strategies to ensure gamete encounters. Either way, dispersal is an 

important process providing avoidance of local competition with relatives, while spreading 

the risk in dynamic or heterogeneous habitats (Burgess et al., 2015).  

Freshwater aquatic plants can disperse via different types of fragments (Riis et al., 

2009) such as fragmented parts (e.g. Nichols and Shawn, 1986, Johansson and Nilsson, 

1993) and dormant apices (e.g. Potamogeton crispus; Nichols and Shawn, 1986). Few 

studies have addressed the topic of dispersal via fragments for marine vegetation, whose 

drifting fragments show the potential to disperse across large distances (Ceccherelli and 

Piazzi, 2001; McKenzie and Bellgrove, 2008). An important body of experimental data 

comes from seagrass restoration ecology. Seagrasses are clonal angiosperms adapted to 

complete their life-cycle in the marine environment. They encompass less than 60 species 

(Green and Short, 2003), but are among plant species with widest distribution on the planet 

(Cook, 1996). While rhizome elongation can explain local space occupation and distribution 

patterns (e.g. Marbà and Duarte 1998), wide distribution and population connectivity, at 

least to some extent, requires ability to disperse far. Seagrasses are declining worldwide 

(Waycott et al., 2009) and efforts are made to restore endangered populations (Fonseca, 

1998; Orth et al., 2010). Planting of seagrass fragments is a common approach in 

transplantation for meadow restoration (e.g. Fonseca, 1998; Orth et al., 1999). Success of 
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these methods can reach well over 70%, generally increasing with the increase in the size of 

the planting unit from single fragment, to plugs and sods (e.g. Davis and Short, 1997; Uhrin 

et al, 2009), though it mainly lingers between 35 and 40% (Fonseca et al, 1998). However, 

the methodology in case of restoration is focused on improving survival and doesn’t 

approximate the natural process of seagrass fragment re-establishment (e.g., the natural 

release and transfer stages are absent). The majority of studies on seagrass dispersal 

focused on the role of seeds and pollen (Conacher et al., 1994; Lacap et al., 2002; Orth et al, 

2006 and the references therein; Erftemeijer et al., 2008; Ackerman, 2006. and the 

references therein), but possible dispersal via vegetative propagules has been reported 

(Berković et al., 2014; Hall et al., 2007). Production and release of seagrass fragments, either 

natural or human induced, is frequently observed and accounts for high estimated 

abundance of fragments (Balestri et al., 2011; Cabaço et al., 2005). A recent study on 

dispersal potential of different types of dwarf eelgrass (Zostera noltii) propagules focused 

on the transfer phase of dispersal, revealing prolonged viability and growth of floating 

fragments (Berković et al., 2014). Similar findings were obtained for other seagrass species 

(Hall et al., 2006; Campbell, 2003). To date, estimates of seagrass fragments’ dispersal 

distance extend from about 150 km for Zostera marina (Källström et al., 2008), 250 km for 

Halodule wrightii (Hall et al., 2006), up to more than 1,200 km for Zostera noltii (Berković et 

al., 2014), all assuming a dispersal period of one month. In addition, dispersal via plant 

fragments in some species can last even longer than one month (Berković et al., 2014). 

While some studies through indirect observation conclude that LDD via plant fragments 

does happen in seagrasses (Di Carlo et al. 2005, Hall et al. 2006; Harwell and Orth, 2002), 

insufficient attention has been given to its  success and consequences (Campbell, 2003; 

Kendrick et al., 2012). Furthermore, it is still a matter of debate whether the success of the 

re-establishment of dispersed fragments is high enough to be relevant for the species’ life 

history. Some authors argue that these events are unlikely to succeed and happen too rarely 

to effectively contribute to species spread and establishment in new areas (Ewanchuk and 

Williams, 1996), at least across large spatial distances in one step (Arnaud-Haond et al., 

2012). Although few studies discussing seagrass dispersal strategies overlooked the 

possibility of fragment detachment and settlement, near or far from the point of origin, or 

just vaguely mention it (Olesen et al., 2004; Virnstein and Hall, 2009; Harwell and Orth, 

2002), others concluded that long distance dispersal (LDD) is the most parsimonious 

explanation for species’ distribution and sudden expansions (Hall et al., 2006). Campbell 

(2003) observed fragments of two Posidonia species, P. australis and P. coriacea, 

establishing in bare sediments, but only P. australis fragments were noted to grow after 

establishment. An experimental study by Hall and colleagues (2006) with Halodule wrightii 
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and Halophila johnsonii revealed that both species’ detached plant fragments have the 

potential to successfully establish after a period of floating. In brief, although (LDD) in 

marine plants has been observed (Harwell and Orth, 2002; Hall et al., 2006), our 

understanding of its effectiveness requires further experimental evidence that fragments 

can settle and survive after the transfer phase.  

Here, we test if successful establishment after the transfer phase of dispersal 

supports the hypothesis that vegetative fragments are a relevant dispersal propagule type 

for the dwarf eelgrass Zostera noltii. We quantified the survival of vegetative Z. noltii 

fragments after the 10 weeks dispersal period, and their post-dispersal settlement success, 

i.e. rooting and growth, for different plant fragment sizes and dispersal regimes. We 

mimicked the process in which the plant fragments get entangled while dispersing via 

floating on the sea surface or drifting along the bottom in shallow waters.  

 

3.2. Material and methods 

 

Fragments of Zostera noltii plants were collected during a low tide in a natural 

intertidal meadow in one of the main channels in Ria Formosa lagoon, South Portugal, close 

to the Ramalhete field station of University of Algarve (37.00°N, 7.97°W). Plant fragments 

were maintained in mesocosm facilities in the Ramalhete field station under controlled 

conditions. They were placed in outdoor tanks (550 L) with low seawater renewal, shaded 

with plastic mesh to avoid overheating. The experiment was conducted in spring 2013 

(March-June), during the Z. noltii growth season in this region (Peralta et al., 2005).  

We collected over 600 fragments of Z. noltii with apical shoots: 350 small fragments, 

with three shoots, and approximately 250 large fragments, with six shoots (all with roots). 

All the plant fragments were manually uprooted from the sediment, carefully washed, 

measured, individually marked with a soft tag (tied coloured cotton threads) on the last 

(newest) internode and placed in the mesocosm facilities until further processing. During 

the course of the experiment, fragments were randomly selected from the mesocosm 

facilities according only to their original shoot number, and assigned to treatment groups. 

The experimental plots were set up nearby, in the bare sediment of an intertidal pool, 

partially covered by seagrasses and algae. Presence of seagrass in the pool was taken as a 
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proof of suitable seagrass habitat. We conducted a pilot study to select the methodology for 

samples placement in the field and tagging. The best approach for tagging was using a thin 

gardening wire (plasticized to avoid damage to the rhizome) twisted around the rhizome of 

the last internode into a tiny hook (3-5 mm in diameter), whose end was pushed to the 

sediment (Fig. 3.1). 

 

Figure 3.1. Gardening wire used to mark last internode of the Zostera noltii fragments in the 
experimental plot. 

In order to closely mimic the natural process of fragment entanglement we avoided 

planting the fragments under the sediment. Therefore we only fixed the plant fragments 

onto the bottom, adjusting the methods described by Fonseca et al. (1998). Fragments were 

held in contact with the sediment using pins made of 0.9 mm diameter plasticized wire, 

approximately 10 cm long and bent in half to take the shape of a hair pin (Fig. 3.2). These 

were placed over the rhizome and gently pushed into the sediment. 

 

Figure 3.2. Zostera noltii fragments held in contact with the sediment using plasticized wire 
pins (marked with red arrows). 
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During the weekly monitoring of the experimental plots, pins were checked and pushed 

back into the sediment if found dislodged or loosened. 

The experimental design consisted of four treatments, which differ in the dispersal 

regime they were exposed to, i.e. how long they were floating (F) and were in the contact 

with the sediment (S). We tested the effect of dispersal regime on survival and rooting with 

three groups of plant fragments exposed to 0, 2 and 4 weeks floating periods and only on 

survival for fragments which floated 10 weeks but were not placed in sediment afterwards. 

Additionally, we had a natural control group. Sixty large and sixty small plant fragments 

were randomly assigned to each group (Table 3.1), except for the control. For the control 

thirty apical shoots were selected, marked on the last (newest) internode, and their rhizome 

was cut approximately 4 cm from the apex without uprooting the plant. Length of the 

control fragments was chosen as an average length of all the sampled Z. noltii fragments (3 

and 6 shoots). 

Table 3.1. Naming of treatment groups and assignment of fragments by their size. 

 
Floating time 

(weeks) 

Time in 

sediment 
(weeks) 

No of small 

fragments 

No of large 

fragments 

Control NA 10 
40 intermediate size 

fragments 
F0S10 0 10 60 60 
F2S8 2 8 60 60 
F4S6 4 6 60 60 
F10S0 10 0 60 60 
 

Surviving plant fragments in the mesocosm were regularly cleaned from epiphytes, 

while the dead ones were quantified and removed. The tanks were cleaned weekly from 

algae growing on the sides and from shed leaves on the bottom. Salinity and temperature 

were controlled at every visit. Plant fragments in the field and in the mesocosm were 

monitored weekly for survival, rooting and growth of the rhizome.  

In the field, only the fragments which were clearly attached to the bottom (not 

floating after carefully removing the pin) were considered as rooted. The fragments that 

were not rooted or dead were quantified. A fragment was considered to be dead if it did not 

hold any living (green) shoots. At the end of the experiment, after 10 weeks, all the 

fragments in the field and in the mesocosm were collected carefully to avoid breaking and 

were transported in seawater to the laboratory for further analysis. 
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During the third week of the experiment, after the fragments of F2S8 groups were 

settled in the field, a sudden strong increase in number of crab holes and activity of crabs 

was noticed along the experimental plots (Berković and Gemelli, pers. observation). This 

was marked during the regular monitoring and the experiment was continued nevertheless.  

3.2.1. Survival and growth of fragments 

Survival of the plant fragments was expressed as 0 (dead) and 1 (viable) fragments 

at the end of the experiment. The ANOVA assumption of normality was not met so to test the 

effect of the two factors on survival we conducted Permanova in Primer (Clarke and Gorley, 

2006). This was preferred to analysis of deviance (binomial response and two factors as 

predictors, with binomial errors using a GLM) due to imbalanced groups. We define 

dispersal regime (FL) and size in number of shoots (SH) as two factors, both fixed. We ran 

9,999 iterations with unrestricted permutation of raw data. Then we used pairwise test both 

ways, with SH within FL and FL within SH, again with 9,999 iterations. Further we tested the 

independence of fragment size and dispersal regime using Chi square test on contingency 

tables using the frequencies of fragments that survived. 

Fragment growth at the end of the experiment was calculated for the surviving 

fragments. Part of the individual marks was not possible to reliably interpret, so the 

calculation was performed on group averages rather than per sample. All the initial lengths 

of the fragments in the group were averaged, and the same was done with the final lengths. 

These values were then used to calculate growth, in cm/day, following the formula: 

(AVG final length – AVG initial length) / number of days. 

This measure does not represent the actual elongation rate, as decay of fragments on 

their older end is accounted for as well. As observations were brought down to one 

averaged value, no statistical test was carried out. Same approach was used for growth in 

number of shoots. In this case both initial and final number of shoots for all the fragments 

was known, but considering very unbalanced number of samples in each group, again just 

the group average values were used to characterize the change in shoot number.  

3.2.2. State of the apical shoot and branching of fragments 

The state of the apical shoot was classified for survived fragments as follows: “main”, 

when the main rhizome axis had an intact apical shoot; “2nd apical”, if the apical shoot of the 

main rhizome was broken, but a branch with the respective apical shoot was present; and 
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“broken”, if the fragment did not have any apical shoots. State of the apical shoot is relevant 

for the architecture and growth of the plant. In Z. noltii, apical dominance strongly affects 

clonal architecture (Brun et al., 2007), restricting the branching and regulating the length of 

the internodes. First we tested for the effect of dispersal regime and initial fragment size on 

the damage to the apical shoot, noting whether the main apical shoot was damaged or not 

(binomial response). In the second analysis we looked at what happened to the fragments 

which had the apical shoot damaged – did the plant develop a new apical shoot or not 

(binomial response) given the same predictor factors. We used analysis of deviance, with 

binomial error terms (generalized linear model - GLMs) in R software (R Core Team, 2013) 

for both analyses. 

Initially all the plant fragments consisted of a single rhizome, without branches, so at 

the end of the experiment we could quantify branching which is relevant for clonal 

architecture and space occupation (Brun et al., 2007). The percentage of branching 

fragments and the number of branches per branched fragment was estimated from the total 

number of live fragments. In the first analysis, we only noted if the fragments branched, 

ignoring the number of branches. This was used to analyse the occurrence of branching. We 

used GLM with binomial error terms to model the effect of both variables dispersal regime 

(FL) and initial fragments’ size (SH) on the occurrence of branching, using R software (R 

Core Team, 2013). We tested if the initial fragment size had an effect on the occurrence of 

branching using a Mann-Whitney rank sum test because normality for t-test was not met 

(Sigmaplot v. 11 (Systat, San Jose, CA)). For the effect of treatment on the occurrence of 

branching we used Kruskal-Wallis one-way analysis of variance. In the second analysis we 

only included branching fragments and quantified number of branches per fragment. To 

analyse the number of branches produced per branching fragment we used the GLM in R. 

3.2.3. Biomass analysis 

The ratio of above: below ground biomass indicates the stage of establishment of 

newly settled or colonizing fragments (Martins et al., 2005; Cabaço et al., 2012). We looked 

at the biomass only of the plant fragments with apical shoots (“main” or “2nd apical”), which 

can potentially grow. Biomass was measured by drying the separated plant compartments 

(leaves, rhizomes and roots) at 60°C for 48 h, and weighting them (0.001 g precision). The 

biomass of living fragments without an apical shoot (“broken”) was not estimated, because 

the fragments were not entire. The plants’ dry weight was used to assess the biomass 

allocation in each compartment and to calculate the ratio of aboveground (leaves) to 

belowground (rhizomes and roots) biomass (A:B ratio). Since only surviving fragments with 
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present apical shoots were used, groups were strongly imbalanced, so we opted to interpret 

these data without conducting statistical tests.  

 

3.3. Results 

 

3.3.1.  Survival and growth of fragments 

The highest survival at the end of experiment, after 10 weeks, was observed for the 

group without a floating period in the dispersal regime and with larger initial fragment 

size - F0S10 6 shoots (100%). The second highest survival was observed for the control 

group (80%). The remaining fragments, exposed to dispersal regimes with floating periods 

of 2, 4 and 10 weeks, i.e. groups F2S8, F4S6 and F10S0 of 3 and 6 shoots, had lower survival 

ranging from 7 to 44% (Fig. 3.3 a). Overall, initial larger plant fragments had significant 

higher survival in relation to the smaller ones, 51% versus 19% (t-test, p<0.001). The two 

factors (SH and FL) were related (chi-square, p<0.001) and an interaction plot showed that 

survival of initially larger fragments (6 shoots) was always higher than that of smaller ones 

(3 shoots) but the effect of size was dependent on the level of dispersal regime treatment 

(Fig. 3.3 b). Strong decrease in survival was visible for the larger fragments (6 SH) if they 

were exposed to a floating period in the dispersal regime, but the duration of the floating 

period, if there was one, had a weak effect on the survival of larger fragments. In the case of 

smaller fragments (3 shoots), highest survival was observed for the group which wasn’t 

settled on the sediment, but was left floating during whole 10 weeks. Overall average 

survival of fragments was over 34%. 
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Figure 3.3. (a) Survival percentage of small (3 shoots) and large (6 shoots) Zostera noltii 

fragments, after 10 weeks. (b) Interaction plot for the two levels of size factor SH (3 and 6) 
and 4 levels of dispersal regime factor FL (F0S10, F2S8, F4S6, F10S0). 

The first rooted plants were found two weeks after planting, in group F0S10, for 

which more than half of the larger plants were rooted. The first plants to root in group F2S8 

were observed three weeks after the settlement and in group F4S6 one week after 

settlement in the sediment. 

Surviving plants showed a positive change in rhizome length for both groups of 

treatment F0S10, and for smaller fragments’ in F2S8 and F10S0 treatments. All other groups 

had a negative change rate (Fig. 3.3 a). A different pattern was observed for the change in 

number of shoots, where most groups had positive change, while F2S8 6 shoots and both 

fragment sizes in the group F10S0 had negative changes (Fig. 3.3 b). 
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Figure 3.4. Change of rhizome size of Zostera noltii fragments for small (3 shoots) and large 
(6 shoots) fragments (a) expressed as cm per day and (b) expressed as number of shoots 

per day. 

3.3.2. State of the apical shoot and branching of fragments 

The main apical shoot remained intact in more than 70% of surviving plant 

fragments. When the main apical shoot was broken, a 2nd apical shoot was present in 

approximately 60% of cases. Almost all of the control plants and the F10S0 group had the 

main apical shoot intact (Fig. 3.3). The effects of initial fragment size and of the dispersal 

regime were non-independent (GLM, p<0.001). Initially larger fragments generally 

sustained less damage and recovered in more cases than the initially smaller ones. 
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Figure 3.5. State of the apical shoot of small (3 shoots; columns on the left side of each pair) 
and large (6 shoots; columns on the right side of each pair) Zostera noltii fragments. 

Branching was highest for the fragments without floating period (F0S10); 45% of 

surviving fragments developed at least one branch. None of the surviving plants that were 

floating during the whole experimental period (F10S0) had any branches, i.e. branching was 

only observed for fragments which were settled in the sediment. For the other groups we 

observed branches on 20-30% of the surviving fragments. GLM didn’t indicate interaction 

(p>0.05). Fragment size clearly affected the branching – larger fragments developed 

branches more often compared to the smaller ones (10% versus 34%; Mann-Whitney, 

U=33.88, p<0.001). Dispersal regime treatment had effect on branching but only F10S0 

treatment was significantly different from all the others (Kruskal-Wallis, H=37.1263, df=3, 

p<0.001), but there was no effect on branching when the F10S0 group was omitted from the 

analysis (Kruskal-Wallis, H=5.8732, df=2, p=0.053). GLM didn’t indicate interaction between 

the factors for the analysis of number of branches (p=0.823). The number of branches per 

branching fragment varied between 1 and 2, and it was independent of the dispersal regime 

treatment (Kruskal-Wallis, H=5.50845, df=2, p=0.064), but was dependent on the initial size 

of the plant fragments (Mann-Whitney, U=72.00, p<0.02). Fragments with initially three 

shoots developed one branch per fragment, and fragments with initially six shoots 

developed about two branches.  
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3.3.3. Biomass analysis 

The higher establishment of rhizome/root biomass relative to leaves (A:B ratio) 

occurred in smaller fragments of dispersal regime without the floating period (F0S10) in 

contrast to the smaller fragments with shortest possible period in sediment (F4S6). Overall 

larger fragments (6 SH) had more stable a:b ratio, changing little across the treatments (Fig. 

3.4). The control group had an A:B ratio of 0.7 (not shown). 

 

Figure 3.6. Ratio of aboveground to belowground biomass for small (3 shoots) and large (6 
shoots) Zostera noltii fragments for four treatments at the end of the experiment.  

 

3.4. Discussion 

 

This study showed that fragments of Zostera noltii had on average 34% survival 

after dispersal, reaching 100%, depending on the occurrence of the floating period in the 

dispersal regime and the initial fragment size. Adding to the previous findings of prolonged 

viability and growth of detached fragments (Berković et al., 2014), these results support the 

hypothesis that fragment dispersal and establishment is conceivable and can be a relevant 

life history trait in dwarf eelgrass.  

