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II. ABSTRACT 
 

As a consequence of the world population growth, the demand for sea food 

resources is increasing. Consequently, worldwide fisheries transition from depleted 

finfish resources to alternative invertebrates species created a massive industry. Sea 

cucumber stocks have been overfished in Indo-Pacific Oceans as result of lack of 

effective management, non-regulated fisheries and an increasing demand from Oriental 

countries. The “beche de mer” demands have induced expansion of their fisheries 

worldwide and have resulted in catches of new target species from the Mediterranean 

Sea and NE Atlantic Ocean. With high commercial value and fragile life-history traits, 

sea cucumbers are particularly vulnerable to commercial fisheries, especially when 

there are no scientific knowledge to support their effective management.  

This study aims to fill in some of the gap in scientific data about sea cucumber 

populations, namely Holothuria mammata. It was assessed the genetic diversity and 

structure, connectivity and effective population size with novel polymorphic molecular 

markers (microsatellites). This analysis was done in several spatial scales and 

considering oceanographic patterns. Some morphometric traits were also analysed, such 

as the distribution of length and weight classes. 

The results showed that Holothuria mammata has globally high genetic 

diversity, higher genetic connectivity between Atlantic populations and genetic 

differentiation between Atlantic/Mediterranean and eastern/western Mediterranean 

basins. Effective population sizes were smaller in the Atlantic, showing some mutation-

drift disequilibrium. Oceanographic patterns were strongly correlated with the genetic 

differentiation patterns. Atlantic populations presented bigger individuals (i.e. length 

and weight) than Mediterranean ones, clearly associated with environmental conditions, 

and ecology features. Biometric data and genetic analysis allowed us to establish the 

three potential stocks inhabiting the geographic area and improve the biological 

knowledge of this new target species. This information will be useful to suggest the first 

recommendations to its effective fishery management, and future comparisons in order 

to assess the fishery effects either at genetic and/or morphometric level. 

 

Key Words: Holothuria mammata, genetic structure, oceanographic patterns, 

microsatellites, morphometry, fishery management. 
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III. RESUMO  

Com a população Mundial na ordem dos 7,2 biliões e projeções a apontar para 

um aumento populacional na ordem dos 9.6 biliões para 2050, é previsto um aumento a 

nível Mundial pela procura dos recursos alimentares marinhos. Apesar de uma recente 

estabilização da quantidade de capturas de pescado, estima-se que pelo menos, 28.8% 

dos stocks pesqueiros globais estejam sobreexplorados. A situação poderá ser 

potencialmente preocupante, se tivermos em conta que o atual nível de capturas apenas 

se tem mantido relativamente constante devido a uma persistente procura por novos 

recursos pesqueiros e pela expansão das áreas de pesca. Como consequência do 

aumento da procura internacional por recursos pesqueiros, existe evidências muito 

claras que o nível trófico médio das espécies alvo está a diminuir, significando uma 

transição nas descargas de pescado, de espécies de nível trófico alto (e.g. grandes 

predadores), para níveis tróficos baixos (e.g. invertebrados e peixes planctívoros). Esta 

situação resulta de um declínio Mundial dos predadores de topo e consequentemente, 

um aumento da pressão pesqueira em outros recursos pesqueiros, como os 

invertebrados, na qual os moluscos, crustáceos e equinodermes representam os mais 

afetados com o aumento da demanda global. Além dos impactes ambientais negativos 

originados pela pesca (e.g. arrasto de fundo, by-catch, rejeições, sobrepesca, entre 

outros) também são registadas alterações na biologia e ecologia dos organismos 

marinhos, desde variações na diversidade genética e estrutura das populações, a 

modificações na estrutura e função dos ecossistemas marinhos. A sobre-exploração 

promove a perda de diversidade genética, através da redução do tamanho efetivo da 

população (NE), e consequentemente uma diminuição da variação genética e fenotípica, 

tal como o tamanho corporal, fecundidade, fitness e taxa de crescimento. Estes efeitos 

têm-se mostrado não reversíveis mesmo após a libertação da pressão pesqueira. A 

implementação de uma gestão pesqueira sustentável permite manter a diversidade 

genética das populações e o seu potencial a nível evolutivo, mas também a resiliência 

dos ecossistemas. 

A falta de gestão efetiva das pescas e/ou políticas de conservação, são das 

principais causas para a sobrepesca. Na maioria dos casos tal deve-se à falta de 

conhecimento ecológico e/ou biológico das espécies comerciais. Este tipo de situações 

acontece repetidamente quando se inicia a exploração de novos recursos pesqueiros. 

 Os stocks de pepinos de mar nos Oceanos Indo-Pacifico têm sido um exemplo 

em que a sobre-exploração ocorreu não só pela falta de conhecimento 
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ecológico/biológico, mas também devido a pescas não regulamentadas. Com os stocks 

asiáticos praticamente esgotados, e sendo a procura por este recurso pesqueiro cada vez 

maior, a forma mais fácil de responder a esta procura, foi expandir a pesca de pepinos 

do mar a um nível global, na qual inclui o Mar Mediterrâneo e Oceano Atlântico. Com 

alto valor comercial e histórias de vida frágeis, os pepinos do mar estão particularmente 

vulneráveis á pesca comercial, principalmente quando não existe estudos biológicos, 

ecológico ou genéticos que possam aconselhar e suportar a sua gestão sustentável.  

Estudos recentes têm demonstrado o potencial farmacológico das holotúrias, 

com descobertas de compostos com propriedades antimicrobianas, antioxidantes e 

anticancerígenas.  

Os pepinos do mar são espécies igualmente importantes para o funcionamento 

saudável dos ecossistemas, pois para além de decomporem a matéria orgânica contida 

nos sedimentos, reciclam os nutrientes, estimulando o crescimento de microalgas e 

prevenindo eutrofização dos fundos marinhos.  

Consideramos urgente iniciar estes estudos de modo a averiguar os parâmetros 

biológicos e ecológicos fundamentais para dar início a uma gestão de pescas 

regulamentada e efetiva. Informações como taxas de crescimento e mortalidade, 

longevidade, biologia reprodutiva, duração larvar, diversidade genética, padrões de 

conectividade e estrutura genética, permitiram implementar uma gestão pesqueira 

sustentável a médio e longo prazo. No âmbito desta necessidade de fornecimento de 

informação sobre os pepinos do mar, este estudo analisou e avaliou a diversidade 

genética e respetiva estrutura genética populacional, a sua conectividade e o tamanho 

efetivo das populações. Para tal foi feita uma recolha de amostras de 8 populações ao 

longo do Mar Mediterrâneo e do Oceano Atlântico, cobrindo grande parte da 

distribuição geográfica da espécie alvo de estudo, a Holothuria mammata. 

Desenvolveu-se também marcadores moleculares específicos para esta espécie (i.e. 

Microssatélites). A análise genética foi feita em varias escalas espaciais e tendo em 

conta os padrões oceanográficos das correntes de superfície, de forma a compreender 

como se processa a dispersão larvar de acordo com a conectividade genética.  

Para além das análises genéticas, também foi analisado algumas características 

morfométricas como a distribuição de classes de comprimento e peso.  

Os resultados deste estudo mostraram que a Holothuria mammata apresenta a 

nível geral, grande diversidade genética, uma maior conectividade genética entre as 

populações do Atlântico e diferenciação genética entre Atlântico/Mediterrâneo como 
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também entre as bacias este e oeste do Mediterrâneo. As populações do Oceano 

Atlântico apresentaram evidências de um desequilíbrio entre a mutação e a deriva 

genética. Também verificou-se que o tamanho efetivo das populações do oceano 

Atlântico são menores do que as populações do Mar Mediterrâneo. 

Os padrões oceanográficos das correntes de superfície demonstraram estar 

fortemente correlacionados com os padrões de diferenciação genética encontrados. 

 A nível das análises morfométricas efetuadas, verificou-se que a Holothuria 

mammata apresenta uma morfometria alométrica, evidenciando uma alteração na forma 

corporal á medida que o animal cresce. As populações do oceano Atlântico 

apresentaram indivíduos maiores, quer a nível do cumprimento como a nível do peso, 

do que as populações do mar Mediterrâneo. Estas diferenças corporais estão associadas 

às diferentes condições ambientais, tal como a disponibilidade de habitat e alimento, e 

também às características ecológicas, como a competição por alimento. 

As análises biométricas e genéticas, permitiram-nos identificar os stocks 

existentes na área geográfica do estudo e contribuir para o conhecimento da biologia 

desta nova espécie com interesse comercial. Pelo menos três stocks devem ser 

considerados; um stock para as populações do Atlântico, e dois stocks para o Mar 

Mediterrano (Bacias Este e Oeste).   

A informação contida nesta Tese, terá grande utilidade na sugestão das primeiras 

recomendações para uma gestão efetiva das pescas. Adicionalmente, estes dados irão 

servir para futuras comparações quer a nível genético, como a nível morfométrico, de 

modo a avaliar os efeitos da pescaria.  

 

 

Palavras-chave: Holothuria mammata, estrutura genética, padrões 

oceanográficos, microssatélites, gestão de pescas. 
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1.  Introduction  
 

1.1. State of the World Fisheries 

 

Oceans, covering nearly 71% of Earth surface, are the oldest reservoir of 

biodiversity, being our main life support system. The goods and services provided from 

marine biodiversity are harboured on a huge and still increasing list, being the human 

the main beneficent (Roff & Zacharias, 2011). Earth’s population suffered an important 

growth during the last centuries, from about 600 million people in 1700 to 6.3 billion in 

2003 (Cohen, 2003). According recent predictions, the current 7.2 billion is projected to 

increase by almost one billion people in the next eleven years, reaching 9.6 billion in 

2050 (United Nations, Department of Economic and Social Affairs, 2013). As 

consequence of this population growth, the demand for food is also increasing specially 

from marine resources.  

Despite apparent stabilization of overall global capture fisheries (at 90 million 

tonnes; Figure-1), the percentage of overexploited stocks has exhibited a general 

increasing trend in the last decades (32,5 % of global stocks in 2008 were 

overexploited), although more recent data shows a decreasing of overexploitation to 

28,8% in 2011 (FAO, 2014) . In this thesis I will use the “stock” definition provided by 

Begg et al. (1999): ‘a “stock” describes characteristics of semi-discrete groups of 

fish/invertebrates with some definable attributes which are of interest to fishery 

managers’. 

Figure 1: World capture fisheries and aquaculture production (Million tonnes) between 1950 and 2012. 
Source: adapted from (FAO, 2014) 
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Overfishing not only causes negative ecological consequences, it also reduces 

fish/invertebrate production, leading to adverse social and economic consequences. It is 

estimated that rebuilding overfished stocks could increase fishery production by 16.5 

million tonnes and annual rent by $32 billion, which would increase the food security, 

economies and well-being of the coastal communities (FAO, 2014), especially in under-

development countries, where marine food resources are a vital source of protein and 

essential nutrients. 

From a global perspective, there is strong evidence that the trophic level of 

target species are decreasing, meaning a transition in landings from high (big predators) 

to low trophic levels (invertebrates and planktivorous pelagic fish). This situation is 

causing global decline of top predators and consequently, an increasing pressure shifted 

to non-finfish resources (Pauly, 1998). In fact since 1950 until present, invertebrates 

total global catch has been increasing from 2 to 12 million tonnes; nevertheless, this 

expansion has only been maintained due to new target species as cephalopods and 

echinoderms and a higher number of countries fishing invertebrates (Anderson et al., 

2011a; Eriksson et al., 2012). 

 

1.2. Genetics and Fisheries Management 

 

Extensive evidence exists indicating the direct impacts of fishing on marine 

biodiversity, but also the collateral ones such as bottom trawling (e.g. Jones, 1992), by-

catch (e.g. Hall et al., 2000) and discards (e.g. Harrington et al., 2005). However, only 

recently its being recognized that fishing has also effects on the biology and ecology of 

marine organisms, from changes on genetic diversity and structure of populations, to 

modifications on the structure and function of marine ecosystems (Pope et al., 2000; 

Stokes & Law, 2000; Scheffer & Carpenter, 2003; Stockwell et al., 2003; Kuparinen & 

Merila, 2007; Roff & Zacharias, 2011; Allendorf et al., 2014). 

With the development of biochemical and molecular techniques, the discipline 

of population genetics has evolved from a theoretic field to a powerful empirical 

approach (Charlesworth & Charlesworth, 2009; Allendorf et al., 2013) . There are some 

subjects which can be address through the application of population genetics to fisheries 

management and to conservation (Ryman & Utter, 1987; Ward, 2000; Abaunza et al., 

2008; Kochzius et al., 2010; Abdul-Muneer, 2014). 
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1.2.1. Genetic Diversity and Effective Population Size 

 

 Genetic diversity, is a useful parameter to assess the “health” or fitness of target 

species. In fact, the genetic diversity is recognized by the International Union for the 

Conservation of Nature (IUCN) like one of the three forms of biodiversity, that needs to 

be conserved (Roff & Zacharias, 2011) in order to maintain the evolutionary potential of 

species and populations (Allendorf et al., 2013). Overexploitation promotes the loss of 

genetic diversity (Allendorf et al., 2014; Pinsky & Palumbi, 2014), either by reducing 

population size directly and/or decreasing the number of migrants between local 

populations (Hindar et al., 2004; Allendorf et al., 2013). Nevertheless, the number of 

reproductively successful individuals, defined in population genetics as the effective 

population size or “Ne” (Watts et al., 2007),  determines the level of inbreeding and the 

rate of loss of genetic diversity. When a species suffers strong reductions of its effective 

population size (e.g. by overfishing), the stochastic effect of genetic drift increases, 

unbalancing the drift-mutation equilibrium, in which the rate of mutation (i.e. source of 

diversity) is not enough to balance the loss of diversity determined by the genetic drift 

(Hare et al., 2011; Allendorf et al., 2014; Pinsky & Palumbi, 2014). Moreover, as Ne 

declines, the balance between natural selection and genetic drift is also altered, 

favouring changes in gene frequency  (Hare et al., 2011). A reduced Ne could also erode 

the genetic variation by increasing the probability of fixation of deleterious alleles, 

instead of fixation of adaptive alleles chosen by selection, reducing overall fitness and 

limiting adaptive responses to environmental change (Allendorf et al., 2013). On the 

other hand, the use of historical Ne could be very useful to the fisheries management 

because the pre-exploitation estimates of abundance can be corrected, considering that 

demographic data from fisheries resources are normally collected after the onset of 

exploitation  (Ovenden et al., 2013). 

 

1.2.2. Population Genetic Structure 

 

Most marine species are subdivided (or structured) in time and space by several 

local random mating units, or subpopulations (Roff & Zacharias, 2011; Allendorf et al., 

2013). In fisheries management, these demographically cohesive groups of individuals 

are considered as stocks, although many other definitions have been provided until now 

(Çiftci, 2002; Ovenden et al., 2013 and references therein). Knowledge of populations 



17 
 

structure is critical for the understanding the biology of the species (Gharbi & Said, 

2011) and especially important to their fishery management because of the delimitation 

of stocks could optimize the overall productivity and protect the most vulnerable 

populations (ICES, 2014). Moreover, preserving the population structure and the 

evolutionary processes that lead to structuring among populations (i.e. drift, selection, 

migration and mutation), will guarantee the range of diversity within a species over a 

variety of environmental conditions, and therefore enhance the natural resilience to 

perturbations (Eldridge et al., 2009). 

 

1.2.3. Connectivity 

 

Genetic connectivity or gene flow is the number of migrants interchanged 

between populations that successfully contribute to gene pool (Hedgecock et al., 

2007a). Gene flow is an evolutionary force that reduces genetic differences between 

populations and increases variation within populations. Understanding population 

connectivity is an essential pre-requisite for implementing effective fishery 

management, either in delineation of appropriate scales for management as well in the 

development of networks of marine protected areas (MPAs) (Fogarty et al., 2007). A 

right design of MPAs network will maximize larval export and spillover of adults to 

adjacent fishing areas, allowing higher yields and profits, while maintaining self-

persistence (i.e. inter-reserve connectivity) of their subpopulations (Halpern, 2003; 

White et al., 2008; Gaines et al., 2010).  

 

1.2.4. Selection 

 

Overharvesting promotes unnatural selection (i.e. fisheries), through removal of 

phenotypes most chosen by natural and sexual selection, and leaving survivors with 

relatively high fitness to the fishing selection, but less optimal with respect to natural 

selection, jeopardizing the evolutionary potential of species (Thériault et al., 2008; 

Allendorf et al., 2013). In fish for example, about 20–30% of the variation in life-history 

traits, such as age and size at maturation, is heritable (Stokes & Law, 2000; Law, 2007), 

therefore the effects of harvesting on individual life histories should receive more 

attention. 
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Several examples have been published showing the fishery effects on the 

exploited stocks: reduced body size (Grift et al., 2003; Olsen et al., 2004; Consuegra et 

al., 2005; Swain et al., 2007), earlier age at maturation (Grift et al., 2003; Olsen et al., 

2004; Swain et al., 2007), slower growth rate (Swain et al., 2007), earlier time of 

spawning (Consuegra et al., 2005), and low fecundity (Hutchings & Baum, 2005; 

Jørgensen et al., 2007; Biro & Post, 2008). Therefore, fisheries are an important source 

of selective pressures favouring particular life histories, morphologies and behaviours. 

Morphometric data such as length and weight, although being considered basic, can be 

useful for morphological and life historical comparisons between stocks at several 

spatial scales (Froese, 2006). These baseline data could help on the implementation of 

effective management and conservation policies, mainly when ecological and biological 

information from the new target species is lost, such as on European sea cucumbers 

(González-Wangüemert et al., 2014a). 

Recent studies have also demonstrated that fisheries reduce the genetic diversity 

of the populations (Pérez-Ruzafa et al., 2006; Pinsky & Palumbi, 2014; González-

Wangüemert et al., 2015). Genetic changes due to fisheries cannot be avoided in most 

cases, but they should be detected and measured their magnitude (Allendorf et al., 

2014). Therefore, the genetic monitoring can reveal a comprehensive picture of the 

target population status, by assessing both ecological and evolutionary time frames, 

being this methodology more reliable and cheaper than traditional monitoring 

approaches (Schwartz et al., 2007).  