In our study, survival of the settled seagrass fragments was affected by the presence 

or absence of the floating period, but not by its duration. Fragments that were uprooted and 
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settled immediately after processing (measuring and tagging) showed the highest survival, 

apparently even higher than control ones. This might have been the result of increased 

space availability, also supported by the branching patterns of these fragments, which were 

the highest among all the treatments. The large fragments (6 shoots) that floated for two 

weeks prior to settlement (F2S8) showed low survival rates. We observed a bioturbation 

disturbance in days immediately following the settlement of these fragments in the field: a 

sudden increase in number of crab (Carcinus maenas) holes in the area, which after an initial 

peak started disappearing and finally almost completely vanished over the course of 3 

weeks. This could explain the low survival of the plant fragments set in that period. Even 

though crabs do not directly feed on the seagrass their presence may cause the uprooting of 

plants (by adult individuals) and cutting of sections with basal meristems (by juveniles), 

posing measurable damage to the seagrass meadow (Malyshev and Quijón, 2011; Garbary et 

al., 2014). Moreover, these fragments had the highest damage of the apical shoots among the 

large fragments (reaching almost 70%).  

The observed discrepancy in growth response metrics between measurements in 

cm/day or in shoots/day is probably a consequence of the unbalanced growth patterns in 

the two ends of plant fragments. Namely, the apical growth and production of shoots with 

shorter internodes on the younger end of the fragment was not synchronised with the 

dwindling of the longer internodes in the older part of the fragment. This indicates that if 

the apical part of the rhizome is intact, then the fragment can still successfully establish, 

even when the plant fragment is seemingly shortening. 

The methodology used to evaluate the rooting success of the plant fragments was 

conceived to avoid damage to the fragments in the experimental plot. As a consequence of 

this we could only obtain a conservative evaluation of the rooting process, as only the 

fragments clearly visibly rooted were considered as such. We believe this led to an 

underestimation of the time necessary for rooting initiation. In general, we can infer that 

fragments required more time to root if they were exposed to a period of floating prior to 

settlement. Once settled they can take between one to three weeks to root. 

Increasing relative belowground biomass is related with the level of success in 

seagrass establishment after transplants to a new area (Martins et al., 2005) and the same 

association is also seen in natural colonizing meadows (Cabaço et al., 2012). In our study, 

control plants had an A:B ratio similar to the established Z. noltii meadow in the same 

lagoon and at the same time of the year, 1.7 and 1.6 respectively (Cabaço et al., 2012). With 

the exception of fragments in F0S10 3 shoots group, the A:B ratios estimated for the 



80 

 

experimental plant fragments in this study ranged between 0.2-1.2. They were therefore 

generally lower than those in the natural meadows in the same lagoon (Cabaço et al., 2012) 

and those measured elsewhere for Z. noltii (1.2; Duarte and Chiscano, 1999). This leads us to 

conclude that uprooting of the plants alone, rather than the dispersal regime, induces the 

colonizing-type response in the Z. noltii plants. The ratio found in this study for the plant 

fragments which were still floating at the end of the 10 weeks experiment, and were not set 

in the contact with the sediment, matched that of the colonizing meadows (0.6; Cabaço et al., 

2012), indicating that those plants might still be fit enough to initiate growth and space 

occupation if set in the contact with sediment. It is possible that further decrease of the 

belowground biomass may lead to the loss of stored carbon necessary for the success of the 

settled plants (Zimmerman et al., 1995). 

We show that the settlement of floating fragments in bare sediment can be 

successful and lead to the establishment of the plants after asexual fragment dispersal. Some 

freshwater plant species also settled and successfully re-established within a 10 week-long 

experimental period (Barrat-Segretain et al. 1998). Besides the settlement in new, bare 

areas, seagrass fragments can also settle within the already established meadows, adding to 

the local genetic pool. Ewanchuk and Williams (1996) reported the entanglement of Z. 

marina fragments in the canopies of the established meadows, and growing of their roots 

towards the sediment. Such situation could be equally possible for Z. noltii fragments. In our 

particular study area, tidal movements, bathymetry of the lagoon and the current Z. noltii 

distribution probably even increase the chances of fragments settling in this way.  

This study supports our hypothesis that the post-dispersal establishment of Z. noltii 

fragments is indeed possible. We also consider the probability and success of this event to 

be relevant for the species’ persistence in the lagoon. To evaluate the occurrence of this 

process in our study area, we estimated the number of Z. noltii fragments settled along the 

shores of the channels in the Ria Formosa lagoon. Covering various types and orientations of 

the shore we focused on Z. noltii fragments with a minimum of two shoots, recently broken 

(evaluated based on the necrosis of the tissue) and stuck in the sand (partially buried) 

during the previous day and found on average 1 shoot/m2 of  intertidal area of Ria 

Formosa's channels. We used the available literature data on the seasonal variation in the 

production (Cabaço and Santos, unpublished data), coverage of Z. noltii (Guimarães et al., 

2012) and meadow density (Alexandre et al, 2005) and quantified the area new recruits 

could occupy based on the results of this study. In each step of calculation we opted for the 

most conservative assumptions and simplifications which we made, i.e. we assumed 
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fragments only settle along the main channels, excluding most of the intertidal area; we 

didn’t consider growth or production of new shoots during the one year period and 

assumed uniform density of the new meadow. This calculation showed that conservatively 

we could expect over 68 ha of established fragments each year, representing about 5% of 

current Z. noltii coverage in the lagoon. Because of the above mentioned assumptions this 

final result might be an underestimation of the real value. We suggest that future studied 

should focus on measuring each of the necessary variables needed to provide more accurate 

estimates. Information on the capacity of the system to maintain or even spread is valuable 

for both the managers of the Natural Park and other stakeholders involved in the use and 

management of the lagoon area where seagrass meadows are frequently subjected to 

natural and anthropogenic disturbance (Cunha et al., 2013).  
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Abstract  

Clonality occurs in many species and the dispersal role of clonal reproduction is 

diverse, resulting in dispersal distances from a few centimetres to thousands of kilometres. 

In this study we use genetic data to describe the clonal structure of seagrass meadows along 

tens of km within a coastal lagoon and we relate it to dispersal processes. We employed a 

spatially explicit individual based random sampling design for Zostera noltii, across an 

unprecedented extent (84 km2). Within the 3,185 genetic samples (63% distinct clones) we 

identified 1,999 unique multi-locus genotypes using nine microsatellite markers, showing 

many clones separated by distances as large as the available habitat in the Ria Formosa 

lagoon (sampled distance up to 26.4 km). To evaluate the possible contributions of dispersal 

versus clonal growth we estimated clonal age assuming no long-distance dispersal, as if 

rhizome elongation was the sole spreading means for clones. For this, we iteratively 

corrected age estimates by combining sampling locations with spatially explicit sea-level 

data for the time the clone would have been initiated. The majority of the tested clones were 

found to be over 20, even 40,000 years old, leading us to conclude that more likely 

explanation of the observed clonal structure needs to include long distance dispersal of 

asexual propagules, bringing the necessary timescale to tens or hundreds of years. The same 

analysis was completed for the sympatric seagrass Cymodocea nodosa, where estimated age 

surpassed 53,000 years, supporting similar conclusions as for Z. noltii, that clonal dispersal 

by rafting fragments is necessary to explain the spatial extent of this clone.  We also studied 

the association between a source of disturbance (i.e., factors that cause biomass removal) 

and increased clonal richness at the landscape scale. Modelling the probability of finding 

each multi-locus genotype at a minimum of 5, 10 and 15 times in the sample produced a 

probability map which revealed higher probabilities to sample large clones away from the 

source of disturbance. This result shows that disturbance is associated to reduced 

population clonality. 

 

Keywords: asexual dispersal, long distance dispersal, clonal reproduction, seagrass, 

microsatellites.  
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4.1. Introduction 

 

Clonal organisms are widespread throughout all domains in the Tree of Life, 

including multicellular eukaryotes (e.g., about 45% of vascular plant families exhibit some 

type of clonality (Tiffney and Niklas, 1985), while this proportion is over 70% in animal 

phyla (Hughes, 1989), but only 0.1% in vertebrates (Avise, 2008)). Most eukaryotic clonal 

organisms are also capable of reproducing sexually. The circumstances under which 

organisms benefit from sexual or asexual reproduction and how both systems are 

maintained have been the focus of much study and debate in evolutionary biology (Barton 

and Charlesworth, 1986; Butlin, 2002; Silvertown 2008). Besides the evolutionary 

advantages of sexual reproduction that are relevant at the population level, sexually derived 

bodies (gametes or pollen, zygotes, seeds, larvae) are often thought of as the relevant 

dispersal propagules mediating gene flow within and between populations, an added 

component to the list of important life history traits associated with sexual reproduction. 

Some of the strategies advanced to justify asexual reproduction are generally constrained to 

the population spatial limits. For example, resource foraging through clonal extension, 

physical and physiological integration and population maintenance under mate limitation. 

In literature, rhizome extension within the population is often the single component of 

asexual dispersal accounted for (Gliddon et al., 1987, McMahon et al., 2014). However, 

efficient asexual dispersal is sometimes considered an important trait explaining the rapid 

and successful spread of invasive species, allowing successful colonization of distant regions 

by a single or few founder individuals, and permitting populations to colonize habitats 

where sexual reproduction is physiologically affected (e.g., Tatarenkov et al., 2005).  

Clonal reproduction can take many forms and display a wide spectrum of processes 

(Sibly and Calow, 1982; Fischer and van Kleunen, 2002; Halkett et al., 2005; Cornelissen et 

al., 2014) that can result in dispersal distances from a few centimetres to thousands of 

kilometres. In sessile clonal organisms, a necessary condition for an asexual propagule to 

escape its population boundaries and the classical modular replication pattern is the 

production, separation or fragmentation of independent units. Throughout this study we 

use the term asexual as used in Judson and Normark (1996) including, among others, 

vegetative propagation. Effective asexual dispersal can be generally characterized by a three 

stage process. First, separation from the established clone, second, a transport period during 

which the propagule remains viable, and finally, the capacity for settlement and growth at a 
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different location. This is different from the estimation of clonal dispersal as the clonal sub-

range that includes clonal growth without separation (Alberto et al., 2005). 

Although the separation of vegetative tissue and re-establishment in a new location 

has long been used by humans in agriculture and horticulture (asexual propagation), the 

success of this process in natural conditions is unclear, mainly due to dependence on 

becoming reattached or reburied at a new site by natural processes (but see for ex 

Tatarenkov et al., 2005). Separation of parts of an organism can be deliberate (Oróstica et 

al., 2012) or accidental (Balestri et al., 2011), forming a fragment or propagule. The 

potential to produce fragments or sustain breakage has been observed and demonstrated in 

a number of animal and plant species (e.g., Crump and Barker, 1985; Wulff, 1991; Sand-

Jensen et al., 1999; Smith and Hughes, 1999; Karako et al., 2002). The transport phase of 

asexual dispersal in nature is often difficult to track, due to practical limitations to observe 

or experimentally test propagule dispersal, particularly long distance dispersal (LDD). Some 

authors argue that in case of clonal propagation these distances should be smaller in 

comparison to those of sexual propagules (Eckert, 2002 and references therein). Some 

studies have been relying on modelling this process in order to evaluate its occurrence, 

extent and success (Le Corre et al., 1997; Austerlitz and Garnier-Géré, 2003; Viana et al., 

2013). Settlement of the dispersed asexual propagules has been confirmed in several taxa: 

plants in lentic habitats (De Meester et al., 2002), in streams (Sand-Jensen et al., 1999; Riis 

and Sand-Jensen, 2006), marine macrophytes (Ceccherelli and Piazzi, 2001; Tatarenkov et 

al. 2005), freshwater bryozoans (Freeland et al., 2000), moss (Cleavitt, 2002), sea anemones 

(Ayre, 1984), corals (Jackson, 1986; Smith and Hughes, 1999) and sponges (Wulff, 1991), 

among others. Post dispersal establishment of fragments of submerged freshwater 

macrophytes is well supported (Johansson and Nilsson, 1993; Sand-Jensen et al., 1999; 

Boedeltje et al., 2003). Studies which looked into this process in marine macrophytes 

reported on its success (Mshigeni, 1978; Ceccherelli and Piazzi, 2001; Tatarenkov et al., 

2005; Zhang et al, 2011; Umetsu et al., 2012). Meanwhile, in seagrass research no consensus 

has been reached on the relative success and importance of post dispersal settlement of 

fragments, although some degree of fragment dispersal was necessary to explain the 

distribution of very large clones along areas where seagrasses could not have persisted 

during the low sea levels of the most recent glacial period (Arnaud-Haond et al., 2012).  

Seagrasses are marine plants relying on both clonal growth and sexual reproduction 

to extend their coverage in the habitat or to occupy new ones. Clonal propagation allows for 

space occupation with lower mortality than observed for seedlings, because the structural 
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integration of rhizomes within a clone ensures resource circulation (Marbà et al., 2002) and 

promotes resilience by stabilizing the sediments. Dispersal of sexual propagules on their 

own in the marine environment can often have a limited extent (Orth et al., 2006 a), 

although long distance dispersal of seeds transported by reproductive structures or 

fragments floating in the current is likely (Harwell and Orth, 2002; Källström et al., 2008; 

Erftemeijer et al., 2008; Orth et al., 1994; McMahon et al., 2014). Thus, studies on seagrass 

dispersal tend to focus their attention mainly on seed dispersal, while asexual dispersal is 

mainly associated with clonal propagation within the local population (e.g., rhizome 

elongation). 

Production of seagrass fragments is common across species regardless of their size 

or habitat and can be a natural or human-induced process (Silberhorn et al., 1983; Cabaço et 

al., 2005; Balestri et al., 2011). The transport of such fragments has been mentioned for the 

first time in 1908 (Harwell and Orth, 2000) and has since been implied as the most 

parsimonious explanation for the occurrence of new seagrass patches in previously 

unoccupied areas (Hall et al., 2006; Diaz-Almela et al., 2008; Virnstein and Hall, 2009) or as 

a transport vector for seeds (Erftemeijer et al., 2008). Berković et al. (2014) experimentally 

provided strong evidence for long viability of seagrass shoots, and seeds carried in them, 

during the transport phase of Z. noltii fragments. But until today, only a few studies tried to 

quantify the success rate of fragment establishment after the settlement. Berković et al. 

(Chapter 3 of this thesis) showed post dispersal successful settlement in Z. noltii to be 

biologically relevant, as it can range between 30 and 100% depending on the size of the 

fragment, the time spent floating in the water surface and the time after settlement. Hence, 

studies that have looked at dispersal in seagrasses (Ewanchuk and Williams, 1996; Hall et 

al., 2006; Virnstein and Hall, 2009; Berković et al., 2014; Chapter 3 of this thesis) indicate 

that at least some species have the potential to disperse and maintain populations via 

vegetative fragments’ dispersal and settlement. From these studies it is clear that dispersal 

(as in the transport with potential for gene-flow, sensu Ronce, 2007) of seagrass fragments 

does happen in natural systems. Still, with just few studies focusing on the final stage of 

asexual dispersal in seagrasses, researchers debate over its importance. While one group of 

authors argues that seagrass fragment dispersal and establishment is an important process 

(Hall et al., 2006; Diaz-Almela et al., 2008; Virnstein and Hall, 2009; Berković et al., 2014; 

Chapter 3 of this thesis; Stafford-Bell et al., 2015), others, although acknowledging the traits 

that allow for asexual LDD, consider it irrelevant, unlikely or with low frequency (Ewanchuk 

and Williams, 1996; Arnaud-Haond et al., 2012; McMahon et al., 2014).  
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The use of hyper-variable genetic markers (e.g. microsatellites) in the last 15 years 

has increased our knowledge on the spatial patterns of clonal structure. However this 

increased capacity to reveal organismal life-history has not been put to use to test asexual 

LDD. Unbiased genetic identification of the same clone sampled across distant locations has 

been explained as a result of rhizome elongation (Reusch et al., 1999). From this 

assumption, clone age estimation based on available rhizome elongation rates is likely to 

lead to overestimated ages as LDD is overlooked. Growth rates of seagrasses show great 

variability between and within the species (Marbà and Duarte, 1998). Reported growth 

rates largely depend on the area, season and duration of the study (Tab.S1. in 

Supplementary material). Accordingly, some seagrass species are mentioned among the 

oldest organisms on the planet. Estimated ages of hundreds to thousands of years or 

possibly even older in the case of Posidonia oceanica (Arnaud-Haond et al., 2012) or on the 

scale of a thousand years for Zostera marina (Reusch et al., 1999) have been advanced. Few 

of these studies have been done for small seagrass species which tend to have faster growth 

rates and lower clonal integration (Marbà et al., 2002). These revealed much younger ages, 

e.g., from clone of Zostera noltii at Odessa city beach was found to be between 35 and 70 

years old (Coyer et al., 2004) to Thalassia testudinum along Atlantic coast of Mexico reaching 

about 600 years (van Dijk and van Tussenbroek, 2010). We argue that when estimating 

clone age using this approach, researchers should first try to falsify the hypothesis of 

asexual LDD, avoiding overestimating age by orders of magnitude.  

Studies aimed at understanding the natural occurrence of effective asexual dispersal 

should complement experimental and population genetic approaches. However, most 

sampling designs used in population genetics are compromised in their capacity to reveal 

asexual LDD. When the focus is on comparing different populations most studies still follow 

a population based sampling. Arbitrarily defined populations are sampled in clusters, often 

with fewer than 50 sampling units, and leaving a large proportion of unsampled habitat in 

between. When the focus is on within population processes, like in fine spatial scale genetic 

structure analysis, sampling densities are higher but the spatial extent of the sample is 

inherently very limited. To circumvent these limitations the individual based, spatially 

explicit sampling design, common in landscape genetics (Manel et al., 2003), should be used. 

In this design, sample units are collected randomly or stratified over the entire habitat 

under study. Such a strategy, if including a very large sample size, increases the chance of 

sampling multiple ramets of the same clone spread over large distances in a continuous or 

disjunctive mode. This sampling design has not been applied in studies of sessile clonal 

organisms, or used with limited spatial extent.  
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Besides asexual dispersal, other important questions in the evolution and 

maintenance of sexual and asexual life histories may also be facilitated by using a landscape 

genetics sampling design. The conditions that might lead to allocation to one or the other 

reproduction mode are the focus of many studies (Abrahamson, 1975; Douglas, 1981; 

Silvertown, 2008 and the references therein). The results are often conflicting and largely 

context specific, requiring detailed analyses instead of simplified generalizations. Most of 

these studies are population based; their power to test associations between direct, or 

indirect, measures of reproductive effort and putative predictors of reproductive response 

would benefit from sampling both dependent and independent variables over larger spatial 

extents. Still, a few generalizations can be made in some taxa about the factors controlling 

reproductive effort. For example, in seagrasses and other aquatic plants, sediment burial 

and erosion leads to increased shoot mortality (Trémolières, 2004; Cabaço et al., 2008) and 

a higher proportion of the organism's energy tends to be allocated to sexual reproductive 

effort in more disturbed or stressful environments in seagrasses (Alexandre et al., 2005; 

Cabaço and Santos, 2012). Nevertheless, higher sedimentation rates or movement of 

sandbanks, have also been shown to enhance clonal growth to outgrow the impacted area 

(Marbà and Duarte, 1994). Another hypothesis advanced to explain variable allocation to 

sexual and asexual reproduction is the intermediate disturbance hypothesis, rooted in 

ecological theory (Connell, 1978). According to this simple model, higher species diversity 

should be observed at intermediate levels of disturbance. For the genetic diversity of 

partially clonal organisms this translates to a disturbance mediated increase in available 

space, promoting sexual reproduction and higher clonal diversity (Weider, 1992; Reusch, 

2006). Complementary genetic analysis can be used to understand if field measured 

reproductive effort translates into effective sexual recruitment by estimating genotypic 

richness (the proportion of different clones in the sample). This type of analysis has 

revealed contradictory evidence (Arnaud-Haond et al., 2010, Oliva et al., 2014) and is 

complicated by the maintenance of genotypic richness in the population even when sexual 

recruitment is rare (Eriksson, 1993) and by its dependency on sample size (Arnaud-Haond 

et al., 2007). Again, increased power from sampling larger spatial extents and new statistics 

to measure effective reproductive effort should help testing these associations. 