 

1.3. Oceanographic Currents. 

 

The marine realm allows many marine species to be widely distributed, through 

the dispersal of larvae, migration and aggregation (Roff & Zacharias, 2011). As referred  

previously, genetic studies can provide valuable information about connectivity patterns 

between populations; ocean currents could help to spatially predict how the connectivity 

occurs (Roff & Zacharias, 2011). Therefore, the general pattern of oceanographic 

surface circulation in our sampling distribution area is described below. 
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1.3.1. Northern Atlantic Ocean Surface Currents 

 

 North Atlantic Current (NAC) reaches the meridian zone of the North Atlantic 

(Figure 2) divided in two main branches, one as a Northeast Drift Current called Eastern 

North Atlantic Central Water Subpolar mode (ENACWsp), and the other one as a 

Southeast Drift Current called Eastern North Atlantic Central Water subtropical 

(ENACWst) mode. Between the NAC modes there is a transition zone, where the 

Portugal Current System is formed (Pérez et al., 2001). 

 
Figure 2- Surface circulation of the northern North Atlantic as derived from drift experiments (adapted from Krauss, 
1986 in Pérez et al. (2001)). LC, Labrador Current; NAC, North Atlantic Current; GS, Gulf Stream; and PC, Portugal 
Current Meridionally-ruled area, flow associated with the NAC toward the north. Zonally-ruled area, flow associated 
with the northern limb of the Subtropical Front. Numbers are transports in Sverdrups (1 Sv"106m3 s~1). 

  

This system is composed by a slow, offshore, basin scale equator-ward flow 

(Portugal Current, PC) and a fast, Iberian slope scale, seasonally reversing coastal flow, 

the Portugal Coastal Current. During Autumn/Winter, predominance of strong south-

southwest winds, favours coastal convergence of surface circulation northwards, 

transporting warmer subtropical waters (ENACWst) over the upper slope and shelf 

break (aprox. 200 m deep) and preventing the off-shelf export of coastal water masses 

(Álvarez-Salgado et al., 2003). This surface poleward current is called the Portugal 

Coastal Counter-current (PCCC) and it is driven by the large scale atmospheric pressure 

distribution in the North Atlantic(Coelho et al., 2002) .  

In late spring/summer, the increase in the pressure gradient between the Azores 

and Portugal induces the formation of north/northwestern winds, shutting down the 
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PCCC, and originating instead, a coastal upwelling and a southward surface current in 

the vicinity of the shelf break, the Portugal Coastal current (PCC). The PCC transports 

recently up-welled cold and nutrient rich ENACWsp in the north (>45º N), and warmer 

and nutrient poor ENACWst (<40º N) in the south. 

However, recent studies ((Relvas et al., 2007; Nolasco et al., 2013) point out 

evidences that PCCC ( in these studies designated as the Iberian poleward current, IPC) 

is active during summer, suggesting interannual variability of the oceanographic 

regimes in the Iberian Coast. 

Also on the Portuguese coast an undercurrent mixed with ENACWst and 

mediterranean outflow waters, extends vertically from 1500m to the bottom of surface 

mixed layer (Ambar (1986) in Coelho et al., 2002) and moves poleward permanently 

(Coelho et al., 2002). This subsurface occasionally reaches surface along the west and 

southwest coast, particularly in winter (Álvarez-Salgado et al., 2003). 

At the southeastern coast of Iberia (Figure 3), the Portuguese-Canary eastern 

boundary currents moves eastward into the Gulf of Cadiz, performing a quasi-

permanent cyclonic eddy near the Cape of São Vicente, and moving further east towards 

the Strait of Gibraltar, feeding the Atlantic inflow into the Mediterranean Sea (Criado-

Aldeanueva et al., 2006; García-Lafuente et al., 2006), and part, moves southward re-

joining the Canary current. 

 

 
Figure 3 – Scheme of the surface circulations in the Southern Iberian Coast and the Portuguese-Canary eastern 
boundary current that veers eastward into the Gulf of Cadiz, and eventually feeding the Mediterranean Sea. N2 is a 
branch of the larger-scale Portuguese–Canary eastern boundary current; SVE is the Cyclonic eddy off Cape San 
Vicente; N1 is cyclonic circulation bounded by a shelf break front; CCC is a warmer coastal counter current. 
Source: Adapted from García-Lafuente et al. (2006).  
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On northeastern Africa, the Portugal current (PC) and the Azores current, will 

feed the Canary Current (CC). This equator-ward, broad, yearlong surface flow, is 

influenced by summer upwelling events, in response to the trade winds. Further south, 

in the vicinity of the Cape Verde Islands, this current is divided curving toward the west 

helping to create the North Equatorial Current (Batteen et al., 2000; Barton, 2001).  

  

1.3.2. Mediterranean Sea-Overall Functioning 

 

This semi-enclosed sea is strongly affected by evaporation, precipitation, and 

river runoff (Millot & Taupier-letage, 2005). The Mediterranean Sea evaporation is the 

core engine that promotes the entrance of Atlantic Waters (AW) through the Strait of 

Gibraltar, in order to balance the difference in sea water levels between Northeastern 

Atlantic Ocean and Mediterranean Sea.  

When AW passes through Gibraltar strait is modified increasing density due to 

evaporation, and suffering temperature changes due to climate seasonality. In winter, 

Northwestern and Northeastern Mediterranean basins, suffer marked cooling and 

evaporation, induced by cold dry air masses and strong northerly winds (Millot & 

Taupier-Letage, 2005). AW sink and mix with denser waters underneath creating the 

Levantine intermediate waters (LIW) and the Deep Mediterranean Waters (MWs). 

Considering the volume of AW entering trough Gibraltar Strait, it is estimated 

that 90% of this water mass forms the LIW and MWs (10% evaporates), showing an 

average residence time of 50 to 100 years (Millot & Taupier-Letage, 2005). Finally, 

these colder, saltier and denser MWs outflow and diverge deeper in the northern 

Atlantic Ocean, where it can be recognised at 1000-1200 meters.  

 

1.3.2.1.Western Mediterranean Sea Surface Currents 

 

Western Mediterranean Sea  (WMS) surface circulation is mainly driven by the 

inflow of AW (i.e. Atlantic jet, AJ) through the Strait of Gibraltar, wind patterns 

(André, G., P. Garreau, V. Vernier, 2005) orographic features and evaporation, 

producing different circulation regimes, seasonally and inter-annually.  Therefore, we 

will consider in detail only the most prevailing circulation systems during summer and 

early autumn, covering the main reproduction season and larvae dispersal phase of 

Holothuria mammata. 
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The influx of AW moves firstly northeastwards due to the orientation of the 

strait, and usually starts describing a year around persistent clockwise gyre in the west 

of the Alborán Sea, designated by Western Anticyclonic Gyre (WAG) and a second, 

less intense and recurrent clockwise gyre at east of Alborán Sea, called Eastern 

Anticyclone Gyre (EAG). Both Gyres are separated by the Alborán Ridge, and confined 

between the strait of Gibraltar at western limit and the Almeria-Orán front forming the 

eastern limit of the Alborán circulation system (Renault et al., 2012). 

 

 
Figure 4- The red line represents Almeria-Orán front. The red arrows represent the boundary of the Atlantic Jet. And 
the orange circles display the Western Anticyclonic Gyre (WAG) and the Eastern Anticyclonic Gyre (EAG) 
positions, the numbers 1, 2, 3 in parentheses refer to the Western Alborán basin, the Alborán ridge, and the Eastern 
Alborán basin, respectively. Adapted from Renault et al. (2012). 
 

The WAG and EAG circulation regime prevails in summers months (Figure 4), 

when AW kinetic energy (KE) is stronger, the single anticyclonic gyre (WAG) regime 

is more recurrent in winter months, when KE decreases (Millot & Taupier-Letage, 

2005; Renault et al., 2012). The Almeria-Orán frontal zone separates this relatively 

fresh surface water mass with Atlantic origin, from the denser and modified 

Mediterranean water mass of the Algerian basin (Renault et al., 2012). 

After restructuring itself due to the Coriolis effect, (Millot & Taupier-Letage, 

2005), the AJ forms two main branches, the first one which is predominant when the 

EAG is well defined (i.e. in late Summer-early Autumn), flows into the Algerian sub-

basin forming the Algerian current (AC), and the second branch (Figure 5) that inflows 

to the Northwestern sub-basin, through the Ibiza and Mallorca Channel, forming the 

Balearic Current (BC). The AC flows from Alborán Sea to the east along continental 
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slope of northern coast of Africa (Sayol et al., 2013) and the BC flows along the 

northwest coast of the Balearic Islands (Heslop et al., 2012). 

  

 
Figure 5- The Balearic Sea with main currents Northern Current (NC), Balearic Current (BC) and AW inflows 
through the Ibiza and Mallorca Channels. A ‘blocking’ eddy (yellow circle dashed line) and the re-circulation of the 
NC above the eddy (yellow dashed line) are also indicated. Adapted from: Heslop et al. (2012). 