In this study, we used an individual based sampling design, across an unprecedented 

spatial extent, to study the clonal structure of the seagrass Zostera noltii. Given previous 

experimental work supporting the capacity for asexual LDD in this species (Berković et al., 

2014; Chapter 3 of this thesis) we used nine microsatellite markers to unambiguously 

characterize genetic identity of ramets sampled across tens of km. We show that many 
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clones are found separated by distances as large as the available habitat in the Ria Formosa 

coastal lagoon. This sampling design also made it possible to test the association between a 

source of disturbance and increased clonal richness at the landscape scale. 

 

4.2. Materials and methods 

 

4.2.1. Study site 

This study was carried out in the Ria Formosa lagoon, in the south of Portugal (37°N 

8°W). This intertidal lagoon extends roughly 55 km along the mainland and is 6 km across 

its widest point, with an average depth of about 2 m and low fresh water input. Separated 

from the ocean by five islands and two peninsulas, it consists of a complex set of channels, 

mudflats, saltmarshes and highly dynamic sand barrier islands. Up to 80% of water is 

exchanged with the open ocean in each tidal cycle. At the spring tides an average of 84 km2 

are under the sea level, but just about 12.5 km2 are permanently flooded, while up to 67 km2 

are exposed on spring low tides (Andrade et al., 2004). Intertidal mudflats are inhabited by 

seagrass Z. noltii. Subtidal areas are habitat of other two seagrass species Cymodocea nodosa 

and Zostera marina (Cunha et al., 2009). Inner channels of the lagoon are dredged along the 

main navigational channels, and throughout the lagoon there is intensive artisanal bivalve 

harvesting, especially clam digging along intertidal areas. Changes in the location and 

topography of channels and sand barriers affect the intertidal population of Z. noltii, 

sometimes causing extinction, migration or colonization of patches (Cunha et al., 2005). 

Hydrological and geomorphological dynamics of the system are hence an additional force 

shaping the population genetics of Z. noltii within the lagoon. 

4.2.2. Study species 

Zostera noltii is a small seagrass species distributed along central/southern Europe 

and NW Africa (Kuo and den Hartog, 2001). In the Mediterranean, as well as in neighbouring 

seas (Green and Short, 2003), it is mostly found in the shallow subtidal, with lower shoot 

density, while the Atlantic meadows in most cases inhabit intertidal areas with high density 

(Marbà et al., 1996; Harrison, 1993; Green and Short, 2003). Z. noltii shows highly variable 

growth rates, but it is generally considered a fast growing species (Tab. 4.S1., 

supplementary material). Alexandre et al. (2006) reported frequent flowering and high 
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production of seeds in the Ria Formosa, for this monoecious species. Seeds can be released 

directly from the plant or can be transported attached to the flowering shoot (Moore and 

Short, 2006). Seed transport distance ranges from tens of cm, when released from an 

attached parental plant, to a couple thousand kilometres when transported by positively 

buoyant detached shoots and assuming unidirectional current flow (Berković et al., 2014). 

Detached positively buoyant fragments keep producing new shoots and can carry maturing 

seeds for more than 50 days (Berković et al., 2014). An experimental study on post-

dispersal settlement success, after a floating period of up to four weeks, demonstrated that 

these fragments once entangled are quickly buried and keep growing (Chapter 3 of this 

thesis).  

Z. noltii is the dominant seagrass species in the Ria Formosa lagoon, covering over 

13 km2 of the intertidal area (Guimarães et al., 2012). Populations of Z. noltii along the 

southern Iberian Peninsula occur in estuaries and coastal lagoons separated by stretches of 

unsuitable habitat, leading to significant population differentiation among them (Diekmann 

et al., 2005). Hence, for the purpose of this study, the Z. noltii population within the Ria 

Formosa lagoon can be considered a closed group, with negligible immigration.  

A part of the analyses pertaining to clone age estimation (see below) were also 

completed for the seagrass Cymodocea nodosa (Cymodoceaceae) in Ria Formosa. This is a 

dioecious species, which exhibits fast clonal growth. C. nodosa occurs throughout the 

Mediterranean basin and in the North Atlantic from central Portugal to Cap d’Arguin in 

Senegal, as well as in the Canary Archipelago and the Madeira Islands (Green and Short, 

2003). Barrio (pers. comm.) found that C. nodosa fragments have the ability to float and stay 

viable for over a month and when planted in the sediment exhibited the same growth rates 

as the non-floating fragments.   

4.2.3. Sample collection 

To maximize the chances of sampling the same clones at different distant locations 

we completed an extensive spatially explicit sampling design. We first randomly selected 

1,000 sampling coordinates within a 13 km2 area of Z. noltii meadows in the Ria Formosa, 

based on an available shape file georeferencing their distribution (Guimarães et al., 2012) 

across more than 84 km2 of the lagoon. Due to logistic constrains only 899 locations were 

visited, using boat, kayak and walking within the intricate saltmarsh channels. Z. noltii was 

found at 803 of these coordinates. At each location, 4 sample units were collected at the 

vertices of a 4 m2 quadrat. Each individual sample unit consisted of a single ramet with three 
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to four shoots connected by a horizontal rhizome, to ensure that all the tissue belonged to 

one single genet. Thus, a total of 3,212 individual ramet sample units were sampled. Each 

sample was individually labelled and stored in separate sampling bags. Back in the 

laboratory, samples were carefully washed in fresh water, dried on paper and stored dry 

with silica gel. 

The C. nodosa data treated here were collected as part of a previous studies (Alberto 

et al., 2001; Alberto et al., 2008) and consisted of a smaller number of sample units (N=176) 

collected across 11 arbitrarily defined sites distributed over 75 km2 of Ria Formosa.  

4.2.4. Genetic analysis of clone identity 

Genomic DNA for all ramets sampled was isolated from silica dried tissue (5-10 mg) 

using an adaptation of the CTAB method (Doyle and Dickson, 1987). All Z. noltii samples 

were genotyped for nine microsatellite loci (Coyer et al., 2004) using fluorochrome-labelled 

primers on a GeneAmp2700 thermocycler (Applied Biosystems, Foster City, CA, USA). An 

ABI PRISM 3130xl DNA analyser (Applied Biosystems) was used to determine the size of 

amplification products (i.e., microsatellite alleles) against a standard (GeneScan 500 LIZ, 

Applied Biosystems). Raw fragment sizes were scored using STRand v.2.4.59 

(http://www.vgl.ucdavis.edu/informatics/strand.php), and inspected for quality and 

binned into allele classes using the R (R core team 2013) package MsatAllele (Alberto et al., 

2009). Details on C. nodosa microsatellite genotyping can be found in Alberto et al. (2008). 

Observed identical multilocus genotypes (MLGs) can either be the result of sampling 

the same clone/genet twice, or two different genets originated by two distinct sexual 

reproduction events but sharing the same alleles for all genotyped loci (Arnaud-Haond et 

al.,2005). The probability of encountering the latter depends on the discriminatory power of 

the set of microsatellite markers used (number of loci and their polymorphism). To ensure 

our clonal assignments were reliable, we estimated the probability of a given multilocus 

genotype occurring n times as a consequence of different sexual reproduction events (Psex), 

according to Parks and Werth (1993). Detailed description of Psex estimation and genet 

assignment using an appropriate set of markers is reported elsewhere (Arnaud-Haond et al., 

2005). In brief, Psex is the probability of finding g repetitions, or less, of a previous 

encountered MLG in a set of N sample units, under the null hypothesis that all MLG in the set 

were produced by independent sexual recombination. Rejecting this null hypothesis 

supports an alternative that identical MLGs are present in a sample because the same clone 

was sampled twice or more times. We calculated Psex using custom written R code, because 
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of sample size limitations (N<=500) in the available software (Arnaud-Haond and Belkhir, 

2007). 

4.2.5. Estimating clonal age using rhizome elongation rates 

Typically, a seagrass individual’s age is estimated assuming that the sampled spatial 

extent of a clone was the result of rhizome elongation alone. Using this approach the 

observed distance between sampled clonemates (samples belonging to the same MLG) is 

simply divided by the distance horizontal rhizomes can elongate on average during one year 

(Reusch et al., 1999, Arnaud-Haond et al., 2012). Here we use a similar strategy, but 

iteratively correct age estimates by combining sampling locations with spatial explicit sea-

level data for the time the clone would have been initiated (i.e., subtracting clone age from 

present time). 

Once clonal assignment was determined, we calculated the distance between each 

pair of clonemates belonging to the same genet. This was achieved using the sampling 

coordinates and the distVincentyEllipsoid function in the geosphere R package (Hijmans et 

al., 2012). The resulting distance is an “as the crow flies” distance, i.e., shortest distance 

between the two points on the ellipsoid, not considering possible land obstacles on the way, 

such as saltmarsh banks that never get submerged. The longest distance between a pair of 

clonemates of the same genet was used to define a minimum (i.e., sampled) span for that 

genet. For the purpose of the following methodological description we shall refer to these 

points as A and B.  

We estimated the age for all clones sampled multiple times in the following way: 

First, assuming a conservative approach we assumed that the clone initiated growth at some 

middle point (O0) between A and B. Thus, an initial estimate of clone age (t0) was calculated 

by dividing the distance from O0 to A (half the clone’s span) by Z. noltii growth rate. We used 

a mean rate of rhizome elongation of 68 cm/year for Z. noltii. This was extracted from data 

published in a review (Marba and Duarte, 1998), including studies from different areas and 

seasons. We chose to use species’ distribution wide data, instead of estimates for our study 

area. The rationale was that this is a better representation of growth rate variation through 

time, reflecting likely changes in habitat and climate. The rhizome elongation rates reported 

in (Marba and Duarte, 1998) ranged from 10 to 157 cm/year, encompassing the observed 

rates in Ria Formosa (Tab. 4.S1.). The above methodology to age clones assumes asexual 

LDD to be impossible, because otherwise age estimation is unworkable. 
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The estimated age of these clones was then matched with sea-level change 

reconstruction. The above estimated clone’s age, was used as an initial estimate of how 

many years before the present the clone could have originated (t0) at the point O0. Using 

published paleoceanographic data on sea-level change in the Southern Portugal (Dias et al., 

2000.) and the current bathymetry, we mapped sea level changes over the past 20 000 

years. This map was then used to verify if the origin point O0 was, at time t0, in suitable 

intertidal habitat (i.e. shallow coastal zone). If O0 was indeed in the coastal zone we assumed 

this to be the final age estimate. If on the contrary O0 was above sea level we moved it to the 

closest coast line, again placing the point at an intermediate distance from A and B, and refer 

to this new point as O1. Then we measured the distance to the points A and B and used this 

distance to update the age of the clone (t1). We repeated the above process, verifying if at 

the time t1, the point O1 would have been on the coast. If again O1 was on land, we moved it 

to the closest reconstructed coast line and marked as O2, iterating the whole process (Fig. 

4.1).  

 

Figure 4.1. Example of one iteration of Zostera noltii age estimation based on horizontal 
rhizome elongation rate and paleoceanographical sea-level reconstitution of the Ria 

Formosa lagoon area. A and B are locations of ramets belonging to the same MLG. O0 is the 
initial origin point, placed in the middle of the distance between points A and B. t0 is the 

time necessary for the clone to grow from O0 to A and B, in this case 17,710 years. 17,000 
years before present sea level was 120 m lower, marked by the red dotted line. Corrected 

origin point O1 is now placed on the coast line, at an intermediate distance from A and B. t1 is 
the time necessary to grow from O1 to A and B, here 32,352 years. 
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Iterations stopped either after reaching the origin point On which was at a certain time tn 

before the present in the coastal zone, or when there was no more available detailed data on 

sea level changes for the region. 

We performed the same exercise with available data for another seagrass species in 

Ria Formosa – Cymodocea nodosa, encompassing total of 176 samples. Sampling density was 

different from that used in this study for Z. noltii, because a population based sampling was 

used for C. nodosa. Samples collection, DNA extraction, genotyping and samples analysis 

details can be found in Alberto et al. (2008). The same method was used to evaluate the age 

of C. nodosa clones as described for Z. noltii. Like for Z. noltii, rhizome elongation rates 

published in the literature vary (Tab. 4.S1., Supplementary material), so we decided to use 

the same source of data as for Z. noltii, with linear clonal extension rates of 40 cm/year 

(Marba and Duarte, 1998). 

4.2.6. Disturbance and clone size associations 

Our data provides an opportunity to investigate the association between the spatial 

distribution of large clones, expected in areas with lower disturbance regime, and the 

distance to disturbance source caused by the highly dynamic sand barrier islands separating 

the system to the ocean (Cunha et al., 2005). 

The large coverage of our sampling design resulted in a low density of sampling 

plots with an average distance between neighbouring sites of 96 m. This unusual sampling 

design led us to estimate a statistic that would indicate at each sampling plot the probability 

of finding a clone that was present elsewhere n or more times. Because four sample units 

were sampled in each plot, we asked for each of the four MLGs in a plot if they had been 

found five or more times in the whole sample. The presence of five clonemates ensured that 

at least one clonemate would have been found in a different plot. Because neighbouring 

plots were on average 96 meters apart, such observations represent events where a large 

clone was sampled. A binomial (one or zero) response was produced for the above 

condition and averaged for each of the four ramets in a plot. We also produced similar 

estimates for MLGs observed 10 and 15 or more times. We call these clonal probabilities, Pc5, 

Pc10 and Pc15, respectively. If larger clones are indeed found away from the disturbance 

source, plots sampled in such areas should on average have higher Pc. We binned the 

average plot Pc in distance classes from the disturbance source. We did this by estimating 

the shortest straight distance from the sampling plot to a shape object contouring the sand 

barrier island. We also fitted a linear regression of Pc on distance from the barrier island. A 
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permutation test was used to test the null hypothesis that Pc was not associated to the 

distance from the barrier island. Null distributions were obtained by repeating a 1,000 

times a permutation of plots' sampling coordinates and recalculating each time the Pc mean 

values per distance class and the slope of regression. A particular observed Pc mean value or 

regression slope rejected the null hypothesis if smaller or larger than the 2.5% and 97.5% 

percentiles, respectively, of the permuted null distributions. 

 

4.3. Results 

 

4.3.1. Genetic analysis of clone identity 

The genetic analysis of 3,185 Zostera noltii ramets revealed 1,999 unique MLGs 

corresponding to a relatively high genotypic richness (R=0.63), with mean allelic richness 

per locus A=15.0, observed heterozygosity Ho=0.62 and unique genotype probability Pgen 

always <0.05. Psex calculated multiple times for random 500 samples was always <0.001. 

Out of the unique MLGs, 504 were sampled more than once. A total of 16 MLGs were 

sampled more than 10 times and the most abundant MLG (ID 1886) was sampled 59 times 

(Tab. 1). The largest distance between two samples with identical MLG was 26.4 km. A total 

of 58 MLGs were sampled across more than 2 km and out of those ten MLGs were sampled 

across more than 10 km (Fig. 4.2).  

For Cymodocea nodosa, our analysis included 176 ramets. Only five unique MLGs 

were found and only one of them was sampled more than once, evidence of an extremely 

low genotypic richness found for this species (R= 0.03) as shown with RAPD markers 

(Alberto et al., 2001). The largest distance between the samples of this MLG was 42.9 km. 

The extremely low number of individuals found for C. nodosa precluded an unbiased 

estimation of allele frequencies that could be used for the estimation of Psex. However, the 

fact that the most common MLG had three heterozygous loci out of eight supports the notion 

that these ramets come all from the same clone. Otherwise, under Mendelian inheritance, 

given the large sample size used, we should have sampled MLGs with only one of the alleles 

(homozygous) present in these loci that were heterozygote for the dominant MLG. 
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Figure 4.2. Spatial distribution of the largest Zostera noltii clones found in Ria Formosa. 
Similar colours represent samples that had the same multi-locus genotype. Smaller points 

indicate all sampling locations. 

4.3.2. Estimating clonal age using rhizome elongation rates 

Age estimation for clones, based on the rhizome elongation rates, for the ten largest 

(longest distance between clonemates) Z. noltii clones, showed that three could be dated to 

approximately 20,000 years. The other seven clones were estimated to be more than 20,000 

years old. Further iterations of our age estimation process previous to that period were 

precluded, due to the temporal extent of available paleoceanographic data for this region. 

However, the age of these clones would have to be at least equal or older than the range 

found at the point where we could no longer proceed (22,058 to 33,088 years depending on 

the clone, Tab. 4.1). Considering that the longest sampled distance between the two samples 
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of Cymodocea nodosa with same MLG was almost 43 km, the estimated age of this clone is 

over 53,000 years. Again, such age falls far beyond the available paleoceanographic data. 

4.3.3. Disturbance and clone size associations 

The analysis of spatial distribution of large Z. noltii clones within the lagoon revealed 

higher probability to sample large clones (Pc) further away from the source of disturbance 

(Fig.4.3 a).  

 

 
Figure 4.3. Probability of sampling a large clone of Z. noltii more than n times (Pcn) across 

the whole sample in each plot. (a) mapped representation of Pc5 across Ria Formosa. Higher 
values, representing higher likelihood of sampling a larger clone, were generally found 
further way from the barrier island. (b) spatial correlogram of Pc5, Pc10 and Pc15. This 

represents the association between mean Pc and distance from the barrier island. Dotted 
lines delimit 95% confidence intervals for Pc under the null hypothesis of no association 

with distance to the barrier island. 

This pattern did not change with the number of clonemates used to estimate Pc (5, 10 or 15, 

Fig. 4.3 b). This analysis was not possible for C. nodosa because genotypic richness was 

extremely low.  
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4.4. Discussion 

 

Our previous research on the potential for asexual LDD in Zostera noltii (Berković et 

al., 2014; Chapter 3 of this thesis), led us to study the spatial genetics of this seagrass in the 

Ria Formosa lagoon. We hypothesized that the clonal structure of Z. noltii population should 

reveal a signature of long distance asexual dispersal of vegetative fragments. Our results 

corroborated this hypothesis; despite high genetic and genotypic diversity, multiple 

identical MLGs were identified separated by tens of kilometres. The presence of these 

repeated MLGs could not be explained by distinct sexual recombination events.  

Given the large spatial extent covered by many clones, we employed the approach 

used elsewhere in seagrass genetic studies (Reusch et al., 1999; van Dijk and van 

Tussenbroek, 2010; Arnaud-Haond et al., 2012) to estimate individual age of these clones 

assuming the absence of LDD. This method considers the species’ rhizome elongation rate 

and the average time it would take, solely by rhizome elongation, to spread across half the 

sampled MLG extent. Given the extremely old ages found for many of the largest clones 

sampled, their assumed past starting point, or any other point of the present extent, were on 

land at the inferred time of clone initiation. This was taken in consideration by adapting the 

age determination method in light of sea level paleoceanographic data. However, these 

corrections were limited to a period of 20,000 years before present (YBP) due to the limits 

on how far back the paleoceanographic data went. Nevertheless, the estimated age of 

several individual clones within the lagoon surpassed 20, and even 30, thousand years. In 

addition, for Cymodocea nodosa the same approach produced an estimated age of at least 50 

thousand years. The estimation of replicated, across species, extremely old organisms is on 

its own quite interesting and would add both species to the list of the oldest living 

organisms on the planet. However, assuming no asexual LDD, a necessary condition to apply 

the above age determination method, is not the most parsimonious model to explain the 

large spatial extent covered by these clones.  