 

The intensity of the EAG and Northern Current (NC) modulates the circulation 

to the eastern (to form the AC) as well as the inflow of AW to the Northwestern sub-

basin (to form the BC), being only in summer when the NC decreases, that southern 

waters progressively invade the Balearic sub-basin (Pinot et al., 2002; Sayol et al., 

2013). 

The AC will generate wide cyclonic open sea eddies, some of them reaching the 

Balearic Islands (Millot & Taupier-Letage, 2005), but will continue to transport AW 

along slope, part through the western coast of Corsica forming the Corsica Vein, and the 

other part through the Channel of Sardinia to form the Tyrrhenian vein and Eastern 

Mediterranean vein (Figure 6). Both (Corsica, Tyrrhenian Vein) water masses will join 

at the Lingurian sea, reorganizing itself again as the Western Basin Gyre. This gyre will 

continue north-westerly along slope, forming the Northern Current near the Gulf of 

Lions. This modified cold saline water mass, will proceed southward, closing its cycle 

when exiting to the North Western sub-basin through the Ibiza channel, or/and being 

retroflected cyclonically to form, along with the inflow of AW, the Balearic Current 

(Sayol et al., 2013).  
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Figure 6 - Schematic representation of the main currents characterizing water circulation in the Western 
Mediterranean. Adapted from: Patarnello et al. (2007). 

 

1.3.2.2. Eastern Mediterranean Surface Currents 

 

After entering the Channel of Sicily, AW circulates southward, branching into 

Tunisia coast and shelf veins, and a third inter-annual meandering vein that flows 

northerly into the Ionian Sea, forming mesoscales eddies (Figure 7) (Hamad et al., 

2005; Millot & Taupier-Letage, 2005). At Libia, both parts of Tunisian vein merge 

hence becoming a Libyan vein, moving along slope in eastward direction. Instability 

dominates the Libyan basin, promoting eddies that moves away from the Coast to 

southern Ionian (Hamad et al., 2005). The “Libyo-Egyptian Current” develop 

anticyclonic eddies, that moves and accumulate in the Western Levatine feature (∑LW). 

Instability of the AW circulation in the Middle East slope, also promotes small scale 

eddies that accumulate and decay in the Eastern Levantine feature (∑LE).  From the 

Turkish slope until the Rhode Island, the Asia Minor current generates meanders, some 

of them evolving to small eddies (Millot & Taupier-Letage, 2005). The Eastern basin 

gyre at the Rhode Island enters the Aegean Sea and divides into a Northwestern and a 

Southwestern veins. The Northwestern vein flows along the Turkish slope most of the 

year, except in summer, where a sub-vein flows southward due to Melten winds and 

join the black sea outflow. The Southwestern vein moves along southern slope of Crete 

until Ierapetra, but then it flows toward ∑LW and again around the eastern Levantine. 

Therefore most of AW exits via the Aegean west of Crete. AW continues northwards 

trough Ionian Sea, where it re-constitutes the eastern gyre before bifurcating into a 

northern vein that penetrates into the Adriatic and mixes with river run-off and 

eventually joins the westward vein that bypassed the Adriatic. Both ones continue along 
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the southern tip of the Italian peninsula and Sicily closing the Eastern Basin gyre circuit 

(Hamad et al., 2005). 

 

 
Figure 7 - Surface circulation scheme in the eastern Mediterranean basin, the Western Levatine feature (∑LW), and 
the Eastern Levantine feature (∑LE). Adapted from: Hamad et al. (2005) 
 

1.4. Study Case: Sea Cucumbers. 

 

1.4.1. Ecological Role 

 

Sea cucumbers comprise more than 1400 species worldwide belonging to 160 

genus (Navarro, 2012). Ecologically, holothurians are important deposit and filter 

feeders having significant roles in recycling nutrients, stimulating microalgae growth, 

and mixing the upper sediment layers (MacTavish et al., 2012).  

In benthic communities, they act as recyclers of nutrients and are agents of 

bioturbation (Uthicke, 1999), allowing the oxygenation and preventing the stratification 

and hardening of sediments (Bruckner et al., 2003). Moreover, they actively feed on 

benthic microalgae, fungi and bacteria, avoiding excessive development of 
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microorganisms, increasing the aerobic layer of sediments and avoiding eutrophication 

(Uthicke, 1999; Hamel & Mercier, 2008).  

Some sea cucumbers consume large quantities of suspension or sediment 

organic matter, converging organic detritus and releasing nitrogenous compounds which 

can be used by algae (Uthicke & Klumpp, 1998; Uthicke, 2001) and seagrasses 

(Wolkenhauer et al., 2010), increasing their productivity, thus producing more available 

food for herbivores (Uthicke, 2001). Removal of sea cucumbers in some habitats may 

therefore reduce primary production for the whole food chain and negatively affect 

sediment infauna by reducing the aerobic layer of sediments (Uthicke, 1999; Purcell, 

2013). Some sea cucumbers showing suspensivorous feeding are also helping  to 

regulate water quality, carbonate content and pH of the water (Massin, 1982). 

Holothurians are also important preys for fish, seastars and crustaceans (Francour, 

1997). 

 

1.4.2. Food Potential and Sea Cucumber Fisheries 

 
The decline of several traditional fin-fisheries (Hutchings & Baum, 2005; Pauly 

et al., 2005; Eldridge et al., 2009), brings our concern to one heavily exploited 

invertebrate: sea cucumbers. They are also known as “beche-de-mer,” “trepang,” or 

“haisom” and are mainly an Asiatic feeding custom, (Chen, 2003). They have been a 

popular luxury food item in the Asian dried seafood markets for centuries (Purcell, 

2013), but also considered as medicine (Chen, 2003) and aphrodisiac (Ramón et al., 

2010a). Holothurian nutritional profiles have demonstrated the presence of high protein 

content, antioxidant and bioactive compounds (Bordbar et al., 2011; Roggatz, 2012) . 

Records from their utilization can be traced back to 1368–1644 BC in China 

(Chen, 2003) but during this last millennium the Indo-Pacific regions have started to 

harvest and trade sea cucumbers driven primarily by the Chinese demand (Anderson et 

al., 2011b). During the last 6 decades sea cucumber fisheries have grown exponentially 

with an increase in global captures of 2300 tonnes of wet weight in 1950 to 30 500 

tonnes of wet weight in 2006 (Conand & Bryne, 1993; Anderson et al., 2011b) and 100 

000 tonnes in 2010 (FAO, 2010). In 2000, about 6 000 tonnes of processed (i.e. mostly 

dried) animals were exported to Asian markets, having a value over 130 million US 

dollars (FAO, 2010).  
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Nowadays, at least 3 million fishers from 70 countries worldwide capture sea 

cucumber (Purcell, 2013), in which most of landings are exported to Hong Kong and 

then re-exported mainly to China (Anderson et al., 2011b), with some target species like 

Apostichopus japonicus reaching almost US$ 3000/kg (Purcell et al., 2012) (Figure 8). 

 
Figure 8 - Map of global sea cucumber catch as exported to Hong Kong. Lines indicate great circle arc between the 
cities with the largest population in each country or region and Hong Kong. Colour reflects the starting year of the 
recent fishery.  Source : Adapted from Anderson et al.  (2011). 
 

Although 66 species of sea cucumbers represent global captures of about 100 

000 tonnes annually (FAO, 2010) there is a lack of biological information for some of 

these target species (Ramón et al., 2010). In general, sea cucumbers have some 

biological traits that makes them quite vulnerable to fisheries such as slow growth rate, 

late age at maturity, high larval mortality, low rate of recruitment, slow rate of 

movement and easy access by fisherman (Uthicke et al., 2004; FAO, 2010; Anderson et 

al., 2011b; Purcell et al., 2013). Moreover, due to their synchronized gonochoric 

broadcast spawning behaviour, their fertilization success is population density-

dependent, meaning that if densities are reduced by 50 % , it can result in a reduction of 

more than 50% in recruitment (Uthicke & Conand, 2005), a process called Allee effect 

(Allee, 1938).  

Purcell et al. (2013) carried out a global analysis assessment, finding that 58% of 

sea cucumber fisheries were overexploited (contrasting with the 30% overexploitation 

of global stocks of fish (FAO, 2012)), 14% fully exploited, and 27 % non-fully 

exploited (Figure 9) 
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Figure 9 - Current status of sea cucumber fisheries in global fisheries (nº of fisheries= 69). Source: adapted from 
Purcell et al. (2013). 
 

Considering the ever increased demand by Asian consumers and that most Indo-

Pacific fisheries of sea cucumber are overexploited, depleted or in a moratorium state, 

countries already started to explore new target sea cucumber species, with increasing 

popularity in Asian market (Sicuro & Levine, 2011). Fisheries of sea cucumber are 

being developed in Northeastern Atlantic Ocean and Mediterranean Sea (Sicuro & 

Levine, 2011; González-Wangüemert et al., 2013b, 2015) being their main target 

species H. sanctori, H. mammata, H. tubulosa, H. polii, H. arenicola and Paratichopus 

regalis (Abdel Razek et al., 2007; Aydin, 2008).  

In Turkey, harvest and exportation to Asian market rapidly increased from 20 

tonnes of sea cucumber in 2002 (Aydin, 2008) to 555 tons in 2012 (González-

Wangüemert et al., 2014a), provoking the reduction of genetic diversity, size and 

weight of individuals from the main fishery areas (González-Wangüemert et al., 2014; 

2015). Italy has initiated small-scale harvesting and processing sea cucumbers for 

exportation and local consumption mainly in southern regions (Sicuro & Levine, 2011; 

Sicuro et al., 2012). Spain has been traditionally harvesting P. regalis which is 

considered a delicacy, and the most valued seafood in the Catalan market, reaching up 

to €130/kg (Sicuro & Levine, 2011; González-Wangüemert et al., 2014b; Maggi & 

González-Wanguermert, 2015). In Spain, more than 10 companies are exporting sea 

cucumbers (H. tubulosa, H. forskali, H. mammata) to China  

(http://www.alibaba.com/countrysearch/ES/sea-cucumber-supplier.html), some of them with 

1-2 millions $ US of total revenue. In Portugal, several companies (e.g. Omegauasia 

Lda) are selling sea cucumbers, mainly Holothuria arguinensis, H. sanctori, H. forskali 

and H. mammata, offering supply ability among 2.000-50.000 Kg/month and prices 

http://www.alibaba.com/countrysearch/ES/sea-cucumber-supplier.html


29 
 

oscillating among 70-350 euro/kg (http://www.alibaba.com/countrysearch/PT/sea-

cucumber.html) depending on quality of product. 

All these data show that sea cucumber fisheries in the Mediterranean Sea and 

Northeastern Atlantic Ocean are starting to become an active industry. Given that most 

sea cucumber fisheries worldwide have not had an effective management due to the lack 

of biological, genetic and ecological data (among another reasons), it is mandatory to 

initiate studies focused on these new target species of sea cucumbers from the 

Mediterranean Sea and Northeastern Atlantic Ocean in order to assess their growth, 

mortality rates, longevity, reproductive biology, larval duration, genetic diversity, 

connectivity and genetic structure. All this information will allow a better understanding 

of the sea cucumber population dynamics, fishery effects and the delimitation of their 

stocks as management units.  

 

1.4.3. Pharmacological Potential 

 

Although the Chinese people have been using sea cucumber for medicinal 

purposes since more than 3000 years (Chen, 2003), only recently it has been 

demonstrated the antimicrobial, antioxidant, and anticancer potential of sea cucumbers 

(Sicuro & Levine, 2011; Roggatz, 2012). New compounds are being discovered, such as 

anti-malaria and anti-HIV therapy drugs (Sicuro & Levine, 2011) and also new 

biochemical compounds for fighting cancer with less toxicity than traditional ones 

(Attoub et al., 2013). 

 

1.4.4. Integrated Multi-Trophic Aquaculture Potential 

 

Aquaculture is one of the fastest-growing food producing sectors in the World, 

providing almost half of all fish for human consumption, and it is projected to rise to 62 

% in 2030 (FAO, 2014), a near future in which the human population is expected to 

reach around 8.3 billion people (United Nations, 2013). 

With increasing fishing pressure on wild stocks worldwide, responsible and 

regulated aquaculture development seems a sustainable way of supplying part of the 

demand from worldwide markets, releasing the pressure from wild populations and 

supporting efforts to preserve natural populations. However, standard aquaculture 

systems produce a large amount of particulate organic matter derived from unconsumed 

http://www.alibaba.com/countrysearch/PT/sea-cucumber.html
http://www.alibaba.com/countrysearch/PT/sea-cucumber.html
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feed, faeces and inorganic nutrient excretions (Troell et al., 2003; Slater & Carton, 

2007; Yokoyama, 2013). This could result in excessive release of dissolved nutrients 

into the water column, promoting harmful algal blooms and poisoning the farmed fish 

and surroundings (Neori et al., 2004; Imai et al., 2006). Moreover the increased bio-

deposition below the fish cages is known to change the chemistry of the bottom 

(Richardson, 2008; Yokoyama, 2013), shifting in most cases the composition of benthic 

communities from oxygen sensitive species to opportunistic species (Troell et al., 

2003).  

Integrated Multi-Trophic Aquaculture (IMTA) is a promising alternative that 

reassures greater environmental stewardship while increasing economic benefits for 

farmers and communities. The underlying principle is based on an ecosystem approach 

and involves growing several commercial species, with different trophic levels but with 

direct trophic linkage in the same system (Hughes & Kelly, 2006; Barrington et al., 

2009) . On this way uneaten feed, wastes, nutrients and by-products of fed species (e.g. 

finfish, shrimp) could be recaptured and converted into fertilizer, feed and energy for 

the growth of organic extractive species as filter feeders (e.g. mussels) and deposit 

feeders (e.g. sea urchins, sea cucumbers) and inorganic extractive species (e.g. sea 

weeds). IMTA has the advantage of providing diverse and safe food products (Neori et 

al., 2004), extra income to farmers (Troell et al., 2003; Yokoyama, 2013) and 

mitigation of the environmental impacts caused by aquaculture facilities, increasing the 

carrying capacity of farming areas and consequentially improving the overall health of 

the site with minimum potential risks to wild and cultured species (Rawson et al., 2002; 

Barrington et al., 2009). Due to their ecological characteristics (i.e. filter and/or deposit 

feeders), high global demand and alarming levels of overfishing, sea cucumbers are a 

suitable candidate for co-culture in the recently developing IMTA systems (Slater & 

Carton, 2007; Nelson et al., 2012; Yokoyama, 2013; Domínguez-Godino et al., 2015), 

mainly because they can fill one of the main ecological niche of IMTA by filtering the 

larger organic matter particles (Nelson et al., 2012). 

 

1.5. Biological Model: Holothuria mammata (Grube, 1840) 

 

Sea cucumbers are invertebrates from the phylum Echinodermata, having a 

limbless soft bodied, with a cucumber form. The genus Holothuria belongs to family 



31 
 

Holothuriidae and is one of the most diverse genus in the Holothuroidea class (Borrero-

Pérez et al., 2010).  

 
Figure 10 - Adult sea cucumber Holothuria mammata. 

 

Holothuria mammata is a temperate species occurring throughout the 

Mediterranean Sea and Northeast Atlantic Ocean, including the continental Atlantic 

coast of Portugal and the Macaronesian Islands of the Azores, Madeira and Canary 

Islands (Borrero-Pérez et al., 2009) (Figure 11). 

 
Figure 11 - Geographical distribution of Holothuria mammata. Source:  adapted from CUMFISH Webpage. 

 

H. mammata coloration has scarce variation, with uniform dark purplish brown 

in dorsal and ventral side and brighter tube feet and papillae (Figure 10). The ventral 
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side is densely covered by pedicles which are organized in 5 rows. The species has 

small Cuvierian tubules but few in number and never expelled (Borrero-Pérez et al., 

2011; Navarro, 2012). Its lenght average is 23 cm, and may reach 35 cm in Canary 

islands (Navarro et al., 2013), and ranged between 13 to 25cm in Ria Formosa 

(Siegenthaler, 2013). 

They can be normally found within rocks crevices showing mainly nocturnal 

activity (Navarro, 2012; Navarro et al., 2013). Despite its rocky habitat preference, H. 

mammata was also found on sandy/muddy bottoms with seagrass from Ria Formosa 

coastal lagoon (Portugal), although showing low densities (González-Wangüemert et 

al., 2013a; Siegenthaler, 2013). 

Scarce information is available about the reproduction or larval duration on this 

species. Santos  (2013) established that the maximum sexual maturation state 

(Gonadosomatic Index, GSI) of H.mammata from Peniche (W Portugal) is reached only 

in April, suggesting a single annual spawning season in this region.  

Recent breeding and rearing trials, showed that they have a broadcast spawning 

behaviour in mid-summer with a planktotrophic larval cycle duration of 19 days until 

the pentactula settlement stage (Dominguez-Godino, personal communication).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



33 
 

2. Objectives 
 

The main purpose of this study is to characterize genetically populations of 

Holothuria mammata from 8 localities, four of them belonging geographically to 

Northeastern Atlantic, and the other ones to Mediterranean Sea. Its genetic diversity and 

structure will be analysed considering several spatial scales.  

Moreover, morphometric data (weight vs. length) will be studied through their 

frequency distributions, in order to implement baseline data for future morphological 

comparisons between stocks with different fishery pressure. This assessment will be 

fundamental to initiate proper management policies in order to conserve this novel 

target species. Therefore, this work is focused on these particular aims: 

 

1. To evaluate the genetic diversity patterns of H. mammata through its 

geographical distribution. 

2. To assess the genetic structure of this target species at different spatial scales 

considering the role of current and historical barriers to gene flow in several potential 

genetic breaks: Atlantic and Mediterranean basins, Western and Eastern Mediterranean 

Sea, geographical isolation of the oceanic islands (Canary archipelago) and isolation 

among coastal vs. islands samples. 

3. To establish the potential stocks present in our study area considering the 

genetic and morphological data. 

4. To estimate the effective size of H. mammata populations. 

5. To evaluate the status of the target species by analysing the distribution of size 

and weight classes of their populations. 