An important observation demonstrating that clonal extent cannot be solely 

attributed to rhizome elongation is that our conservatively estimated clone ages would 

precede by up to ten thousand years the age of the Ria Formosa lagoon. The age of the Ria 

Formosa lagoon itself is still a matter of debate, as different methods used since the 

beginning of 19th century produced a range of estimated dates for the formation of the 

lagoon (Andrade et al., 2004). These vary from two thousand YBP (Neves, 1967) to about six 
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and a half thousand YBP (Dias, 1987), with the latest study indicating a period 

approximately between five and six thousand YBP (C. Sousa, pers. comm.; Andrade et al., 

2004). Any clone older than six thousand years could therefore not have evolved inside of 

the lagoon. Furthermore, clone age estimations based on rhizome elongation rates and 

spatial explicit genetic sampling are always very conservative given the following 

shortcomings: stable habitat is continuously available in straight shortest path lines from 

point of origin to the point of sampling; no physical disturbances occur along tens of 

kilometres of growth, slowing down or interrupting the rhizome growth; the present spatial 

extent of a sampled clone corresponds to the widest ever covered by that clone through its 

millennial history, and that samples captured the furthest away ramets in the whole 

population of ramets from the same clone. Thus, the certain violation of these assumptions 

extends clone age even longer.  

Any effective asexual dispersal event through fragmentation, transport and 

re-establishment during the life of a clone would render these age determinations 

meaningless. In light of the accumulating evidence, from seagrasses and other aquatic 

species, that support all necessary three stages for asexual LDD, such “old clone” inferences 

should be reported very cautiously. Fragmentation and dispersal via fragments is known in 

many partially clonal organisms (Highsmith, 1982; Ayre, 1984; Jackson, 1986; Wulff, 1991; 

Smith and Hughes, 1999; Freeland et al., 2000; Ceccherelli and Piazzi, 2001; Cleavitt, 2002; 

De Meester et al., 2002; Tatarenkov et al., 2005; McKenzie and Bellgrove, 2008). Dispersal 

via vegetative fragments is a well-studied and documented process in freshwater flora. 

Sand-Jensen et al. (1999) found that 90% of new patches in the studied streams developed 

from the vegetative fragments which settled in the new area and De Meester et al. (2002) in 

their review corroborated this finding with examples from other plant and animal species. 

Finally, Riis and Sand-Jensen (2006) continued on this work, testing the dispersal distance 

of the plant fragments. Similar processes have been reported for some seagrass species. 

Natural detachment, drifting and re-rooting was observed for small Posidonia oceanica 

fragments in the meadows of the Balearic archipelago, Spain (Diaz-Almela et al., 2008), for 

two other Posidonia species in the Western Australia, with varying success (Campbell, 

2003), and for Halophila johnsonii and H. decipiens in Florida, USA (Hall et al., 2006).  

For Zostera noltii, our previous work provides experimental support for both the 

dispersal potential of Z. noltii asexual propagules, while being transported for long periods 

in the water surface (Berković et al., 2014), and the success of their post-dispersal 

establishment (Chapter 3 of this thesis). Combined, these studies strongly suggest that Z. 
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noltii vegetative fragments can indeed disperse over large spatial scales (thousands of km) 

and establish in new habitat with relatively high success (30-100%). The present study 

builds on these previous results by identifying the expected genetic signature of such 

asexual LDD. We consider this scenario to be more parsimonious than assuming that 

rhizome elongation alone could have produced the observed spatial distribution of so many 

clones.  

As the interest in seagrass dispersal is growing in the last years (Harwell and Orth, 

2002; Lacap et al., 2002; Hall et al., 2006; Erftemeijer et al., 2008; Källström et al., 2008; 

Viernstien and Hall, 2009; Balestri et al., 2011; Kendrick et al., 2012; Berković et al., 2014; 

Sinclair et al., 2014; Thomson et al., 2014; Stafford-Bell et al., 2015) we propose that asexual 

LDD might be common in other species if studied at a relevant scale. LDD via fragments has 

been shown in few seagrass species, though with variable success (previous references). 

Asexual LDD seems to be possible for a range of seagrass species that cover a range of sizes, 

from some of the larger species from genus Posidonia (Campbell, 2003; Diaz-Almela et al., 

2008) to one of the smaller species Halophila johnsonii (Virnstein and Hall, 2009). 

Geography also seems to play no role in this process as areas of study range from Australia 

to Mediterranean and central Atlantic, both west and east coasts. What makes Z. noltii 

unique among the seagrasses in which asexual LDD was suggested so far, is its intertidal 

habitat in our study site. This facilitates all important steps for effective LDD; the 

fragmentation of rhizomes forming asexual dispersal propagules is facilitated by natural and 

anthropogenic sediment disturbance, the dispersal process made efficient by strong tidal 

currents and the subsequent reburial of these propagules also possibly facilitated by 

frequent sediment transport that buries them. The coastal lagoon has conditions that 

facilitate LDD and it can therefore be speculated that if the lagoon was larger we would have 

found even larger clones. Fragments carried by currents at the surface of the sea easily 

settle on the sediments and get buried by sand during the ebb tide, without the need for 

their buoyancy to change, and root within first weeks of settlement (Berković et al., in prep). 

Mechanisms of dispersal are rarely explained in detail in the mentioned studies, but a few 

general ideas are suggested regarding subtidal species. Boudouresque and colleagues 

(1990) interpreted the case of individual P. oceanica shoots wedged within the algal bank as 

the result of dispersal by drifting fragments after the storm. In the case of H. johnsonii, Hall 

et al. (2006) suggested that fragments sink from the surface to the sediment, after a period 

of dispersal, and subsequently re-establish by rooting. Our field site and available data 

conveniently allowed us to consider asexual LDD for the subtidal seagrass C. nodosa. Barrio 

(pers. comm.) showed experimentally that fragments are viable while floating for periods 
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that allow for LDD, before sinking to the bottom and rooting with high success. Following 

the same rationale as presented here for Z. noltii, we can infer asexual LDD as the most 

parsimonious process to explain the wide clonal distribution of a single clone of C. nodosa in 

Ria Formosa. With this accumulating evidence from a range of species, sizes, growth rates 

and niches occupied along the depth gradient, we believe a synthesis on the importance of 

asexual dispersal in seagrasses is forthcoming. This should attract the attention of marine 

ecologists interested in studying the dynamics of seagrass ecosystems. 

An alarming rate of seagrass ecosystems decline has been observed in the last 

twenty years (Orth et al., 2006 b; Short et al., 2006; Waycott et al., 2009; Tuya et al., 2013; 

Short et al., 2014; Fabbri et al., 2015). The rates of seagrass recovery on their own, assuming 

the removal of the pressures that led to extinction, may be seriously biased by failing to 

acknowledge the potential for asexual dispersal. A good example comes from a recent 

synthesis by McMahon et al. (2014) on seagrass dispersal under the movement ecology 

paradigm (Nathan et al., 2008). In this study, a modelling exercise was conducted to 

estimate the multiple generation time that different seagrass species would take to disperse 

over distances ranging from meters to thousands of kilometres. The time needed to disperse 

over 1 to 10 km distances solely by asexual reproduction (i.e., rhizome elongation) was 

estimated to be orders of magnitude longer (thousands of years) than by dispersing seeds 

(weeks). In that review rhizome elongation was considered as the sole asexual dispersal 

mechanism, although the authors mentioned that “...vegetative fragments of most genera are 

believed to be neutrally buoyant, but few studies have actually tested this...”, no references 

to these studies were given. Here we presented a review of such studies, besides reporting 

our own and others’ research, on the three necessary stages to accomplish effective asexual 

dispersal. Evidence from other studies on seagrasses and other clonal aquatic plants 

support LDD to be more common than previously acknowledged (see above). This means 

that at least for some species asexual dispersal might be as fast as sexual dispersal. It is 

noteworthy to remember that the only way a seagrass sexual propagule can disperse as far 

as an asexual one is precisely by being transported by a floating “vegetative” fragment. 

However, there has been far more attention to the faith of such sexual propagules than to 

the faith of the vegetative vector. Moreover, the potential reduction of genetic diversity in 

patches colonized by asexual propagules after extinction might be counteracted by the 

migration rate of such propagules. This could be generalized to other seagrasses if their 

asexual LDD is as frequent as suggested by the large number of replicated spatially disjunct 

clones in Z. noltii. (Although, most sampling designs used so far to study seagrasses and 

other marine clonal organisms are limited in their capacity to show replicated events of 
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asexual LDD.) Additionally, while our focus here has been in the asexual dispersal 

component, floating fragments transport maturing fertilized flowers and can release viable 

seeds (Berković et al., 2014; Barrio et al., in prep), further minimizing genetic diversity 

reductions. These are optimistic news for seagrass ecosystem recovery, but obviously 

depend on the removal of pressures that led to seagrass local extinction in the first place.  

In this study we also studied the effect of disturbance on the spatial distribution of Z. 

noltii clones. By investigating the association between the probabilities of sampling large 

clones and the distance from Ria Formosa barrier islands, assumed to be a source of 

physical disturbance through increased burial (Cunha et al., 2005), we found that higher 

probability of sampling large clones was associated with increased distance from the barrier 

islands. Our suggestion is that this association can be the result of two non-mutually 

exclusive processes linked to disturbance regime - different clone survival and different 

allocations to sexual and asexual reproductive components. Survival and longevity of the 

seagrasses might be affected by different habitat stability across the gradient of disturbance 

in the following way: Increased stability in the inner area of the lagoon might allow 

established clones to survive longer and thus grow larger. Current velocities in this inner 

lagoon area are generally lower than in the rest of the lagoon (Duarte et al., 2005; Duarte et 

al., 2008) and fragment dispersal probably doesn’t happen across large distances in one 

dispersal event. If survival is higher each clone has time to grow larger and be involved in 

more asexual LDD events through their lifetime. On the other hand, in the disturbed areas 

meadows are frequently buried by increased sedimentation associated to the barrier island 

inlets and their migration (Cunha et al., 2005). Survival of clones in such a habitat is likely 

lower, as the conditions are less favourable due to higher burial rates, increased turbidity 

and disturbance frequency. Simultaneously, higher allocation to sexual propagation is 

shown for seagrasses in disturbed habitats (Gallegos et al., 1992; Marbà and Duarte, 1995; 

Cabaço and Santos, 2012). Gallegos and colleagues (1992) showed four-fold increase in 

flowering for Thalassia testudinum after the disturbance cause by a hurricane passage. 

Looking at C. nodosa response to sediment dynamics, i.e. sand dune migration, Marbà and 

Duarte (1995) noted overall higher flowering frequency in the studied disturbed meadow, 

in comparison to the data for non-disturbed meadows. In particular, fragments which were 

buried just before the flowering season, showed highest frequencies of flowering. Authors 

suggest that this kind of moderate burial disturbance can lead to the increase in allocation to 

sexual production. More recently, Cabaço and Santos (2012) reviewed the published 

literature showing that in 72% of studies seagrasses responded to disturbance by increasing 

reproductive effort to 4-fold of the normal levels. The same was shown for terrestrial 
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grasses over 30 years ago (Disraeli, 1984).  Thus, our study indicates some interesting 

directions for future empirical work: the quantification of the relative importance of clone 

survival, on one side, and directly monitoring allocation to sexual and asexual reproduction 

as a function of disturbance regime, on the other side. 

 

Acknowledgements 

This study was funded by FCT, Portugal, via project RiaScapeGen (PTDC/MAR/ 
099887/2008) and a doctoral fellowship to BB (SFRH/BD/68570/2010).   



110 

 

4.5. References 

Abrahamson, W.G., 1975. Reproductive strategies in dewberries. Ecology 56, 721-726. 

Alberto, F., 2009. MsatAllele_1.0: an R package to visualize the binning of microsatellite 
alleles Journal of Heredity 100 (3), 394-397. 

Alberto, F., Massa, S., Manent, P., Diaz-Almela, E., Arnaud-Haond, S., Duarte, C.M., Serrão, E.A., 
2008. Genetic differentiation and secondary contact zone in the seagrass Cymodocea 

nodosa across the Mediterranean-Atlantic transition region. Journal of Biogeography 35, 
1279–1294. 

Alberto, F., Mata, L., Santos, R., 2001. Genetic homogeneity in the seagrass Cymodocea 

nodosa at its northern Atlantic limit revealed through RAPD. Marine Ecology Progress 
Series 221, 299-301. 

Alexandre, A., Santos, R., Serrão, E., 2005. Effects of clam harvesting on sexual reproduction 
of the seagrass Zostera noltii. Marine Ecology Progress Series 298, 115-122 

Alexandre, A., Cabaço, S., Santos, R., Serrão, E.A., 2006. Timing and success of reproductive 
stages in the seagrass Zostera noltii. Aquatic Botany 85, 219-223. 

Andrade, C., Freitas, M.C., Moreno, J., Craveiro, S.C., 2004. Stratigraphical evidence of Late 
Holocene barrier breaching and extreme storms in lagoonal sediments of Ria Formosa, 
Algarve, Portugal. Marine Geology 210, 339-362. 

Arnaud-Haond, S., Alberto, F., Teixeira,S., Procacini, G., Serrão, E.A., Duarte, C.M., 2005. 
Assessing genetic diversity in clonal organisms: low diversity or low resolution? 
Combining power and cost efficiency in selecting markers. Journal of Heredity 96 (4), 
434-440. 

Arnaud-Haond, S., Belkhir, K., 2007. GENCLONE: a computer program to analyse genotypic 
data, test for clonality and describe spatial clonal organization. Molecular Ecology Notes 
7 (1), 15-17. 

Arnaud-Haond, S., Duarte, C.M., Alberto, F., Serrão, E.A., 2007. Standardizing methods to 
address clonality in population studies. Molecular Ecology 16, 5115-5139.  

Arnaud-Haond, S., Marbà, N., Diaz-Almela, E., Serrão, E.A., Duarte, C.M., 2010. Comparative 
analysis of stability-genetic diversity in seagrass (Posidonia oceanica) meadows yields 
unexpected results. Estuaries and Coasts 33, 878-889. 

Arnaud-Haond, S., Duarte, C.M., Diaz-Almela, E., Marbà, N., Sintes, T., Serrão, E.A., 2012. 
Implications of extreme life span in clonal organisms: Millenary clones in meadows of the 
threatened seagrass Posidonia oceanica. PLoS ONE 7(2): e30454.  

Austerlitz, F., Garnier-Géré, P.H., 2003. Modelling the impact of colonisation on genetic 
diversity and differentiation on forest trees: interaction of life cycle, pollen flow and seed 
long-distance dispersal. Heredity 90, 282-290. 

Avise, J.C., 2008. Clonality: The genetics, ecology, and evolution of sexual abstinence in 
vertebrate animals. Oxford University Press, Inc., New York. 

Ayre, D.J., 1984. The effects of sexual and aexual reproduction on geographic variation in the 
sea anemone Actinia tenebrosa. Oecologia 62, 222-229. 

Balestri, E., Vallerini, F., Lardicci, C., 2011. Storm-generated fragments of the seagrass 
Posidonia oceanica from beach wrack – A potential source of the transplants for 
restauration. Biological Conservation 144, 1644-1654. 



111 

 

Barton, N.H., Charlesworth, B., 1986 (1998). Why Sex and Recombination? Science 281, 
1986-1990. 

Berković, B., Cabaço, S., Barrio, J.M., Santos, R., Serrão, E.A., Alberto, F., 2013. Extending the 
life history of a clonal aquatic plant: dispersal potential of sexual and asexual propagules 
of Zostera noltii. Aquatic Botany 113, 123-129. 

Boedeltje, G., Bakker, J.P., Bekker, R.M., van Groenendael, J., Soesbergen, M., 2003. Plant 
dispersal in a lowland stream in relation to occurrence and three specific life-history 
traits of the species in the species pool. Journal of Ecology 91, 855-866. 

Boudouresque, C.F., Bianconi, C.H., Meinesz, A., 1990. Live Posidonia oceanica in a 
coraligenous algal bank at Sulana bay, Corsica. In: F. Doumenge (Ed.), Rapp. Comm. int. 
Mer Médit., Perpignan 32, p. 11. 

Butlin, R., 2002. The costs and benefits of sex: new insights from old asexual lineages. Nature 
Reviews 3, 311-317. 

Cabaço, S., Alexandre, A., Santos, R., 2005. Population-level effects of clam harvesting on the 
seagrass Zostera noltii. Marine Ecology Progress Series 298, 123-129. 

Cabaço, S., Machás, R., Vieira, V., Santos, R., 2008. Impacts of urban wastewater discharge on 
seagrass meadows (Zostera noltii). Estuarine, Coastal and Shelf Science 78, 1-13. 

Cabaço, S., Santos, R., 2012. Seagrass reproductive effort as an ecological indicator of 
disturbance. Ecological Indicators 23, 116-122. 

Campbell, M.L., 2003. Recruitment and colonisation of vegetative fragments of Posidonia 

australis and Posidonia coriacea. Aquatic Botany 76, 175-184. 

Ceccherelli, G., Piazzi, L., 2001. Dispersal of Caulerpa racemosa fragments in the 
Mediterranean: lack of detachment time effect on establishment. Botanica Marina 44, 
209-213. 

Cleavitt, N.L., 2002. Stress tolerance of rare and common moss species in relation to their 
occupied environments and asexual dispersal potential. Journal of Ecology 90, 785-795. 

Connell, J.H., 1978. Diversity in tropical rain forests and coral reefs. Science 199 (4335), 
1302-1310. 

Cornelissen, J.H., Song, Y.B., Yu, F.H., Dong, M., 2014. Plant traits and ecosystem effects of 
clonality: a new research agenda. Annals of botany 114 (2), 369-376. 

Coyer, J.A., Diekmann, O.E., Serrão, E.A., Procaccini, G., Milchakova, N., Pearson, G. A., Stam, 
W.T., Olsen, J.L., 2004. Population genetics of Zostera noltii (dwarf eelgrass) throughout 
its biogeographic range. Marine Ecology Progress Series 281, 51-62. 

Crump, R.G., Barker, M.F., 1985. Sexual and asexual reproduction in geographically 
separated populations of the fissiparous asteroid Coscinasterias calamaria (Gray). Journal 
of Experimental Marine Biology and Ecology 88 (2), 109-127. 

Cunha, A.H., Duarte, C.M., 2005. Population age structure and rhizome growth of Cymodocea 

nodosa in the Ria Formosa (southern Portugal). Marine Biology 146, 841-847. 

Cunha, A.H., Santos, R., Gaspar, A., Bairros, M., 2005. Seagrass landscape changes in response 
to disturbance created by the dynamics of barrier-islands: A case study from Ria 
Formosa (Southern of Portugal). Estuarine Coastal and Shelf Science 64, 636-644. 

Cunha, A.H., Serrão, E., Assis, J., 2009. Estimation of available seagrass meadow area in 
Portugal for transplanting purposes. Journal of Coastal Research 56, 1100-1104. 

De Meester, L., Gómez, A., Okamura, B., Schwenk, K., 2002. The Monoplozation Hypothesis 
and the dispersal-gene flow paradox in aquatic organisms. Acta Oecologica 23, 121-135. 



112 

 

Dias, J., 1987. Dinâmica sedimentar e evolução recente da plataforma continental 
Portuguesa setentrional. PhD dissertation, University of Lisbon. 