6. To discuss potential impacts of fisheries on H. mammata under genetic and 

morphological perspectives. 

7. To suggest first recommendations towards sustainable management of the H. 

mammata fishery in Mediterranean Sea and Northeastern Atlantic Ocean. 
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3. Methodology 
 

3.1. Sampling  

 

The samples were caught under the CUMFISH project 

(PTDC/MAR/119363/2010) in which all individuals were collected by scuba diving and 

free diving between 2011 and 2013.Thirty-five individuals were sampled from each 

locality (Figure 12), except for Canary Islands where only 20 individuals were caught 

because this location is considered the south boundary of H. mammata distribution, 

being its density there lower than in other locations. Holoturia mammata individuals 

were identified on the basis of external characters and habitat, sacrificed by freezing and 

preserved in 100% ethanol until tissue dissection. Tissue samples of internal muscle 

bands or wall were removed from each specimen and preserved in 100% ethanol. 

 

 

 
Figure 12 - Location of the sampling sites in the Atlantic Ocean and Mediterranean Sea. (GC: Gran Canaria; PE: 
Peniche; OA: Olhos de Água; PF: Faro; MU: Murcia; MA: Mallorca Island; GI: Girona; KU: Kusadasi. 
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3.2. DNA Extraction, PCR Amplification and Screening 

 

Total genomic DNA was extracted from muscle tissues according to the 

procedure of Sambrook et al. (1989), with minor modifications. 

The development of the Holothuria mammata specific primers for 

microsatellites, was performed by Ecogenics™ from 15 samples belonging to different 

locations. Size selected fragments from genomic DNA were enriched for SSR content 

by using magnetic streptavidin beads and biotin-labeled CT and GT repeat 

oligonucleotides. The SSR enriched library was analyzed on a Roche 454 platform 

using the GS FLX titanium reagents.  

The total 7’082 reads had an average length of 159 base pairs. Of these, 435 

contained a microsatellite insert with a tetra- or a trinucleotide of at least 6 repeat units 

or a dinucleotide of at least 10 repeat units. Suitable primer design was possible in 138 

reads, of which 52 were tested for polymorphism. Finally nine microsatellites were 

chosen according to feasibility and genetic diversity criteria (Table I). 
 

 

 
Table I- Primers sequences, type of repeats, size, nº number of alleles found in 15 samples and annealing temperature 
for PCR amplification. 

Locus Primer sequences 5’- 3’ Repeat type Size bp° Nº of 
alleles TA [°C] 

Holmam_00008 F 
R 

CGATGTTGAGCCATGACCAC 
CGCTACTTGCGAGATGTCTAC (GT) 15 64 -97 6 56 

Holmam_00457 F 
R 

GGGACCAAAAAGCAAAACAAAAC 
GCCCAATCAAGTCGAAACCC (AAAC)7 136 -144 3 56 

Holmam_01787 F 
R 

ATGCTTAGCTGGCTTGTGTG 
CCTTCTTTGGCCATTAAGATGC (TG)15 84 -114 9 56 

Holmam_01843 F 
R 

CGGTGCATGCCCAGTTTG 
GCCACGCCTATTACTTTCCC (AC)12 76 -101 10 56 

Holmam_02503 F 
R 

AGAACAGAGAGTTGGTTGTAAGC 
AGCAGTCACTCTAGAATCTCC (TG)13 131-160 8 56 

Holmam_03018 F 
R 

CTGAGCAGCAACCTAATGCC 
ACGCAACAAATTTACACGGAAG (TG)13 69 -124 12 56 

Holmam_03415 F 
R 

CCATTGTTTAGGTCCTCGG 
GATGGCCCACTGGTAGAGAG (CA)13 180 -198 3 56 

Holmam_05474 F 
R 

ATACACACCCTCACCCACAC 
AATGTCCTCCTCCACGTAGC (CA)13 105 -129 6 56 

Holmam_06203 F 
R 

TCTTTTAAGTGGCATTGTGTCC 
TACCTTCTGCTCCTGACCTG (AC) 12 106 -119 6 56 
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Samples from 248 individuals were screened for variation at each of ten 

microsatellite loci. Polymorphisms were tested by PCR, performed according to 

conditions shown in Table II. 

 
Table II-PCR conditions, with reagents concentration, number of cycles and temperatures, respectively 

Reagents Stock concentration Amount [μl] Final amount/ 
Concentration PCR cycle 

ddH2O - 4.1 4.1 μl  
Buffer solution* 10x 1 1x 95°C → 15 min  

dNTPs 2 mM 1 200 μM     95°C → 30 s 
    56°C → 45 s 
    72°C → 45 s 

30 
Cycles FW. Primer° 2 μM 0,2 0,04 μM 

RV. Primer 2 μM 0,8 0,16 μM 
M13 Primer°° 2 μM 0,8 0,16 μM  
Hotstar Taq 5 u/μl 0,1 0,5 u     95°C → 30 s  

DNA 5 ng/μl 2 10 ng     53°C → 45 s 
    72°C → 45 s 
72°C → 30 min 
    10°C → ∞ 

8 
Cycles *  Qiagen, buffer stock (10x) containing 15 mM MgCl2 

° with 18 bp M13-tail (5’-TGTAAAACGACGGCCAGT-3’) at 5’-end 
°° labelled with a fluorescent dye  

 

Individuals were genotyped by assessing allele size on an ABI 3700 automated 

sequencer, using forward primers labelled with 6FAM (SIGMA), HEX (SIGMA) and 

NED (Applied Biosystems). Genotyping was performed through two multiplexes of 

five/four microsatellites each. Allele scoring was carried out using STRand v2.4.59. 

 

3.3. Genetic Analysis 

 

3.3.1. Genetic Diversity 

 

As parameters of genetic diversity were considered: total and mean number of 

alleles, number of private alleles, allele frequencies, expected (He) and observed (Ho) 

heterozygosity. They were calculated using Genetix v.4.05.2 (Belkhir et al., 1996-2004) 

Genetic linkage disequilibrium between locus pairs was estimated according to Weir 

and Cockerham (1979) and tested on contingency tables under the null hypothesis of 

independence (P <0.05) (Genetix v. 4.05.2). 

Deviations from Hardy-Weinberg (HWE) genotype proportions were 

characterized by FIS and tested using exact test in the software Genepop version 4.2.1  

(Rousset, 2008). The observed genotype frequencies which deviated significantly from 

HW proportions, were analysed through the program Micro-Checker v.2.2.3 (Van 
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Oosterhout et al., 2004) in order to infer the most probable causes for those deviations. 

Since Micro-Checker' main assumption of HW equilibrium, overestimates null allele 

frequencies when there is natural inbreeding populations (i.e. when populations are not 

in HW proportions), estimations of null allele frequency for each population and locus 

was obtained through the Expectation Maximization (EM) algorithm of Dempster et al. 

(1977) implemented in FreeNA software  (Chapuis & Estoup, 2007). Also, FreeNA was 

used for evaluating possible differences between estimations of global and pairwise FST 

values including (i.e. INA) and excluding null alleles (i.e. ENA), in order to decide the 

feasibility of adjusting genotypes in the data set.  

To distinguish the natural inbreeding of the species from the presence of null 

alleles, INEST software v1.0 (Chybicki & Burczyk, 2009), was used, which uses an 

individual inbreeding approach model (IIM) to estimate simultaneously null allele 

frequencies at each locus and the average level of natural intra-population inbreeding. In 

order to use IIM model, 500 000 Markov Chain Monte Carlo (MCMC) iterations, 10 

000 n-th updates (i.e. thinning), and a burn-in period of 50 000 were used. Then, it was 

performed a Bayesian procedure of model comparison. For this purpose INEST 

computes Deviance Information Criterion (DIC) for each model; according with 

Chybicki & Burczyk (2009), the lowest DIC is corresponding with the model best 

fitting to data. 

 

3.3.2. Genetic Structure 

 

Microsatellites markers are very variable, therefore a set of statistical approaches 

to assess the spatial genetic structure of H. mammata was used. First, the quantification 

of the differentiation among locations through FST (i.e. using the estimator θ of Weir & 

Cockerham (1984)) was performed in Arlequin version 3.5 (Excoffier & Lischer, 2010), 

and then we tested the allele-frequency heterogeneity using an exact test and the p-

values to check the significance of genetic differentiation.  

 Tests of genic and genotypic differentiation (i.e. G-based) for all pairs of 

populations (Raymond & Rousset 1995a; Goudet et al. 1996) were performed on 

GENEPOP version 4.2.1 (Rousset, 2008). Cavalli-Sforza distances were also computed 

between pairwise samples. Levels of statistical significance were adjusted according to 

a sequential Bonferroni correction for multiple comparisons (Rice, 1989). 
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 Genetic differences were also analysed using a principal component analysis 

(PCA) on the allelic frequencies y She et al. (1987) and implemented with the “ade4” 

package (Chessel et al., 2004) in R software (R Development Core Team, 2013). 

An analysis of molecular variance (AMOVA) was carried out to assess the 

component of genetic diversity attributable to (i) variance between regions/groups; (ii) 

variance among populations within regions/ groups; (iii) variance within populations. 