Dias, J.M.A., Boski, T., Rodrigues, A., Magalhães, F., 2000. Coast line evolution in Portugal 
since the Last Glacial Maximum until present – a synthesis. Marine Geology 170, 177-186. 

Diaz-Almela, E., Marbà, N., Álvarez, E., Santiago, R., Martínez, R., Duarte, C.M., 2008. Patch 
dynamics of the Mediterranean seagrass Posidonia oceanica: implications for 
recolonization process. Aquatic Botany 89 (4), 397-403. 

Diekmann, O.E., Coyer, J.A., Ferreira, J., Olsen, J.L., Stam, W.T., Pearson, G.A., Serrão, E.A., 
2005. Population genetics of Zosterea noltii along the west Iberian coast: consequences of 
small population size, habitat discontinuity and near-shore currents. Marine Ecology 
Progress Series 290, 89-96. 

Disraeli, D.J., 1984. The effect of sand deposits on the growth and morphology of Ammophila 

breviligulata. Journal of Ecology 72 (1), 145-154. 

Douglas, D.A., 1981. The balance between vegetative and sexual reproduction of Mimulus 

primuloides (Scrophulariaceae) at different altitudes in California. Journal of Ecology 69, 
295-310. 

Doyle, J.J., Dickson, E.D., 1987. Preservation of plant samples for DNA restriction 
endonuclease analysis. Taxon 36 (4), 715-722. 

Duarte, C.M., 1991. Allometric scaling of seagrass form and productivity. Marine Ecology 
Progress Series 77, 289-300. 

Duarte, C.M., Sand-Jensen, K., 1990. Seagrass colonization: patch formation and patch 
growth in Cymodocea nodosa. Marine Ecology Progress Series 65, 193-200. 

Duarte, P., Azevedo, B., Guerreiro, M., Ribeiro, C., Bandeira, R., Pereira, A., Falcão, M., Serpa, 
D., Reia, J. 2008. Biogeochemical modeling of Ria Formosa (South Portugal). 
Hydrobiologia 611, 115-132. 

Duarte, P., Azevedo, B., Pereira, A., 2005. Hydrodynamic modelling of Ria Formosa (South 
coast of Portugal) with EcoDynamo. DITTY report. Available at 
http://www.dittyproject.org/Reports.asp 

Eckert, C.G., 2002. The loss of sex in clonal plants. Evolutionary Ecology 15, 501-520. 

Erftemeijer, P.L.A., van Beek, J.K.L., Ochieng, C.A., Jager, Z., Los, H.J., 2008. Eelgrass seed 
dispersal via floating generative shoots in the Dutch Wadden Sea: a model approach. 
Marine Ecology Progress Series 358, 115-124. 

Eriksson, O., 1993. Dynamics of genetics in clonal plants. TREE 8 (9), 313-316. 

Ewanchuk, P.J., Williams, S.L., 1996. Survival and re-establishment of vegetative fragments 
of eelgrass (Zostera marina). Canadian Journal of Botany 74, 1584-1590. 

Fabbri, F., Espino, F., Herrera, R., Moro, L., Haroun, R., Riera, R., González-Henriquez, N., 
Bergasa, O., Monterroso, O., Ruiz de la Rosa, M., Tuya, F., 2015. Trends of the seagrass 
Cymodocea nodosa (Magnoliophyta) in the Canary Islands: population changes in the last 
two decades. Scientia Marina 79 (1), 7-13. 

Fischer, M., van Kleunen, M., 2002. On the evolution of clonal plant life histories. 
Evolutionary Ecology 15, 565-582. 

Freeland, J.R., Noble, L.R., Okamura, B., 2000. Genetic consequences of the metapopulation 
biology of a facultatively sexual freshwater invertebrate. Journal of Evolutionary Biology 
13, 383-395. 



113 

 

Gallegos, M.E., Merino, M., Marbá, N., Duarte, C.M., 1992. Flowering of Thalassia testudinum 
banks ex König in the Mexican Caribbean: age-dependence and interannual variability, 
Aquatic Botany 43 (3), 249-255. 

Gliddon, C., Belhassen, E., Gouyon, P.H., 1987. Genetic neighborhoods in plants with diverse 
systems of mating and different patterns of growth. Heredity 59, 29-32.  

Green, E. P., Short, F. T. (Eds.), 2003. World atlas of seagrasses. University of California Press. 

Guimarães, M.H.M.E., Cunha, A.H., Nzinga, R.L., Marques, J.F., 2012. The distribution of 
seagrass (Zostera noltii) in the Ria Formosa lagoon system and the implications of clam 
farming on its conservation. Journal of Nature Conservation 20 (1), 30-40. 

Halkett, F., Simon, J.C., Balloux, F., 2005. Tackling the population genetics of clonal and 
partially clonal organisms. Trends in Ecology & Evolution 20 (4), 194-201. 

Hall, L.M., Hanisak, M.D., Virnstein, R.W., 2006. Fragments of the seagrasses Halodule 

wrightii and Halophila johnsonii as potential recruits in Indian River Lagoon, Florida. 
Marine Ecology Progress Series 310, 109-117. 

Harrison, P.G., 1993. Variations in demography of Zostera marina and Z. noltii on an 
intertidal gradient. Aquatic Botany 45, 63-77. 

Harwell, M.C., Orth, R.J., 2002. Long-distance dispersal potential in a marine macrophyte. 
Ecology 83 (12), 3319-3330. 

Highsmith, R., 1982. Reproduction by fragmentation in corals. Marine Ecology Progress 
Series 7, 207–226. 

Hijmans, R.J., Williams, E., Vennes, C., 2012. Geosphere: spherical trigonometry, Version 1.2-
28. R package. http://cran.r-project.org/web/packages/geosphere/geosphere.pdf 

Hughes, R.N., 1989. Functional biology of clonal animals. Chapman and Hall Ltd., New York. 

Jackson, J.B.C., 1986. Modes of dispersal of clonal benthic invertebrates: consequences for 
species’ distributions and genetic structure of local populations. Bulletin of Marine 
Science 39 (2), 588-606. 

Johansson, M.E., Nilsson, C., 1993. Hydrochory, population dynamics and distribution of the 
clonal aquatic plant Rannunculus lingua. Journal of Ecology 81 (1), 81-91. 

Judson, O.P., Normark, B.B., 1996. Ancient asexual scandals. TREE 2 (2), 41-46. 

Källström, B., Nyqvist, A., Åberg, P., Bodin, M., André, C., 2008. Seed rafting as a dispersal 
strategy for eelgrass (Zostera marina). Aquatic Botany 88, 148-153. 

Karako, S., Achituv, Y., Perl-Treves, R., Katcoff, D., 2002. Asterina burtoni (Asteroidea; 
Echinodermata) in the Mediterranean and the Red Sea: Does asexual reproduction 
facilitate colonization? Marine Ecology Progress Series 234, 139-145. 

Karlsson, P.S., Méndez, M., 2005. The resource economy of plant reproduction. In: Reekie, 
E.G., Bazzaz, F.A. (Eds.), Reproductive allocation in plants. Elsevier Academic Press, San 
Diego, CA, pp. 1–49. 

Kendrick, G.A., Waycott, M., Carruthers, T.J.B., Cambridge, M.L., Hovey, R., Krauss,S.L., Lavery, 
P.S., Les, D.H., Lowe, R.J., Mascaró i Vidal, O., Ooi, J.L.S., Orth, R.J., Rivers, D.O., Ruiz-
Montoya, L., Sinclair, E.A., Statton, J., van Dijk, J.K., Verduin, J.J., 2012. The central role of 
dispersal in the maintenance and persistence of seagrass populations. BioScience 62 (1), 
56–65.  

Kuo, J., den Hartog, C., 2001. Seagrass taxonomy and identification key. In: Short, F.T., Coles, 
R.G. (eds.), Global seagrass research methods. Elsevier Science B.V., Amsterdam. 



114 

 

Lacap, C.D.A., Vermaat, J.E., Rollon, R.N., Nacorda, H.M., 2002. Propagule dispersal of the SE 
Asian seagrasses Enhalus acoroides and Thalassia hemprichii. Marine Ecology Progress 
Series 235, 75-80. 

Le Corre, V., Machon, N., Petit, R.J., Kremer, A., 1997. Colonization with long-distance seed 
dispersal and genetic structure of maternally inherited genes in forest trees: a simulation 
study. Genetical Research 69 (2), 117-125. 

Manel, S., Schwartz, M.K., Luikart, G., Taberlet, P., 2003. Landscape genetics: combining 
landscape ecology and population genetics. TRENDS in Ecology and Evolution 18 (4), 
189-197. 

Marbà, N. Duarte, C.M., 1994. Growth response of the seagrass Cymodocea nodosa to 
experimental burial and erosion. Marine Ecology Progress Series 107, 307-311. 

Marbà, N. Duarte, C.M., 1998. Rhizome elongation and seagrass clonal growth. Marine 
Ecology Progress Series 174, 269-280. 

Marbà, N., Cebrián, J., Enríquez, S., Duarte, C.M., 1996. Growth patterns of Western 
mediterranean seagrasses: species-specific responses to seasonal forcing. Marine 
Ecology Progress Series 133, 203-215. 

Marbà, N., Duarte, C.M., 1995. Coupling of seagrass (Cymodocea nodosa) patch dynamics to 
subaqueous dune migration. Journal of Ecology 83 (3), 381-389. 

Marbà, N., Hemminga, M.A., Mateo, M.A., Duarte, C.M., Mass, Y.E.M., Terrados, J., Gacia, E., 
2002. Carbon and nitrogen translocation between seagrass ramets. Marine Ecology 
Progress Series 226, 287-300. 

McKenzie, P.F., Bellgrove, A., 2008. Dispersal of Hormosira banksii (Phaeophyceae) via 
detached fragments: reproductive viability and longevity. Journal of Phycology 44, 
1108-1115. 

McMahon, K., van Dijk, K., Ruiz-Montoya, L., Kendrick, G.A., Krauss, S.L., Waycott, M., Verduin, 
J., Lowe, R., Statton, J., Brown, E., Duarte, C., 2014. The movement ecology of seagrasses. 
Proceedings of the Royal Society B. 281: 20140878.  

Moore, K.A., Short, F.T., 2006. Zostera: biology, ecology, and management. In: Seagrasses: 
biology, ecology and conservation. Larkum, A.W.D., Orth, R.J., Duarte, C.M. (eds.). 
Springer, The Netherlands. 

Mshigeni, K.I., 1978. Field observations on the colonization of new substrata and denuded 
intertidal surfaces by benthic macrophytic algae. Botanica marina 21, 49-57. 

Nathan, R., Getz, W.M., Revilla, E., Holyoak, M., Kadmon, R., Saltz, D., Smouse, P. E., 2008. A 
movement ecology paradigm for unifying organismal movement research. Proceedings of 
the National Academy of Sciences USA 105, 19052-19059.  

Neves, J., 1967. A formacão lagunar do sul de Portugal. Palestra 29, 34-49. 

Olesen, B., Enríquez, S., Duarte, C.M., Sand-Jensen, K., 2002. Depth-acclimation of 
photosynthesis, morphology and demography of Posidonia oceanica and Cymodocea 

nodosa in the Spanish Mediterranean Sea. Marine Ecology Progress Series 236, 89-97. 

Oliva, S., Romero, J., Pérez, M., Manent, P., Mascaró, O., Serrão, E.A., Coelho, N., Alberto, F., 
2014. Reproductive strategies and isolation-by-demography in a marine clonal plant 
along an eutrophication gradient. Molecular Ecology 23 (23), 5698-5711. 

Oróstica, M.H., Otaíza, R.D., Neill, P.E., 2012. Blades and papillae as likely dispersing 
propagules in Chilean populations of Mastrocarpus sp. (Rhodophyta, Gigartinales). 
Revista de Biología Marina y Oceanografía 47 (1), 109-119. 



115 

 

Orth, R.J., Luckenbach, M.W., Moore, K.A., 1994. Seed dispersal in a marine macrophyte: 
implications for colonization and restoration. Ecology 75 (7), 1927-1939. 

Orth, R.J., Harwell, M.C., Inglis, G.J., 2006 a. Ecology of seagrass seeds and dispersal 
strategies. In: Larkum, A.W.D., Orth, R.J., Duarte, C.M. (eds.), Seagrasses: biology, ecology 
and conservation. Springer, The Netherlands. 

Orth, R.J., Luckenbach, M.L., Marion, S.R., Moore, K.A., Wilcox, D.J., 2006 b. Seagrass recovery 
in the Delmarva Coastal Bays, USA. Aaquatic Botany 84, 26-36. 

Parks, J.C., Werth, C.R., 1993. A study of spatial features of clones in a population of bracken 
fern, Pteridium aquilinum (Dennstaedtiaceae). American Journal of Botany 80 (5), 537-
544. 

Peralta, G., Pérez-Lloréns, J.L., Hernández, I., Brun, F., Vergara, J.J., Bartual, A., Gálvez, J.A., 
García, C.M., 2000. Morphological and physiological differences between two 
morphotypes of Zostera noltii Hornem. from the south-western Iberian Peninsula. 
Helgoland Marine Research 54, 80-86. 

Peralta, G., Brun, F.G., Hernández, I., Vergara, J.J., Pérez-Lloréns, J.L., 2005. Morphometric 
variations as acclimation mechanisms in Zostera noltii beds. Estuarine, Coastal and Shelf 
Science 64, 347-356. 

R Core Team (2013). R: A language and environment for statistical computing. R Foundation 
for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/. 

Reusch, T.B.H., Boström, C., Stam, W.T., Olsen, J.L., 1999. An ancient eelgrass clone in the 
Baltic. Marine Ecology Progress Series 183, 301-304. 

Reusch, T.B.H., 2006. Does disturbance enhance genotypic diversity in clonal organisms? A 
field test in the marine angiosperm Zostera marina. Molecular Ecology 15 (1), 277-286. 

Riis, T., Sand-Jensen, K., 2006. Dispersal of plant fragments in small streams. Freshwater 
Biology 51, 274-286. 

Sand-Jensen, K., Andersen, K., Andersen, T., 1999. Dynamic properties of recruitment, 
expansion and mortality of macrophytes patches in streams. International Review of 
Hydrobiology 84 (5), 497-508. 

Short, F.T., Koch, E.W., Creed, J.C., Magalhães, K.M., Fernandez, E., Gaeckle, J.L., 2006. 
SeagrassNet monitoring across the Americas: case studies of seagrass decline. Marine 
Ecology 27, 277-289. 

Short, F.T., Coles, R., Fortes, M.D., Victor, S., Salik, M., Isnain, I., Andrew, J., Seno, A., 2014. 
Monitoring in the Western Pacific region shows evidence of seagrass decline in line with 
global trends, Marine Pollution Bulletin 83 (2), 408-416. 

Siberhorn, G.M., Orth, R.J., Moore, K.A., 1983. Anthesis and seed production in Zostera 

marina L. (eelgrass) from the Chesapeake Bay. Aquatic Botany 15, 133-144. 

Sibly, R., Calow, P., 1982. Asexual reproduction in protozoa and invertebrates. Journal of 
Theoretical Biology 96, 401-424. 

Silvertown, J., 2008. The evolutionary maintenance of sexual reproduction: evidence from 
the ecological distribution of asexual reproduction in clonal plants. International Journal 
of Plant Sciences 169 (1), 157-168. 

Sinclair, E.A., Gecan, I., Krauss, S.L., Kendrick, G.A., 2014. Against the odds: complete 
outcrossing in a monoecious clonal seagrass Posidonia australis (Posidoniaceae). Annals 
of Botany, 1-12. 



116 

 

Smith, L.D., Hughes, T.P., 1999. An experimental assessment of survival, re-attachment and 
fecundity of coral fragments. Journal of Experimental Marine Biology and Ecology 235, 
147-164. 

Stafford-Bell, R.E., Chariton, A.A., Robinson, R.W., 2015. Prolonged buoyancy and viability of 
Zostera muelleri Irmisch ex Asch. Vegetative fragments indicate a strong dispersal 
potential. Journal of Experimental marine Biology and Ecology 464, 52-57. 

Tatarenkov, A., Bergström, L., Jönsson, R., Serrão, E.A., Kautsky, L.,  Johannesson, K., 2005. 
Intriguing asexual life in the brown seaweed Fucus vesiculosus.  Molecular Ecology 14, 
647-651. 

Terrados, J., Duarte, C.M., Kenworthy, W.J., 1997. Experimental evidence for apical 
dominance in the seagrass Cymodocea nodosa. Marine Ecology Progress Series 148, 263-
268. 

Thomson, A.C.G., York, P.H., Smith, T.M., Sherman, C.D.H., Booth, D.J., Keough, M.J., Ross, D.J., 
Macreadie, P.I., 2014. Seagrass viviparous propagules as a potential long-distance 
dispersal mechanism. Estuaries and Coasts 38 (3), 927-940. 

Tiffney, B.H., Niklas, K.J., 1985. Clonal growth in land plants: A paleobotanical perspective. 
In: Jackson, J.B.C., Buss, L.W., Cook, R.E. (eds.), Population biology and evolution of clonal 
organisms. Yale University Press. 

Trémolières, M., 2004. Plant response strategies to stress and disturbance: the case of 
aquatic plants. Journal of Biosciences 29, 461-470. 

Tuya, F., Hernandez-Zerpa, H., Espino, F., Haroun, R., 2013. Drastic decadal decline of the 
seagrass Cymodocea nodosa at Gran Canaria (eastern Atlantic): Interactions with the 
green algae Caulerpa prolifera. Aquatic Botany 105, 1-6. 

van Dijk, J.K., van Tussenbroek, B.I., 2010. Clonal diversity and structure related to habitat of 
the marine angiosperm Thalassia testudinum along the Atlantic coast of Mexico. Aquatic 
Botany 92 (1), 63-69. 

Viana, D.S., Santamaría, L., Michot, T.C., Figuerola, J., 2013. Allometric scaling of 
long-distance seed dispersal by migratory birds. The American Naturalist 181 (5), 649-
662. 

Virnstein, R.W., Hall, L.M., 2009. Northern range extension of the seagrass Halophila 

johnsonii and Halophila decipiens along the east coast of Florida, USA. Aquatic Botany 90, 
89-92. 

Waycott, M., Duarte, C.M., Carruthers, T.J.B., Orth, R.J., Dennison, W.C., Olyarnik, S., Calladine, 
A., Fourqurean, J.W., Heck Jr., K.L., Hughes, A.R., Kendrick, G.A., Kenworthy, W.J., Short, 
F.T., Williams, S.L., 2009. Accelerating loss of seagrasses across the globe threatens 
coastal ecosystems. Proceedings of the National Academy of Sciences USA 106, 
12377-12381. 

Weider, L.J., 1992. Disturbance, competition and the maintenance of clonal diversity in 
Daphnia pulex. Journal of Evolutionary Biology 5, 505-522. 

Wulff, J.L., 1991. Asexual fragmentation, genotype success, and population dynamics of erect 
branching sponges. Journal of Experimental Marine Biology and Ecology 149, 227-247. 

Zhang, X., Xu, D., Mao, Y., Li, Y., Xue, S., Zou, J., Lian, W., Liang, C., Zhuang, Z., Wang, Q., Ye, N. , 
2011. Settlement of vegetative fragments of Ulva prolifera confirmed as an important 
seed source for succession of a large-scale green tide bloom. Limnology and 
Oceanography 56(1), 233-242. 



117 

 

Umetsu, C. A., Evangelista, H.B.A., Thomaz, S.M., 2012. The colonization, regeneration, and 
growth rates of macrophytes from fragments: a comparison between exotic and native 
submerged aquatic species. Aquatic Ecology 46: 443-449. 

  



118 

 

4.6. Supplementary data 

Table 4.S1. Rhizome elongation rates of Zostera noltii and Cymodocea nodosa extracted from 
the literature. Bold are data used in this study. 