First, Mediterranean and Atlantic basins were considered as groups and later “coastal” 

and “islands” groups. Also we considered edges and central geographical groups, and 

accordingly with FST results we grouped non-differentiated populations. Finally it was 

grouped populations according to biogeographic criteria. Arlequin v3.5 software was 

used to carry out these analyses.  

Population structure was also inferred using STRUCTURE v.2.2 software by the 

method of Pritchard et al. (2000) from multilocus genotype data. Each K was replicated 

10 times for 100 000 iterations after a burn-in period of 50 000, using sampling 

locations as prior information to assist clustering. Each simulation was performed using 

1) the admixed ancestry model and 2) the correlated allele frequencies model. 

STRUCTURE results were analysed in the program STRUCTURE HARVESTER 

v0.6.94 (Earl & vonHoldt, 2012), to calculate the ad-hoc ∆K statistic suggested by 

Evanno et al. (2005), which takes into account the change in the log probability of the 

data, in order to choose the number of clusters that best fit the data. 

 

3.3.3. Gene Flow 

 

To assess potential connectivity patterns on this species, isolation by distance, 

the coefficient of correlation between genetic and geographic/oceanographic distances 

was calculated using the Mantel test (10,000 permutations; Mantel, 1967) implemented 

in Genetix software. The geographical distance (km) was computed as the coastline 

distance between continental sampled locations and as the straight geographical distance 

for island populations. The oceanographic distances (Km), was computed according to 

the main oceanographic surface currents. 

To study gene flow among localities, migration rates based on maximum 

likelihood was obtained with the program MIGRATE v. 3.2.7 (Beerli & Felsenstein, 

2001;). MIGRATE uses a Markov Chain Monte Carlo based (MCMC) approach to 

explore all possible gene genealogies, providing estimates of the population size and 
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migration rates accordingly with the data. The MCMC run consisted of 10 short chains 

(sampling 50 000 trees) and one long chain (sampling 500 000 trees) with a burn-in 

period of 10 000 trees.  

For a better understanding of gene flow pattern between the sampled localities 

an assignment test was conducted using GeneClass2 software v.2.0 (Piry et al., 2004) to 

determine the most likely geographic origin of each individual using a frequency based 

method (Paetkau et al., 1995) .  

 

3.3.4. Bottlenecks 

 

Previous studies using mtDNA markers have demonstrated changes in H. 

mammata population sizes (Borrero-Pérez et al., 2011). For this reason, we tested the 

presence of recent population bottlenecks at our samples in the last 2Ne-4Ne 

generations (Cornuet & Luikart, 1996). Bottlenecks can be detected by the depletion of 

allele number and a transient heterozygosity excess. We used the Sign and Wilcoxon 

tests implemented in the program Bottleneck v.1.2.2 (Piry et al., 1999). Computations 

were based on the infinite allele model (IAM) and the two phase model (TPM). 

 

3.3.5. Selection 

 

To assess whether any  microsatellites loci are under selection, LOSITAN 

software v. 1.0.0 was used (http://popgen.eu/soft/lositan/) (Antao et al., 2008). This 

program evaluates the relationship between FST and expected heterozygosity (HE) to 

identify outlier loci. We performed 75 000 simulations with ‘neutral mean FST’ and 

‘force mean FST’, to increase the reliability of the mean FST and the entire microsatellite 

dataset under the Infinite Allele Model (IAM) and Stepwise Mutation Model (SMM). 

We choose confidence intervals of 99% to carry out a more conservative test for 

selection. 

 

3.4. Morphometry Analysis 

 

The total length (TL) and eviscerated weight (EW) for each individual with an 

accuracy ±0.1cm and ±0.1g respectively were registered. To improve the accuracy of 

the measures, the weight was registered after the death, evisceration and total cleaning 
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of the sea cucumbers. 298 individuals of H. mammata from 8 sampling localities were 

used for morphometric analysis. Regarding the measurements from Kusadasi (Turkey), 

length was measured after evisceration by Dr. Mehmet Aydin (Ordu University, 

Turkey), instead of registering the length when specimens were alive. Therefore, to 

compare the data from this locality with the other ones, we obtained an estimated length 

(i.e. length measurement before death) from the length-weight relationship resulting 

from all the length-weight data of individuals collected from the other localities 

included in this study (W = 5.62L – 31.01). 

The mean length and weight for each population/region is represented through 

bar graphics. Length-weight relationship (LWR) was established using the linear 

regression analysis where EW= a + b (TL), in which a is the intercept of the regression, 

and b the slope (i.e. growth coefficient). The significance of the regression was assessed 

by F-statistic, and the b-value for each species was tested by the t-test to check if it was 

significantly different from the isometric growth (i.e. b=3). When b is different from 3 it 

reflects an allometric growth, which could be positive (i.e. when b > 3) or negative (i.e. 

when b < 3) (Sokal & Rohlf, 1981). Data from Kusadasi (Turkey) were disregarded for 

LWR analyses, since it would bias results towards a linear relationship between 

eviscerated weight data and estimated length. 

One-way ANOVA was used to test differences in length and weight among 

localities and between Atlantic vs. Mediterranean regions, considering “locality / 

region” as factors. Pairwise comparisons followed by Bonferroni adjustment were used 

to determine which group differences were statistically significant. All the analysis were 

performed in R statistic software (R Development Core Team, 2013). 
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4. Results  
 
4.1. Genetic Diversity and Linkage Disequilibrium 

 

All nine microsatellites revealed high polymorphism (Table III), with a total of 

199 different alleles. Number of alleles per locus ranged from 13 at Holmam_00457 to 

31 at Holmam_05474. 

 
Table III: Primers sequences, type of repeats, size, nº number of alleles and annealing temperature for PCR 
amplification. 

Locus Primer sequences 5’- 3’ Repeat type Size (bp) Nº of 
alleles 

TA 
[°C] 

Holmam_00008 
F 
R 

CGATGTTGAGCCATGACCAC 
CGCTACTTGCGAGATGTCTAC (GT) 15 61 -105 21 56 

Holmam_00457 
F 
R 

GGGACCAAAAAGCAAAACAAAAC 
GCCCAATCAAGTCGAAACCC (AAAC)7 132 -176 13 56 

Holmam_01787 
F 
R 

ATGCTTAGCTGGCTTGTGTG 
CCTTCTTTGGCCATTAAGATGC (TG)15 87 -151 28 56 

Holmam_01843 
F 
R 

CGGTGCATGCCCAGTTTG 
GCCACGCCTATTACTTTCCC (AC)12 69 -119 21 56 

Holmam_02503 
F 
R 

AGAACAGAGAGTTGGTTGTAAGC 
AGCAGTCACTCTAGAATCTCC (TG)13 130-190 19 56 

Holmam_03018 
F 
R 

CTGAGCAGCAACCTAATGCC 
ACGCAACAAATTTACACGGAAG (TG)13 71 -155 29 56 

Holmam_03415 
F 
R 

CCATTGTTTAGGTCCTCGG 
GATGGCCCACTGGTAGAGAG (CA)13 185 -217 16 56 

Holmam_05474 
F 
R 

ATACACACCCTCACCCACAC 
AATGTCCTCCTCCACGTAGC (CA)13 71 -167 31 56 

Holmam_06203 
F 
R 

TCTTTTAAGTGGCATTGTGTCC 
TACCTTCTGCTCCTGACCTG (AC) 12 104 -144 21 56 

       
 

Considering all populations (Table V), mean allelic richness for Holothuria 

mammata was 22.1 alleles, with Murcia (SE Spain) and Kusadasi (Turkey) showing the 

highest values (14.2 and 13.7, respectively) and Gran Canaria (SW Spain) presenting 

the lowest one (9.7), probably due to smaller sample size (Table V). We found 42 

private alleles in total, with Kusadasi being the population with more private alleles (8) 

and Gran Canaria  and Peniche, the localities with lower values (2 and 3 respectively) . 

The observed and expected heterozygosity ranged from 0.501 (Olhos de Água. S 

Portugal) to 0.711 (Kusadasi, S Turkey) and from 0.758 (Faro, S Portugal) to 0.811 

(Mallorca, E Spain), respectively. Inbreeding coefficient (FIS) was positive and 

statistically significant in all sampling locations, indicating a possible deficit of 

heterozygotes (deviation from Hardy Weinberg equilibrium, HWE) (Table V). 

Analysis of the most probable causes for deviations of HWE using Micro-

Checker software, disregarded stuttering and large allele dropout, however several loci 

presented evidence for null alleles. Therefore, it was used freeNA software in order to 

compare FST values (Weir, 1996) from the original data set, and FST value obtained from 
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corrected data for null alleles, estimated by the ENA method ( Chapuis & Estoup 

(2007). There was no bias due to null alleles, as assessed when comparing ENA (i.e. 

excluding null alleles) global FST (0.0081) with INA (i.e. including null alleles) global 

FST (0.0089). Pairwise FST values (Table IV) with the INA and ENA showed similar 

trend, so we maintained the original data set for further analyses.  