Zostera noltii Site Growth (cm/year) Description 

Marbà et al., 2002 the Netherlands 157 July 

Marbà and Duarte, 1998 worldwide 68 compilation of studies 

Marbà et al., 1996 Spain (2y, monthly) 10 
3 

2 years monthly study 
29 

Peralta, 2000 
RF (optimal 
conditions) 

130 
91 large morphotype 

168 small morphotype 

Peralta, 2005 RF (full database) 75 
88 disturbed site 

62 protected site 

Cabaço et al., 2005 RF 11.5 
11 natural state 

12 
AVG of treatments (diff 

damage) 

Duarte, 1991 worldwide 127 compilation of studies 

Cymodocea nodosa Site Growth (cm/year) Description 

Marbà et al., 1996 Spain 15 
0.3 

2 years monthly study 
84 

Marbà and Duarte, 1998 worldwide 40 
7 

compilation of studies 
204 

Duarte, 1991 worldwide 83 compilation of studies 

Duarte and Sand-Jensen, 
1990 

Spain (Alfacs bay) 160  

Cunha & Duarte, 2005 Ria Formosa 20.3 AVG of 5 sites 

Terrados et al., 1997 Spain (Alfacs bay) 68  

Olesen et al., 2002 Spain (Alfacs bay) 20 
10 0.1 m deep 

30 1 m deep 
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Abstract 

Landscape genetics analyses link spatial and environmental parameters with 

population spatial genetic structure (SGS). Here we test the hypothesis that the effects of 

landscape are surmounted by frequent connectivity during high tide and no strong genetic 

structure should be visible within the lagoon. We carried out high resolution genetic 

analysis of Zostera noltii in the Ria Formosa lagoon, based on 3,185 genetic samples 

collected at 803 sampling plots across 84 km2. Clustering methods didn’t indicate any clear 

spatially defined clusters. Spatial autocorrelation analysis revealed samples within 3 km 

distance are more genetically related than it would be expected under the null hypothesis of 

random mating. To test the effect of habitat on gene flow we calculated pairwise genetic 

distances (GD) between the samples based on Loiselle kinship. Besides Euclidian distance 

(SD), four additional landscape derived distances were used (cost distance (CD), 

hydrographical distance (HD) and two tide dependent resistance distances (RW12 and 

RW21)) as predictors of genetic differentiation. Regression analysis showed RW12 and 

RW21 seem to be the best predictor of GD, while the other distances were weaker 

predictors. Genotypic richness (clonal diversity) per sampling plot varied from 0 (a single 

clone) to 1 (all distinct genotypes). None of the environmental variables indicated any 

significant association with genotypic richness. The clonal dominance showed only 

elevation is statistically significant. There was no particular spatial distribution in the 

distribution of plot specific allelic richness. Modelling the dispersal of propagules in the Ria 

Formosa revealed possible source and sink areas, three of each within the lagoon. Observed 

lack of the effect of the landscape on SGS can be explained by previously reported LDD of 

asexual propagules of Z. noltii in the lagoon. 

 

Keywords: landscape genetics, asexual dispersal, Zostera noltii, connectivity. 
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5.1. Introduction 

 

The idea of combining genetic and environmental data is not new in science, but it 

was only recently that Manel et al. (2003) popularized landscape genetics as a new 

discipline in biology. The development of landscape genetics was made possible by 

advances in molecular biology techniques and by increased computational power enabling 

complex geostatistical and statistical analyses in the last 15 years (Guillot et al., 2009). Its 

main goal is to combine genetic, environmental, and spatial variation to test hypotheses 

about the biotic and abiotic factors that affect gene flow. This is done by linking spatially 

explicit ecological and environmental data with genetic information (Riginos and Liggins, 

2013). The questions asked cover an array of different time scales and different hierarchical 

levels of organization, from genes to populations (Riginos and Liggins, 2013). Even though 

one term is used to describe this field of study, a very wide range of topics and methods are 

included under the landscape genetics umbrella. Several tools are used to study the spatial 

genetic structure (SGS) of a population - Mantel test or regression analysis of distances 

between the samples (Mantel, 1967), spatial autocorrelation (Griffith, 1992), Bayesian 

clustering (François and Durand, 2010) and multivariate analyses (James and McCulloch, 

1990; Jombart et al., 2010), among others.  

Manel et al. (2003) focused on terrestrial systems when defining the term landscape 

genetics, but shortly after the popularization of the term similar studies were published 

focusing on marine systems (Gilg and Hiblish, 2003; Sköld et al., 2003). This change of 

landscape was coined “seascape” genetics (Selkoe et al., 2008; Amaral et al., 2012). Riginos 

and Liggins (2013) emphasized the importance of clear distinction between the relevant 

parameters to study landscape genetics of terrestrial and marine systems. This is visible as 

the models developed for terrestrial systems don’t translate well for the marine systems 

(see Galindo et al., 2006). In the review of the first ten years of landscape genetics Manel et 

al. (2013) paid attention to seascape genetics, as an independent and expanding area of 

research. Authors suggest that seascape genetics lacks extensive large scale sampling 

efforts, which would help define the connectivity patterns.  

Seagrass population genetics have been increasingly studied, particularly after the 

development of highly variable genetic markers (Procaccini and Waycott, 1998; Reusch, 

2000; Alberto et al., 2003 a; Alberto et al., 2003 b; Coyer et al., 2004 a; Ruggiero et al., 2004; 

van Dijk et al., 2007). Their focus has initially been to describe genetic variation between 
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and within populations of a certain species or a population. After an initial build-up of 

descriptive knowledge on seagrass population biology as unravelled by population genetics 

(see Procaccini et al., 2007 and references therein), research diverged in a series of topics. 

Studies have been done linking genetic diversity with restoration (Reynolds et al., 2013), 

historical processes (Olsen et al., 2013), population connectivity (Campanella et al., 2015), 

species resilience to disturbance (Hughes and Stachowicz, 2004; Massa et al., 2013, Oliva et 

al., 2014), taxonomic relations (Nguyen et al., 2014), restoration efforts (Reynolds et al., 

2013; Olsen et al., 2014) and conservation (see Procaccini et al., 2007 and references 

therein). Seagrasses are clonal organisms, and this has drawn particular research interest 

into advantages and effects of clonal history (Kendrick et al., 2005; Zipperle et al., 2009; 

Becheler et al., 2014). 

Zostera noltii is a dominant seagrass species in an intertidal Ria Formosa lagoon, 

southern Portugal, where two other larger and subtidal species can be found – Z. marina and 

Cymodocea nodosa. The particularity of studying the landscape genetics of Z. noltii in this 

system comes from the dynamic properties of the habitat, which is drastically changed in 

every phase of the tidal cycle. On a low tide most of the habitat consists of exposed mudflats 

and salt marshes criss-crossed by a complex network of channels. On a high tide, the whole 

lagoon becomes seemingly a homogeneous submerged habitat. This results in frequent 

changes in connectivity among the seagrass patches four times a day, allowing the whole 

population putative connectivity to vary dramatically during a single day. Therefore we 

need to consider both temporal and spatial variation of the habitat. This study also 

distinguishes itself from others in the unprecedented individual based sampling effort it is 

built on. Published studies on genetics of seagrasses employed sampling along the transect 

(Coyer et al., 2004 b; van Dijk and van Tussenbroek, 2010) or random sampling of 30 to 50 

samples in one location (Olsen et al., 2013; Nguyen et al., 2014; Campanella et al., 2015). To 

study genetics on the wider area, several of transects or sampling locations are analysed 

together (references above). Carrying out a wide spatial scale, i.e. landscape scale, analysis 

of a SGS of a population would probably be more appropriate on a dataset derived from 

accordingly planned and conducted wide spatial scale sampling design. 

The dispersal mechanisms studied in this thesis (Berković et al., 2014; Chapters 2 

and 3 of this thesis) suggest LDD of asexual fragments and sexual propagules carried by 

these. Without barriers to limit connectivity during high tides, Z. noltii population in Ria 

Formosa lagoon might constitute a large panmictic population. Thus, we hypothesize that 

the effects of landscape are surmounted by frequent connectivity during high tide and no 
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strong genetic structure should be visible within the lagoon. Here we test this hypothesis 

using the previously acquired large, high resolution data set of spatially explicit genetic data 

built for Z. noltii in the lagoon. We employed several common tools of landscape genetics to 

look into Z. noltii SGS, all indicating little to no spatial organisation of the genetic structure of 

the population, besides the observed isolation by distance (IBD) across first 3 km, i.e. no 

major effect of landscape on the gene flow.  

 

5.2. Materials and methods 

 

The work reported here was carried out with the same genetic data reported in 

Chapter 4 (refer to this chapter for sampling design and microsatellite genotyping 

techniques).  

5.2.1. Development of Digital Terrain Model and spatial analysis 

To acquire high precision topographic data we contracted a LiDAR survey of the Ria 

Formosa lagoon, surveying 6,511 ha of the lagoon area. Survey was carried out with Optech 

Airborne Laser Terrain Mapper-Gemini system on board of an airplane. This dataset was 

combined with the data of previous LiDAR survey carried out a year earlier, which focused 

on the 4,300 ha of the barrier islands area and was done with LiDAR Palmer Top Eye MK II B 

system used on board of a helicopter. Both surveys were performed by BLOM Portugal. 

Overlap of the two LiDAR surveys was between 12 and 50 m which allowed their 

interpolation to one continuous surface, carried out in GRASS GIS software v.6.4.0 (GRASS 

Development team, 2009). In shallow coastal areas expected penetration of laser is limited 

to about 3.5 m of depth. For this reason we used data from five different bathymetric 

surveys of the lagoon, the dredged channels and adjacent ocean coastal areas. Available 

bathymetric map of the Ria Formosa lagoon and adjacent coastal area was developed based 

on the Portuguese Hydrographic Institute data from 1970’s. Port authority carried out a 

survey in 1990’s of channels used for navigation, updating the previous dataset. Additional 

separate datasets are available from the same period, detailing secondary channels, main 

Faro – Farol channel and western section of the lagoon. Each of these datasets was added to 

the LiDAR survey results, taking into account the age of the data, so that in each section 

newest available data was integrated. Final DTM was developed following steps suggested 
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by Brovelli et al. (2004). Spatial information was referred to ETRS98 Datum with Portugal 

TM06 projection and hydrographic zero. The final product was a digital terrain model 

(DTM) with vertical resolution of 15 cm and horizontal resolution of 1 m. This allowed us to 

extract the variables of landscape morphology used in this study. Five main variables were 

extracted from the DTM for each of the sampling points: elevation – in relation to the 

hydrographic zero; slope – rise relative to horizontal distance; aspect – downhill direction of 

slope; p curvature – profile curvature, i.e. curvature parallel to slope direction; and t 

curvature – tangential curvature, i.e. curvature perpendicular to the slope direction. 

Z. noltii in our study site inhabits intertidal areas, because dispersal is dependent on 

water transport it was critical to characterize the tidal cycles to understand the relative 

submerged time and relative connectivity at each sample site. We used tidal tables 

(http://www.hidrografico.pt/previsao-mares.php) published by the Portuguese 

Hydrographic Institute (Instituto Hidrográfico), specifically the data for Faro – Barra de 

Faro – Olhão point. This information was combined with tidal harmonics, to calculate period 

of time each tidal level was present in the lagoon. These times were then expressed as a 

proportion of the tidal cycle and used as the weight factor for analyses performed on per-

tidal-level basis. 

5.2.2. Clustering methods 

Using the previously acquired genetic data (see chapter 4 of this thesis) we 

conducted a series of analyses to estimate clusters of individuals sampled based on genetic 

co-ancestry similarity. First, we used the software STRUCTURE version 2.3.1. (Pritchard et 

al., 2000), whose algorithm is organising samples into populations with Hardy-Weinberg 

equilibrium with linkage equilibrium between loci (HWLE). We run the program three times 

for each K (number of assumed clusters - populations or genetic groups), assuming the 

admixture model with a burn-in period of 10,000 iterations and 5,000 iterations of a Markov 

chain Monte Carlo (MCMC), for K 1-75, without providing the prior information on the 

sampling locations and using ΔK statistic (Evanno et al., 2005) to detect the number of 

clusters. A separate analysis was done for all 3,185 samples and for the 1,999 samples, 

representing one copy for each found MLG. A second cluster analysis was run using the 

Geneland package (Guillot et al., 2005) in R software (R Development Core Team, 2014) to 

estimate the number of clusters, using a similar approach to STRUCTURE. Five runs were 

done with maximum number of clusters tested ranging from 50 to 70, using the spatial 

model combined with the correlated frequency model and 100,000 iterations of MCMC with 

thinning at 100. Finally, we used the Discriminant Analysis of Principal Components (DAPC) 
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analysis in adegenet 1.4-1 package (Jombart, 2008) in R software (R Development Core 

Team, 2014). This analysis serves to identify clusters and describe the relationship between 

them. Again separate analyses were done for the full dataset and for the unique MLGs only.  

5.2.3. Spatial autocorrelation and modelling the distance tables 

To look into the association between spatial distance and genetic differentiation 

between pairs of sample units we used SPAGeDi software (Hardy and Vekemans, 2002). We 

run a spatial autocorrelation based on multilocus estimates of mean pairwise kinship (Fij), 

i.e. Loiselle kinship coefficient (Loiselle et al., 1995), on mean spatial distance using binned 

intervals of spatial distance (distance classes). Distances between the samples were first 

computed automatically, so that the numbers of pairwise data points are evenly distributed 

among the distance classes. These classes were then adjusted when needed, e.g. so that the 

number of pairs in each distance class was higher than 100, resulting in the following 28 

distance intervals: [0.02-0.05], next interval up to 0.075], 0.1], 0.2], 0.3], 0.4], 0.5], 0.6], 1.4], 

2.2], 2.9], 3.5], 4.0], 4.7], 5.4], 6.2], 7], 7.8], 8.5], 9.4], 10.3], 11.4], 12.5], 13.7], 15.3], 17.6] 

and finally up to 22.8] km. We tested that mean Loiselle kinship values per distance class 

were not different than those expected under the null hypothesis of a random distribution 

(panmictic population) permuting spatial locations between individuals 10,000 times. 

Again, two analyses were done for the full dataset and for the unique MLGs only.  

Once the GD table was created, we calculated a set of predictor landscape spatial 

distances and tested their association with GD. First, we calculated the Euclidian distance 

(SD) between two sampling points, i.e. a measure of the “as the crow flies” shortest distance 

between two points ignoring the landscape features along the way. SD was calculated in 

gdistance package (van Etten and van Etten, 2011) in R (R core team, 2014).  

Based on the available fine scale topography of Ria Formosa, provided by the DTM 

analysis (see above), we modelled the hydrodynamic transport of particles in the lagoon 

using EcoDynamo (Duarte et al., 2005; Duarte et al., 2008). This analysis produced 

probabilities of transport between source and destination sites in the system. These 

probabilities were expressed as the hydrographical distance matrix (HD). EcoDynamo can 

simulate hydrodynamic processes (water movements), thermodynamic, biogeochemical and 

anthropogenic processes and is focused on water forcings of the system. For this analysis, 

DTM was scaled from the original 1 m resolution down to 100 m and 50 m resolution to 

allow reasonable computational time. This resolution is justified considering the observed 

period that fragments keep positive buoyancy (Berković et al., 2014). In the first phase only 
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the hydrodynamic model of  Ria Formosa was simulated to produce a series of time series 

files recording average values  of water level, mean U and V velocities (U and V 

corresponding to X and Y directions of Cartesian coordinate system) and mean U and V 

flows for each 10 minutes interval. During the second phase we integrated a Lagrangian 

transport routine adapted to seagrass propagules, using the previously saved time series of 

hydrodynamic simulated data. This model only uses water movements to influence the 

transport of the propagules, not considering the effect of wind. The model domain was 

defined by 52,600 cells of 100x100 m, encompassing the whole lagoon, barrier islands and 

peninsulas delimiting the lagoon and adjacent ocean area. Z. noltii distribution mapped by 

Guimarães et al. (2012) was overlaid upon the model domain. A total of 1,253 model cells 

containing Z. noltii (hereafter called seagrass cells) were used as locations of release of 

particles in the transport model. To track the dispersal patterns, we released 10,000 

particles from each of the seagrass cells to avoid the numerical instabilities occurring when 

we released smaller number of particles. Thus, over 12.5 million particles were simulated 

dispersing in the model domain. This process was divided in series of simulations each 

simulating dispersal from up to 100 seagrass cells. From the results obtained in each 

simulation we calculated the probabilities of particles to travel from point A to point B. 

According to the model output, only some of the sampling points were connected with some 

of the other ones. For the pairs of sampling points without the connection shown by the 

model we assigned the 0. 

A set of three additional landscape derived distances were calculated using modelled 

resistance matrix, i.e., a path from source to destination that implies different landscape 

resistance to flow through cells in the path. First, we developed resistance surfaces based on 

Ria Formosa DTM. One resistance surface raster was produced for each tidal level between 

0.95 and 2.95 m in 10 cm increments, resulting in 21 different tidal levels. These were 

chosen according to tidal amplitude in the lagoon, excluding the extreme values of spring 

tides which only occur few times a year. Resistance matrices were defined so that if the 

value of DTM raster was lower or equal to the tide level the resistance was set to 0 (i.e. point 

was submerged and connectivity was possible), otherwise resistance was set to 1.  

To calculate the cost distances (CD), each resistance matrix was inverted into a 

conductance matrix where 0 and 1 resistance values were converted to 1 and 0 

conductance, respectively. Using the transition function of gdistance package (van Etten and 

van Etten, 2011), we then computed the Transition layers, with movement in 8 directions 

(N, W, E, S and 4 intermediary ones) and applied the geographic correction, correcting for 



127 

 

the map distortion and diagonal connections between the cells. Then we employed the 

costDistance algorithm on these Transition objects. In some cases certain points were 

unconnected, as they were above the sea level, so at the end of the calculation we 

substituted the INF value of distances to these points with the largest CD for that Transition 

layer, i.e. for that tide. CD matrices we obtained this way were then weighted to account for 

the occurrence of each tide level (see above). After each CD matrix was multiplied with 

corresponding weight factor they were averaged to provide one final CD matrix, reflecting 

the effect of tidal fluctuation on the height from sea level of each sampling point. 

Finally, we employed an approach based on electronic circuit theory algorithms 

using the software Circuitscape (McRae and Shah, 2009). This approach provides a more 

realistic landscape driven distance between sites allowing for multiple paths to be 

integrated and has been shown to improve fit when predicting genetic differentiation in 

heterogeneous landscapes (McRae and Beier, 2007). We used the previously described 

resistance matrices for each tidal level, and run Circuitscape on each of the tidal resistance 

matrices, weighted the resulting matrices and then averaged them (as explained above) to 

obtain one final matrix of weighted resistance distances (RW21). An alternative distance 

matrix (RW12) was created changing the order of steps. In this approach we first weighted 

and averaged the resistance matrices and then run the Circuitscape on the final matrix.  

Five produced distance matrices (SD, CD, HD, RW12 and RW21) were used to model 

the GD. We used LM in R (R core team, 2014), GD as a response variable and the five 

distance matrices as the predictors. These pair-wise distances were averaged by distance 

class (as shown above for SD), except for HD. As HD actually are probabilities said analysis is 

not a viable option, due to its dependency on spatial distances. A permutation test was used 

to test the null hypothesis of no association between GD and each of the predictor resistance 

distances. Distance tables were tested for correlation. Further we computed linear 

regressions with restricted ranges, limiting the distances to 5, 10 and 15 km. Restricted 

regression was not used for HD as the longest connected sampling locations were 5 km 

apart. Multiple regression was not used because the data is now bind in distance interval in 

which mean value is calculated, i.e. the individuals that fall in each class are different ones. 

5.2.4. Modelling genotypic and allelic richness 

Besides the association of spatial and resistance distances to genetic differentiation, 

we also investigated the association between environmental variables and genotypic 

richness (R), the proportion of different genotypes in a sample. Previous studies suggest 
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that environmental factors directly or indirectly regulate both flowering and seed 

germination, i.e. stress leads to higher allocation to sexual reproduction (Cabaço and Santos, 

2012) where elevation can be used as a proxy for stress, either natural (higher elevation 

brings longer exposure periods, lower elevation ensure prolonged submersion periods) or 

anthropogenic (physical removal for the purpose of clam harvesting is more common in 

higher intertidal, than in lower intertidal or subtidal areas). For this purpose, R was 

estimated at the sampling plot level, i.e. using the four ramets collected at the vertices of 

each 2x2 m plot (see chapter 4 for sampling details). Hence R in each plot varied between 

zero, when all four sample units were genotypicaly identical (i.e. belong to the same MLG), 

to 1, when each sample unit was genotypicaly unique (i.e. belonging to distinct MLGs). R was 

then modelled as a function of available environmental variables, acquired either through 

the hydrological modelling with EcoDynamo or extracted from the DTM output (for details 

see above). These predictor variables were: elevation, slope, aspect, p and t curvature, 

direction, flow and velocity of the current (described above). Logistic regression was tested 

to model R after conversion of genotypic richness data into success and failure variable, 

showing domination of a clone in the plot. If only one MLG was found within the plot (R=0) 

we labelled it as success (S), i.e. one clone dominated the plot, otherwise it was a failure (F). 

Thus the response variable clonal domination was binomial (success or failure) and was 

modelled using a logistic regression. 

Anthropogenic activities such as clam harvesting, often leading to destruction of 

seagrass meadows, are generally associated with particular areas of the lagoon, allowing the 

distinction between disturbed and undisturbed areas. We assessed if the distribution of 

allelic richness (A), as calculated within each plot, showed any spatial patterns, possibly 

linked to the hotspots of clam harvesting. We used a custom R (R core team, 2014) script to 

compute A for each sampling plot, standardizing it by number of valid samples within the 

plot. These were then viewed on the map of the study area to see if any spatial organisation 

were apparent. 

5.2.5. Transport simulations 

The EcoDynamo modelled hydrographical distance matrix (HD) was also used to 

identify source and sink areas in what pertains Z. noltii dispersal in the Ria Formosa. 

Seagrass cells from which over 20 particles reached other seagrass cells were considered 

source cells. Seagrass cells which received over 20 particles were defined as sink cells. Cells 

for which more than 20 released particles did not leave the defined 100x100 m cell border, 

were considered retention cells. In case a cell met more than one of these conditions it was 
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accounted for in each of the categories. These three cell categories were mapped to identify 

the different zones of relative Z. noltii connectivity within the lagoon. 

 

5.3. Results 

 

Our sampling design resulted in 3,212 individual ramet sample units, providing 

3,185 valid genetic samples and 1,999 unique multilocus genotypes (MLGs). 1,495 MLGs 

were sampled only once. From the remaining 504 MLGs, 16 were sampled more than 10 

times and the most abundant MLG (ID 1,886) was sampled 59 times (Fig. 5.1).  

 
Figure 5.1. Frequency of 1,999 unique MLGs within the samples of Zostera noltii from the Ria 

Formosa lagoon. Double y-axis is input with two scales, to illustrate the full range of 

observed frequencies. Left y-axis (scale 0-1,500) corresponds to white columns of counts. 

Right y-axis (scale 0-25) corresponds to black columns of counts. 

5.3.1. Clustering methods 

Neither STRUCTURE nor Geneland indicated number of clusters in our dataset. 

DAPC analysis suggested about 77 clusters when done on the whole dataset. Some of them 

appear to be spatially organized (i.e. grouped in certain areas), probably because mostly 

they correspond to the samples of the same MLG or from other MLGs different by one or a 
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couple of alleles from the dominant MLG in large clones. When the DAPC analysis was done 

including only a single copy from each unique MLG, 29 clusters were estimated, but they 

were in no way spatially organised. Clusters 2, 6 and 26 were slightly separated from other 

clusters in the scatter plot from based on genetic data, but were distributed across the 

lagoon, not showing any clustering in spatial organisation (Fig. 5.2). 

 
Figure 5.2. Distribution of Zostera	noltii samples belonging to genetic clusters 2 (black), 6 

(gray) and 26 (white) identified by Discriminant Analysis of Principal Components. Dots 

mark all the sampling plots. 

5.3.2.	 Spatial	autocorrelation	and	modelling	the	distancee	

Spatial autocorrelation analysis of Loiselle kinship coefficient including all ramets 

generated a significant high mean kinship in relation to the null hypothesis of random 

mating (red line in the Fig. 5.3). Similar pattern was visible when the analysis was 

conducted using only the unique MLGs (blue line in the Fig. 5.3). In the latter case, sample 

units close to each other (i.e. within the 30 m radius) were showing less genetic similarity 

than before, but after this initial discrepancy, the curves followed the same trend, with mean 

kinship always higher for analysis of all samples.  

The different distances used to model genetic differentiation were highly correlated 

(Tab. 5.1) In particular RW12 and RW21 were highly correlated, indicating small difference 

in the two methods used for weighting the distances in this case (Pearson correlation 

coefficient r=0.99, p<0.001). 
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Figure 5.3. Correlogram of Loiselle kinship means (circles and stars) for each distance 

interval between samples of Zostera	noltii in the Ria Formosa lagoon. Red line shows the 

correlogram for the analysis of the full dataset. Blue line shows the correlogram of the 

analysis including only unique multilocus genotypes (MLGs). Dashed lines delimit 95% 

confidence intervals (C.I.) for the null hypothesis of random mating, with red line 

corresponding to full dataset analysis and the blue line to the analysis of unique MLGs only. 

X-axis scale is logarithmic. 

Results of full and spatially restricted regressions, with and without the log data 

transformation, are shown in Tab. 5.2. RW12 and RW21 seem to be the best predictors of 

GD (R2=0.80 and R2=0.85, both p<0.001). Other distances showed to be weaker predictors 

of genetics in Z.	noltii with HD being the weakest one (R2=0.00004, p<0.001). 
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Table 5.1. Table of Pearson correlation between the 6 distance tables for Zostera noltii 

samples from Ria Formosa lagoon. GD – genetic distance, SD – spatial distance, CD – cost 
distance, HD – hydrological distance, RW12 and RW21 – weighted resistance distances with 

two methods of weighting (see section 5.2.3. for more details). Coefficients in bold are 
significant at level of p<0.001. ¨ marks p=0.22. 

 GD SD CD HD RW12 RW21 

GD -      

SD -0.04 -     

CD -0.04 0.95 -    

HD 0.002¨ -0.01 -0.01 -   

RW12 -0.02 0.75 0.86 -0.008 -  

RW21 -0.02 0.74 0.86 -0.007 0.99 - 

 

 

 

Table 5.2. Results of full and spatially restricted regressions (<5, <10 and <15 km) between 

genetic distance (GD) and the spatial distance (SD), cost distance (CD),  hydrological 

distance (HD) and two weighted resistance distances (RW12 and RW21). For HD only full 

regression was done, as maximum distance was 5 km. For each linear model (LM) are given 

two values: t-value (in bold when p<0.0001, in italic when p<0.05) and R-squared. 

Predictor variable Full <5 km <10 km <15 km 

Mean SD 
-4.013 

0.3736 

-3.613 

0.4825 

-4.345 

0.4856 

-4.804 

0.4902 

Log (Mean SD) 
-12.610 

0.8548 

-8.055 

0.8225 

-10.676 

0.8507 

-12.549 

0.8677 

Mean CD 
-4.674 

0.4472 

-4.637 

0.6057 

-5.497 

0.6017 

-5.578 

0.5645 

Log (Mean CD) 
-12.74 

0.8574 

-10.67 

0.8904 

-15.15 

0.9198 

-17.38 

0.9264 

Mean HD 
-16.456 

0.00004 
- - - 

Mean RW12 
-7.996 

0.8026 

6.877 

0.6507 

6.881 

0.5979 

6.527 

0.5494 

Log (Mean RW12) 
6.637 

0.6275 

-7.754 

0.8657 

-7.909 

0.8262 

-7.966 

0.8026 

Mean RW21 
-7.246 

0.8529 

6.637 

0.6275 

6.808 

0.5904 

6.491 

0.5457 

Log (Mean RW21) 
6.808 

0.5904 

-7.246 

0.8529 

-7.609 

0.8198 

-7.766 

0.7995 
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5.3.3. Modelling genotypic and allelic richness 

A single MLG was observed in all four ramets in a plot for 8% of the plots (plot 

genotypic richness, R=0), 22% had two MLGs (R=0.33), 33% had three MLGs (R=0.66) and 

37% had four MLGs (R=1). Genotypic richness was not associated with any of the 

environmental variables tested. Results of the logistic regression on the clonal dominance 

showed that from all the environmental variables tested only elevation was statistically 

significant (p=0.014). Spatial organisation of A per plot was not observed (Fig. 5.4) 

 

Figure 5.4. Distribution of allelic richness (A) per plot for Zostera noltii in the Ria Formosa 

lagoon. Lowest values of A are showed in blue, and the highest in red. No obvious grouping 

or organisation is visible from the map. 

5.3.4. Transport simulations 

Transport modelling with EcoDynamo showed that in a system forced only by water 

movements, out of 12.5 million released particles less than 40,000 stayed within the lagoon 

(0.33%) and the rest is washed out into the open ocean. Out of these 40,000, 8,500 didn’t 

leave the source cell (i.e. stayed within the 100 m diameter). The maximum travelled 

distance observed within the particles that stayed in the system was 5.45 km. When this 

transport model data was analysed to infer source-sink dynamics, we observed that source 

cells were aggregated in three main areas, overlapping with the area of sink cells. This 

match between the area of source and sink cells corresponds to identification of retention 

cells in the same areas. The main three areas were the north-western side of Ilha da Deserta, 

north-eastern end of Ilha da Culatra and northern coast of Ilha da Armona, west from the 

village (Fig. 5.5). Overall less than 0.5% of 12.5 million released particles stayed inside the 
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lagoon. Out of those more than 78% of particles left the seagrass cell where they were 

released, i.e. travelled more than 100 m. 

 

Figure 5.5. Results of EcoDynamo transport model for propagules of Zostera	noltii in the Ria 

Formosa lagoon. Islands are labelled as I.D. for Ilha da Deserta, I.C. for Ilha da Culatra and I.A. 

for Ilha da Armona. (a) Source cells, donating propagules to other cells in the lagoon. (b) 

Sink cells, receiving propagules from other cells in the lagoon. (c) Retention cells, 

withholding the dispersal of propagules originating in them. One cell can belong to more 

than one category at the same time. Size of the circle represents amount of donated, received 

or retained particles.	  
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5.4. Discussion 

 

Our large scale study showed that there are no spatially organized large (sub) 

groups within the lagoon revealing lagoon-wide connectivity, but there is IBD revealing 

spatial restriction of sexually dispersed propagules. Considering the large number of 

samples and the high variability of the genetic markers used to describe the population’s 

genetic structure, the study design was powerful enough to detect spatial genetic structure. 

No biologically/genetically relevant groups or other spatial organisation was detected 

beyond IBD. The spatial fragmentation of the population in a discontinuous series of over 

600 patches (Guimarães et al., 2012) doesn’t reflect in the genetic structure of the 

population. There were no abrupt changes in allelic frequencies revealing a border between 

the genetic groups. Additionally, IBD with long positive kinship distance (approximately 

3 km) seems to indicate a continuous population despite the fragmented nature of the 

habitat yet revealing restricted seed and pollen dispersal. This result can be accounted for 

by considering previous results where we described the dispersal biology of Z. noltii 

(Berković et al, 2014.; Chapters 2 and 3 of this thesis) and observed a wide spatial 

distribution of individual clones within the lagoon (Chapter 4 of this thesis) probably 

achieved via LDD of asexual propagules. 

Spatial autocorrelation analysis showed an effect of isolation by distance, based on 

significantly higher genetic proximity of samples within the 3 km radius than it would be 

expected under the assumptions of panmictic population. This can be interpreted as a 

consequence of mutually non-exclusive aspects of the sexual and asexual dispersal, i.e. 

dispersal of pollen or seeds which do not disperse far from parental plant (Berković et al., 

2014) and fast rhizome elongation rates observed for this species and in this system 

(Peralta et al., 2005; Peralta et al., 2008) which would lead to decrease of genetic 

dissimilarity in the surroundings of a single clone. Clone sizes of Z. noltii in the North and 

Black Sea (Coyer et al., 2004 b) and in Cadiz, Spain (Brun et al., 2007) have been published, 

based on genetic analysis and plant morphology, respectively. Namely, in the Coyer et al. 

(2004 b) study most identified clones were <3 m2, with the exception of one location in the 

Black Sea where the entire sampling area seems to be dominated by a single clone extending 

50 m in length. The authors carried out genetic analysis and measured the distance between 

samples with same MLG. Brun et al. (2007) unburied the whole plant from the sediment and 

performed a detailed analysis of clonal architecture. They found that Z. noltii plants 

maintained physical connection between the modules covering almost 0.5 m2. In our study 
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we found that less than 10% of the 4 m2 plots, where four ramets were sampled, were 

dominated by a single MLG. While these might possibly be explained by rhizome elongation, 

this shows how frequent clone intermingling and high genotypic richness can be found at 

small spatial scales. In contrast, as is reported in the chapter 4 of this thesis, at large spatial 

scales almost 60 MLGs were found spread over 10 km or longer, demonstrating long 

distance fragment dispersal (Chapter 4 of this thesis). Our data supports a hypothetical 

scenario where both sexual dispersal (seeds and pollen), rhizome elongation and local 

dispersal of fragments occur on a restricted scale, leading to higher genetic similarity of the 

samples on a small spatial scales and supporting IBD, while at the same time the events of 

LDD of fragments lead to lack of distinct genetic clusters within the lagoon. 

Spatial distances used in the analysis included Euclidian distance and several least 

cost and connectivity paths, which reflected the channel network complexity and its 

fluctuations through the tidal cycle. The best support was provided by the two resistance 

distance matrices (RW12 and RW21), which combine results of movement through the 

resistance surface and the change of the resistance of this surface with each tide. On each 

high tide, most of the locations indeed can be connected by Euclidian distances (SD) as 

lagoon morphology gets simplified to an almost completely homogeneous surface. This 

occurs twice a day, greatly diminishing the effect otherwise complex morphology of the 

lagoon channel network would have on the population connectivity. But these distance 

measures (RW12 and RW21) represent the connectivity throughout the day, accounting for 

both very simple and very complex habitat morphologies. This is probably the best way to 

describe the connectivity, particularly from the point of view of LDD of fragments which can 

cross considerable distances following the water movements (Berković et al., 2014), as long 

as they don’t get stranded or entangled along the way.  

We didn’t find any association of the tested environmental variables (elevation, 

morphology of the terrain or water current characteristics) with genotypic richness. We 

expected plants at higher elevation, more often exposed to tidal currents and associated 

sediment movement, to be under more stress, leading to higher allocation to sexual 

reproduction (Alexandre et al., 2005; Cabaço and Santos, 2012) that would in turn lead to 

higher genotypic diversity. This might be the result of other limitations associate with the 

life in the upper intertidal range of the species distribution. Elevated plants are submerged 

for shorter periods of time, limiting the period for pollination. Also, burial by moving 

sediments in the intertidal zone could lead to decrease in seed germination rate. 

Furthermore, canopies of plants which are exposed of prolonged periods of time are fragile 
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and sparse and provide weak shelter for germlings and juvenile plants (Gambi et al., 1990; 

Peterson et al., 2004). It might be that at the upper edge of Z. noltii distribution flowering 

effort is higher (as reported for Posidonia australis; Inglis and Lincoln, 1998), but with lower 

germination success (due to desiccation during low tide), while at lower edge lower 

flowering effort (Inglis and Lincoln, 1998) with higher success. These considerations lead us 

to deemphasize the relative importance of flowering rate and reconsider the assumption of 

higher genotypic richness at higher elevations as being swamped by effects of fragment 

dispersal. Throughout this thesis, LDD via vegetative fragments was implied as an important 

means of asexual propagation. On one hand, along the intertidal gradient, higher areas 

which are more frequently exposed to tidal currents are likely to receive more fragments 

entangled or stranded in wreck lines. However, fragments settling in this area are exposed 

to less stable environment and have fewer chances to stay in place enough time to root and 

grow. On the other hand, fewer fragments are likely to settle in lower intertidal areas, 

because they need to reach the sediment while they are still positively buoyant and these 

areas are more often submerged. However, if plants do settle there they may find more 

favourable conditions to grow and spread. Therefore, we expect higher input of fragments in 

the higher elevations, with lower success of establishment, and lower input of fragments 

with higher success rates in the lower elevations. Similar as with flowering, the two 

scenarios might balance each other. This shows how important it is to consider both spatial 

and temporal processes when looking at interaction between the environment and life 

history of a species.  

Coyer et al. (2004 b) described the population genetic structure of Z. noltii 

throughout its biogeographic range. The summary statistics reported here show allelic 

richness standardized for 28 samples was A=5.9. The previously reported results in this 

thesis (Chapter 4) show non-standardized A for full set of 3,185 samples to be A=15.0. Once 

standardized to the same number of samples (N=28) A was 7.5, still higher but more 

comparable to Coyer et al. (2004 b). Allelic richness distribution throughout the Ria 

Formosa seem to be approximately randomly distributed in the Ria, i.e., there was no 

obvious hot or cold spots of diversity, a pattern different from clonal probability (Chapter 

4). Intense clam harvesting is a regular activity during low tides in certain parts of the Ria 

Formosa lagoon (Fig. 5.6), leading to either complete removal of seagrasses or considerable 

damage to remaining patches (Cabaço et al., 2005). Population genetics theory predicts the 

occurrence of bottleneck effects as consequence of disturbance and population size decline 

which could lead to lower allelic richness in disturbed areas. Our results did not reveal any 

indication of possible bottleneck effects around the areas of clam harvesting, which 
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indicates that species’ fast growth and recovery, in combination with frequent flowering 

rates and LDD of fragments may cancel out any disturbance effects on genetic diversity. 

However, we note that disturbance by clam harvesting in Ria Formosa has not been to date 

thoroughly quantified in a spatial explicit way. Future research could address this 

shortcoming which would allow testing hypotheses about the association between A and 

disturbance as well as possible rescue effects from undisturbed areas. 

The amount of data acquired in this study often challenged the computational 

capacities of the used infrastructure and proved to be unusual in population genetic studies, 

as the majority of classical population genetics software used here had difficulties managing 

this amount of input data. This indicates the development of methods and analyses of 

landscape genetics needs to be synchronized with the support for extensive data sets which 

are increasingly easier to collect. 

 

Figure 5.6. A frequent anthropogenic disturbance to the Zostera noltii population in the 
intertidal areas of the Ria Formosa lagoon is clam harvesting, occurring on low tide on the 

exposed sandbanks and mudflats. 

Synthesizing our results on the effect of landscape, or lack of it, on the genetic 

diversity of Z. noltii it seems clear that the species is highly resilient in Ria Formosa. We 

argue that this is partially due to the combination of fast clonal growth and LDD with 

frequent flowering and high seed production rates. This resilience seems to mitigate current 

anthropogenic and natural impacts, mostly physical removal either for clam harvesting or 

due to sediment dynamics, and is supported by the observed lagoon-wide Z. noltii 

distribution.  
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Identification of source and sink patches of seagrass propagules is a step towards 

identification of relevant areas for the maintenance of the species within the lagoon, aiding 

managers and interested stakeholders to delimit zones of strict protection which can ensure 

population maintenance through the lagoon. Our model of connectivity and circulation of 

propagules within the lagoon pointed out three zones potentially relevant for the transport 

of seagrass propagules within the lagoon, but also indicated that a very low number of 

particles stay within the lagoon, while the majority was washed out to the ocean with the 

ebb tide. However, it is important to point out that this model was driven by water forcing 

alone. In the field, movement of the floating fragments is strongly driven by wind, 

sometimes out-competing water current forcing (Erftemeijer et al., 2008; Berković, pers. 

observation). Hence, future work should model both water and wind forcing. In addition, 

density of canopy, i.e. abundance and morphotype of seagrass in source and sink areas differ 

greatly (Berković, pers. observation), affecting their. Adjusting the number of released 

propagules in each cell with the local abundance of seagrass should provide a more realistic 

estimation of connectivity pathways.  
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Chapter  6.  

General discussion 

 

 

This study revealed high dispersal capacity of asexual propagules of dwarf eelgrass 

Zostera	 noltii	 population in the Ria Formosa lagoon. Following the experimental work 

estimating the potential for this dispersal, individual based genetic analysis supported 

asexual long distance dispersal (LDD) as a relevant factor shaping the spatial genetic 

structure (SGS) of Z.	noltii	 in Ria Formosa lagoon. The sampling coverage used allowed to 

test a significant positive association between distance to physical disturbance and the 

probability of finding large clones. Finally, landscape genetics analysis revealed isolation by 

distance (IBD) effect across a scale of 3 km, but no other effect of landscape features on the 

SGS. 

 

6.1. Dispersal biology of Zostera	noltii	

	

The first section of this thesis focused on the dispersal biology of Z.	noltii where I 

tested the dispersal potential of sexual and asexual propagules (Chapter 2) and the post-

dispersal success of vegetative propagules, which had the highest dispersal potential 

(Chapter 3). The estimated potential dispersal of Z.	noltii fragments showed fragments could 

reach 2,300 km over a period of almost two months, under the assumption of unidirectional 

currents, highlighting that vegetative fragments should be considered an important 

dispersal propagules. The observed prolonged viability after detachment, essential for the 

estimated LDD, was lower than previously suggested viability period of Posidonia	oceanica 

fragments (Balestri et	al., 2011), comparable to that reported for Zostera	marina (Ewanchuk 

and Williams, 1996) and higher than reported for Halophila	johnsonii and Halodule	wrightii 

(Hall et	 al., 2006). This promotes the idea that fragment viability can support LDD in a 

number of seagrass species. Similar dispersal strategies are suggested in other macrophytes 
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(McKenzie and Bellgrove, 2008) and clonal marine invertebrates (Highsmith, 1982). In this 

thesis it is therefore suggested that the seagrass fragmentation leading to production of 

asexual propagules, and their successive dispersal, should be considered an extension of 

seagrass life history. Simultaneously, dispersal capacity of individual Z. noltii seeds was 

estimated to be under 30 cm, suggesting that seeds falling from the spathes are not likely to 

be exported out of the meadow. This suggests that reproductive fragments are necessary 

vectors for LDD of seeds, reinforcing the importance of fragments as seagrass dispersal 

propagules. Considerably higher dispersal potential of asexual propagules than of the sexual 

ones is of fundamental relevance for the classical interpretation of the species life history, 

and is likely to be extended to other seagrasses or other clonal aquatic plants (Gliddon et al., 

1987; Fischer and Van Kleunen, 2002). Suggested LDD of vegetative fragments therefore has 

an important role for the species’ dispersal biology, but in order to evaluate effective asexual 

dispersal (i.e., migration) we need to understand the reestablishment success of floating 

fragments.  

To the best of my knowledge this thesis was the first comparison of the sexual and 

vegetative dispersal potential of a clonal marine plant species, which produced data on 

dispersal potential and opened new questions on the success of LDD and its role in shaping 

genetic structure of the populations. With these aims in mind I carried out a study of post-

dispersal settlement success of vegetative fragments (Chapter 3). This study found 100% 

survival of settled fragments under certain conditions (short dispersal period and large size 

of fragments). Success was conditioned by presence or absence of the floating period, but 

not its duration within the dispersal regime. Even so, overall average success of post-

dispersal establishment was 34%, supporting the hypothesis that fragments’ dispersal and 

establishment is a conceivable process, relevant for species’ life cycle. Previously, Ewanchuk 

and Williams (1996) observed that fragments of Z. marina get entangled in the canopies 

start to root after a while, reaching for the sediment underneath them. In my own 

experimental study, a similar natural entanglement process was manipulated to simulate 

fragment settlement. My results indicated that fragments settled in this way have relatively 

high survival rates. In their study Ewanchuck and Williams (1996) suggested that the 

asexual reproduction via fragments is not relevant for the population due to improbable 

successful establishment. Applying the results of establishment success found in my study, I 

estimated, under several assumptions, that asexual LDD could produce about 68 ha/y of 

new seagrass meadow with the average density observed in Ria Formosa. Such cover 

represents 5% of the estimated distribution of Z noltii in 2002 (Guimarães et al., 2012). This 

further supports the idea shown in this thesis that asexual dispersal indeed plays a relevant 
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role in the functioning of the population in the Ria Formosa lagoon. 

During both experimental studies presented here, on dispersal potential and the 

post-dispersal settlement success, additional traits were monitored to track the overall state 

of the fragments either during the dispersal phase or after it. Fragment damage, measured 

during the transport phase of dispersal, was more frequent in older section of the fragment. 

This suggests that Z. noltii may be adapted to promote protection of the apical shoot and the 

newer part of the plant. Corroborating this interpretation, Cabaço et al. (2005) showed that 

damage had a significant negative effect on plant growth and survival only when the apical 

shoot was removed. I believe that due to these mechanisms, even with high fragment 

damage (approaching 60% in currents of 30 cm/s), the potential colonization capacity of Z. 

noltii fragments does not seem to be diminished. Maintenance of the apical shoot enables 

longer dispersal phase, lowering the negative impact on the success of the fragments. A 

previous study on Zostera marina showed that the extended viability of positively buoyant 

fragments allows a dispersal of up to a month (Källström et al., 2008). This is about half of 

the time found for Z. noltii fragments in this thesis, emphasising the importance of 

vegetative fragments dispersal for this species. Even though Z. noltii fragments can carry 

flowering shoots with fruits or seeds, the importance of flowering shoot dispersal might be 

reduced by the limited flowering season and the low persistence of the spathes on the 

flowering shoots, which is dependent on their maturation stage (Alexandre et al., 2006).  

Besides reporting high success of post-dispersal establishment of fragments 

(Chapter 3), this study aimed to evaluate the condition of fragments surviving the transport 

phase. Fragments required more time to root if they were exposed to a period of floating 

prior to settlement, but once settled they took between one and three weeks to root, 

indicating fast adjustment to new conditions. Other measured parameters pertaining to 

fragments’ re-establishment success indicate ability to occupy space after the settlement.  

Fragments only branched once they settled and rooted, showing that plants do not invest in 

space occupation during the transport phase, presumably as this makes them more subject 

to breakage and damage observed in the first experiment (Chapter 3). Across all the 

experimental groups, more than 70% of fragments maintained the main apical shoot intact, 

corroborating previous findings about the importance of maintenance of the main apical 

shoot. Finally, the ratio of above:below ground biomass observed in this study, based on the 

previously published data for Z. noltii in this study area (Cabaço et al., 2012), implies that 

the settled plants are in a state typically observed in colonizing meadows. 
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Dispersal biology of Z. noltii described in this work does not differ much from 

dispersal of freshwater aquatic plants, which are known to disperse via fragments (Nichols 

and Shaw, 1986; Johansson and Nilsson, 1993; Boedeltje et al., 2003),  settle (Riis and Sand-

Jensen, 2006) and establish after dispersal (Barrat-Segretain et al., 1998). Only a few 

seagrass species were focus of dispersal studies as thorough as in here, as often the goal is 

dispersal of sexual propagules (Buia and Mazzella, 1991; Orth et al., 1994; Harwell and Orth, 

2002; Lacap et al., 2002). Recently, the body of literature on seagrass dispersal biology is 

growing and including the dispersal of vegetative propagules (Hall et al., 2006; Erftemeijer 

et al., 2008; Virnstein and Hall, 2009; Balestri et al., 2011; Berković et al., 2014; Thomson et 

al., 2014; Stafford-Bell et al., 2015). Virnstein and Hall (2009) suggested fragments 

displacement and dispersal as a consequence of a storm can explain sudden shift in species 

distribution for Halophila johnsonii and H. decipiens. This shift occurred across more than 20 

km distance, implying both dispersal of the fragments and their establishment in the new 

area. 

 

6.2. Landscape genetics of Zostera noltii in the lagoon 

 

First two studies in this thesis provided the information on the dispersal which 

might be taking place within the Z. noltii population. I then looked into spatial organisation 

of Z. noltii genetic structure to see if evidence of proposed dispersal processes could be 

found (Chapter 4). The main hypothesis here was that a signature of asexual LDD should be 

found in the clonal structure of Z. noltii population. Using an extensive individual based 

sampling I was able to corroborate this hypothesis. I found high genetic and genotypic 

diversity, but at the same time multiple identical multi-locus genotypes (MLGs) spread 

across tens of kilometres in the lagoon. Psex analysis confirmed that these repeated MLGs 

could not be explained by distinct sexual recombination events and were thus the copies of 

the same clone, or clonemates.  

In other seagrass genetics studies (Reusch et al., 1999; van Dijk and van 

Tussenbroek, 2010; Arnaud-Haond et al., 2012), similar observations of repeated MLGs over 

large spatial extents were used to estimate clones' age, calculating the distance between the 

samples of same MLG, and relating it with the rhizome elongation rates for their study 

species. This approach yielded very old clones in some species, reaching hundreds to 
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thousands of years (Reusch et al., 1999; Arnaud-Haond et al., 2012). The Ria Formosa 

lagoon is a relatively young environment, with a currently estimated time of origin at 6,000 

YBP (Andrade et al., 2004; C. Sousa, pers. comm.). For this reason I integrated 

paleoceanographic data on sea level change for this region when carrying out clones’ age 

estimation. This exercise did not lead to conclusive dates or points of origin for most of the 

large clones observed, because the available data only allowed tracing sea level changes 

back to a period of 20,000 YBP. The minimum estimated age of several individual clones 

within the lagoon surpassed 20, and even 30 thousand years. At that time the current lagoon 

area was on land, and these clones would have had to evolve in the open ocean and survive 

during tens of millennia and eventually be surrounded by the lagoon. To support these 

results this study also looked into another seagrass species found in the lagoon, Cymodocea 

nodosa. For this species, the same age estimation method resulted in a minimum of 50 

thousand years for a single dominant clone. Based on this alone, both species would find 

place on the list of the oldest living organisms on the planet. Due to the assumptions used in 

this simple age estimation method, e.g. undisturbed, straight line growth across 

homogenous habitat without barriers, any calculated age is a strong underestimation, 

making these large clones even older. However, I argue that effective asexual dispersal, 

through fragmentation, transport and re-establishment of fragments during the life of a 

clone, renders this age estimation method meaningless. Thus, I propose that the most 

parsimonious explanation for the large spatial extent of these clones is not this age 

determination model, which requires exclusion of asexual LDD, but instead a model that 

includes allows for asexual LDD, complemented with rhizome elongation.  

Fragmentation followed by dispersal has been reported for a range of clonal 

organisms (Highsmith, 1982; Ayre, 1984; Jackson, 1986; Wulff, 1991; Smith and Hughes, 

1999; Freeland et al., 2000; Ceccherelli and Piazzi, 2001; Cleavitt, 2002; De Meester et al., 

2002; McKenzie and Bellgrove, 2008). In seagrasses, detachment, drifting and re-rooting 

was observed for Posidonia oceanica (Diaz-Almela et al., 2008), two other Posidonia species 

in the Western Australia (Campbell, 2003) and for Halophila johnsonii and H. decipiens (Hall 

et al., 2006). Information on dispersal is therefore available, even though not in a systematic 

way. Implications of this type of dispersal on ecology and evolution of the species have not 

yet been looked at. This thesis links dispersal processes to population and landscape 

genetics, offering data to re-evaluate importance of asexual dispersal for the species biology. 

Asexual LDD has been reported for a range of seagrass species that cover a spectrum 

of sizes: from some of the larger species in the genus Posidonia (Campbell, 2003; Diaz-



150 

 

Almela et al., 2008) to some of the smaller species like Halophila johnsonii (Virnstein and 

Hall, 2009). Considering the latitudinal distribution of seagrass dispersal studies, there isn't 

any clear association between of geographic location and the capacity for asexual dispersal. 

Namely, studies where asexual dispersal was confirmed were carried out from Australia to 

Mediterranean and central Atlantic, both west and east coasts. The single most 

characteristic distinguishing Z. noltii from other seagrass species for which asexual LDD was 

reported, is its intertidal habitat in our study site. It is possible that the dynamics of the 

habitat facilitate the fragmentation and creation of asexual dispersal propagules, the 

transport by tidal currents and the post-dispersal settlement. Conversely, for subtidal 

species in most cases the dispersal mechanisms are not investigated, but data can be 

extracted from general observations. For C. nodosa, a larger and subtidal species also found 

in the lagoon, Barrio et al. (in prep) observed prolonged viability of fragments in similar 

experiments. A different aspect observed in that species is that after a certain period of time 

fragments become negatively buoyant and settle to the bottom where they root. For P. 

oceanica fragments, dispersal is likely achieved by drifting along the bottom seems 

(Boudouresque et al., 1990; Diaz-Almela et al., 2008) while for H. johnsonii Hall et al. (2006) 

suggested that fragments disperse on the surface and later settle to the bottom and root. 

Mechanisms of settlement might be dependent on the habitat and species, but it seems that 

the process may occur across a variety of environments. 

Decline in seagrass cover worldwide is today a very well documented fact (Orth et 

al., 2006; Short et al., 2006; Waycott et al., 2009; Tuya et al., 2013; Short et al., 2014; Fabbri 

et al., 2015). Understanding the dispersal biology of species and the consequences on the 

new and existing populations can prove beneficial for future management and conservation 

work. Even though a recent review on seagrass dispersal totally deemphasised the 

relevance of asexual dispersal and its possible role in species recovery after disturbance 

(McMahon et al., 2014), this thesis showed that dispersal of vegetative fragments can 

outcompete dispersal by rhizome elongation. This means that, at least for some species, 

colonization through asexual dispersal might be as fast as sexual dispersal. There is a risk of 

possible reduction of genetic diversity in patches developed from established asexual 

propagules after extinction, but this might be balanced by the migration rate of such 

propagules. Also, here and elsewhere it was shown that floating fragments can also 

transport maturing fertilized flowers which in turn can release viable seeds (Berković et al., 

2014; Barrio et al., in prep), further minimizing genetic diversity reductions. These are 

optimistic news for seagrass ecosystem recovery, but contingent on the removal of 

pressures that led to seagrass local extinction in the first place.  
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The second section of this thesis tested the association between a source of 

disturbance and the spatial distribution of large clones at the landscape scale (Chapter 4). It 

was expected that the areas of higher disturbance (i.e. sand barrier islands; Cunha et al. 

2005) will have higher levels of clonal diversity (Weider, 1992; Reusch, 2006). Clonal 

probability (Pcn) was used for quantification of probability of sampling same clone n or 

more times in the whole sample. Results of this analysis revealed higher probability of 

sampling large clones with increased distance from the barrier islands. It is argued that this 

association can result from two non-mutually exclusive processes linked to disturbance 

regime - different clone survival restricting how large a clones can grow and different 

allocations to sexual and asexual reproductive components. This opens up for future 

research on the mechanisms and relative importance of each of these two hypotheses.  

Finally, I used landscape analyses to test the link between the spatially explicit 

variables putatively affecting dispersal and microsatellite based genetic differentiation of Z. 

noltii population in the Ria (Chapter 5). Spatial autocorrelation unravelled pattern of 

isolation by distance (IBD) on a scale of 3 km where pairwise genetic kinship was larger 

than expected randomly. However, most of the other analyses failed to give meaningful or 

conclusive results, e.g., hindering the identification of any spatially organised clusters of 

genetic co-ancestry.  Besides the characteristics of the habitat which shapes connectivity 

pathways, mechanism of connectivity itself will play a major role in the formation of genetic 

differentiation across the space. Landscape dynamics, change in complexity following tidal 

cycle, and the LDD shown in this study both work towards removal of the effect of landscape 

and spatial distance on genetics. Namely, intertidal lagoon is a morphologically complex 

area, providing multiple possible connectivity paths. Twice a day tidal cycle homogenizes 

this habitat in an uniform continuous landscape where shortest connectivity between any 

two points can be equal to the shortest theoretical connectivity (i.e., as the crow flies). 

Dispersal of asexual propagules is facilitated by homogenisation of the habitat, even more so 

considering the homogenous habitat during high tide is the most suitable for LDD of floating 

fragments. 

Due to an unprecedented sampling effort (approximately 3,200 ramets collected), 

density of sampling plots in space (average distance to the closest plot 96 m) across the 

entire lagoon, and use of nine highly polymorphic microsatellite loci, there should be no 

limitations to the detection of fine scale, changes in the genetic structure. The above 

mentioned effect of IBD extended over a larger spatial scale indicates natal dispersal, i.e. 

pollen or seeds which are retained close to the parental plant (Berković et al., 2014) or fast 
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rhizome elongation rates observed for this species and in this system (Peralta et al., 2005; 

Peralta et al., 2008) in proximity of parent organisms, might be causing the observed higher 

kinship across scales smaller than 3 km. Beyond this scale, LDD of asexual propagules 

generates gene flow throughout the lagoon, contributing to the observed SGS. 

 

6.3. Conclusions and future remarks 

 

This thesis demonstrated the capacity of Zostera noltii to disperse by asexual 

propagules across large spatial scale (Chapter 2). The observed settlement success rates 

imply that transport for longer periods can result in effective dispersal (Chapter 3). The 

clonal structure of Z. noltii in the Ria Formosa lagoon is most likely the consequence of long 

distance dispersal of asexual propagules. At the same time, it is under the influence of the 

physical disturbances (Chapter 4). Combination of rhizome elongation and short-scale 

dispersal of propagules leads to higher kinship between the individuals on a scale of 3 km, 

while long distance dispersal of asexual propagules enhances the gene flow on larger scales 

(Chapter 5). 

It was shown to some extent that dispersal via vegetative fragments is also likely for 

the sympatric species Cymodocea nodosa suggesting further research should be done 

following a similar framework as carried out in this study of Z. noltii for other seagrass 

species. Studies of (asexual) dispersal are becoming more common, but a shared framework 

is necessary, defining terms and research questions, which would ease comparison between 

species and allow generalisation of observed patterns. Based on already available data a 

synthesis on the importance of asexual dispersal in seagrasses is surely forthcoming and 

would help direct future research.  

There is an ongoing debate over the importance of sexual versus asexual 

propagation. Approach used in this thesis to study the dispersal traits, could add weight on 

the balance in favour of asexual propagation. In the light of threats to seagrass meadows, 

this thesis raises questions important for evaluation of response of these clonal organisms 

on the disturbance. Results presented here indicate association between the disturbance 

and the clonal structure, setting the path for further research in this direction. Two 

interesting questions would be quantification of the relative importance of clone survival 
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and direct monitoring of allocation between sexual and asexual reproduction as a function 

of disturbance regime  
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