 
Table IV-Estimates of FST values (Weir, 1996) for each pair of Holothuria mammata populations considering (above 
diagonal) and not using (below diagonal) the ENA correction described in Chapuis and Estoup (2007). 
Localities PE OA FA GC MU MA GI KU 
Peniche (PE) -------- 0.003 0.006 0.003 0.006 0.006 0.015 0.022 
Olhos de Água (OA)   0.002   --------   0.002 0.008 0.002 0.000 0.012 0.021 
Faro (FA)    0.002 0.000 -------- 0.000 0.002 0.006 0.016 0.021 
Gran Canaria (GC) 0.000 0.002 0.000 -------- 0.009 0.007 0.015 0.023 
Murcia (MU) 0.007 0.000 0.001 0.008 -------- 0.000 0.007 0.013 
Mallorca (MA) 0.005 0.000 0.005 0.003 0.000 -------- 0.006 0.013 
Girona (GI) 0.018 0.012 0.019 0.017 0.007 0.005 -------- 0.011 
Kusadasi (KU) 0.026 0.019 0.024 0.026 0.013 0.011 0.010 -------- 

 

In order to better understand the significant positive FIS values, INEST was used 

(Table V). The FIS (obtained by INEST software) was positive in Gran Canaria and 

Mallorca, with values of 0.264 and 0.140 respectively and in Peniche with 0.110. The 

INEST model with the best fitting in Peniche and Mallorca, is considering the presence 

of null alleles and inbreeding. For Gran Canaria, the best model indicated that the 

inbreeding estimate calculated is due to populations' inbreeding and some genotyping 

errors. The model for the other localities, indicated null alleles as the only factor 

explaining the excess of homozygotes: the FIS (INEST) was null on these populations 

(Table V). 

 

Table V-Estimates of genetic diversity of the 8 sampling sites of Holothuria mammata from the Mediterranean Sea 
and Northeastern Atlantic Ocean. 

Pop. Sample 
size Alleles Allelic 

Richness 
Private 
alleles Ho He FIS 

GENEPOP 
HPDl<FIS <HPDh 

INEST M 
PE 33 112 12.4 3 0,527 0,785 0.332* 0.000<0.110<0.273 n/f 
OA 32 112 12.4 4 0,501 0,790 0.369* 0.000<0.000<0.000 n 
FA 33 116 12.8 7 0,590 0,758 0.224* 0.000<0.000<0.000 n 
GC 19 88 9.7 2 0,562 0,760 0.265* 0.191<0.264<0348 f/b 
MU 33 128 14.2 6 0,613 0,807 0.243* 0.000<0.000<0.000 n 
MA 33 111 12.3 5 0,567 0,811 0.303* 0.023<0.140<0.257 n/f 
GI 31 110 12.2 7 0,593 0,796 0.258* 0.000<0.000<0.000 n/b 
KU 33 124 13,7 8 0,711 0,799 0.112* 0.000<0.000<0.000 n 

Total 247 199 22.1 42 0.585 0.797 0.267* 0.009<0.044<0.092 n/f 
HO: observed heterozygosity; HE: expected heterozygosity; FIS: deviation from Hardy–Weinberg proportions. 
 * P<0.001. FIS (INEST) is the mean unbiased inbreeding coefficient taking into account null alleles, and genotyping 
errors. M is the INEST model which best fit the data: n=null alleles, f=inbreeding, b=genotyping error.  
HPDl / HPDh is the 95% highest posterior density interval. 
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Girona (NE Spain) and Faro (S Portugal) localities presented linkage 

disequilibrium between two loci, Holmam_01787 and Holmam_02503. Also, 

Holmam_01787 and Holmam_03018 loci presented linkage disequilibrium in Olhos de 

Água (S Portugal) and all Western Mediterranean populations (i.e. Murcia, Mallorca 

and Girona). 

 When a larger spatial scale was considered in order to analyse the genetic 

diversity pattern, interesting results were found: higher values on allelic richness (20.1 

vs. 18.1), number of private alleles (35 vs. 19) and heterozygosity (0.62 vs 0.54) were 

registered in the Mediterranean region than the Atlantic one (Table VI). 

 
Table VI-Estimates of genetic diversity of Holothuria mammata between the Mediterranean Sea and Northeastern 
Atlantic Ocean regions 

Regions Sample 
size Alleles Allelic 

Richness 
Private 
alleles Ho He FIS 

GENEPOP 
HPDl<FIS <HPDh 

INEST M 
ATL 117 163 18.1 19 0.54 0.77 0.301*** 0.000<0.000<0.000 n 

MED 130 181 20.1 35 0.62 0.81 0.233*** 0.000<0.000<0.000 n 
 HO: observed heterozygosity; HE: expected heterozygosity; FIS: deviation from Hardy–Weinberg proportions. 
 * P<0.001. FIS (INEST) is the mean unbiased inbreeding coefficient taking into account null alleles, and genotyping 
errors. M is the INEST model which best fit the data: n=null alleles, f=inbreeding, b=genotyping error.  
HPDl / HPDh is the 95% highest posterior density interval. 

 
Among the 10 polymorphic loci, Holmam_05474 appears as candidate for 

positive selection in both mutation models. 

 
Figure 13 - Comparison of FST and He in polymorphic loci of Holothuria mammata to identify outliers and potential 
candidates for selection using LOSITAN software under the IAM. Graphical output shows the simulated confidence 
area for neutral loci (pale grey shading), positive selection (red area) and balancing selection (yellow bottom area). 
Loci outliers are tagged with labels. Locus Holmam_05474 is candidate for positive selection. 
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Figure 14 - Comparison of FST and He in polymorphic loci of Holothuria mammata to identify outliers and potential 
candidates for selection using LOSITAN software under the SMM. Graphical output shows the simulated confidence 
area for neutral loci (pale grey shading), positive selection (red area) and balancing selection (yellow bottom area). 
Loci outliers are tagged with labels. Locus Holmam_05474 is candidate for positive selection 
 

4.2. Genetic Structure 

 

The pairwise FST estimates for the 8 populations (Table VII), ranged from 0 

(between Olhos de Água & Mallorca and Murcia & Mallorca) to 0.030 (between 

Kusadasi and Gran Canaria). Significant differentiation (FST) was found between 

Kusadasi and all sampling localities. Girona was also significantly different when 

compared with all populations excepting with Mallorca (FST=0.009; p=0.095), that only 

showed significant differentiation with Peniche and Kusadasi (Table VII). Murcia 

presented significant differentiation with Gran Canaria and Peniche from Atlantic 

Ocean, and with Girona and Kusadasi from Mediterranean Sea. 

Although we found positive values of pairwise FST, no significant differentiation 

was found between Atlantic sampling localities (p>0.12). After sequential Bonferroni 

correction, significant differentiation was only found when comparing Kusadasi 

(Eastern Mediterranean) with all Atlantic Sea localities, and Girona with Peniche, Faro 

and Gran Canaria (Table VII). 
Table VII: Pairwise fixation indices (FST) between 8 sampling localities of Holothuria mammata (below diagonal) 
and respective p-values (above diagonal). 
Localities PE OA FA GC MU MA GI KU 
Peniche (PE) -------- 0.117 0.141 0.393 0.021*   0.039* 0.000* 0.000* 
Olhos de Água (OA)   0.008 --------   0.706 0.175   0.462 0.866 0.011* 0.000* 
Faro (FA)    0.007 0.001 -------- 0.529   0.300 0.105 0.000* 0.000* 
Gran Canaria (GC)    0.007 0.011 0.003 -------- 0.033* 0.131 0.000* 0.000* 
Murcia (MU) 0.012 0.003 0.004 0.015 -------- 0.985 0.039* 0.003* 
Mallorca (MA) 0.011 0.000 0.008 0.011 0.000 --------   0.095 0.013* 
Girona (GI) 0.023 0.017 0.024 0.025 0.011 0.009 -------- 0.002* 
Kusadasi (KU) 0.027 0.020 0.024 0.030 0.014 0.012 0.014 -------- 
* FST with significant values (P<0.05). Significant values after sequential Bonferroni correction are indicated in bold. 
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Since, H. mammata is present in the Mediterranean Sea and Atlantic Ocean, we 

tested if both regions (considering a larger spatial scale) are showing significant genetic 

differentiation such as it was demonstrated by other marine species. Our results (Table 

VIII) showed low but highly significant genetic differentiation among regions.  

 
Table VIII- Pairwise fixation indices (FST), (below diagonal) and respective p-values (above diagonal). 

Regions Atlantic Ocean Mediterranean Sea 
Atlantic Ocean ----------- 0.0000* 
Mediterranean Sea 0.0097 ------------- 

 
  

Pairwise estimates of genic and genotypic differentiation were also calculated 

(Table IX). Twenty-six of 28 pairwise genic comparisons (92.8%) were significantly 

different across all loci. The genic differentiation was not significant between two 

population pairs: Faro with Gran Canaria and Murcia with Mallorca. These same 

population pairs did not presented significant genotypic differentiation. Genotypic 

differentiation tests presented less significant differentiation (53.5%) than genic tests. 

Both genic and genotypic differentiation (highly significant with p ≤0.001) was found 

between: 1) Kusadasi with all Atlantic populations (i.e. Faro, Gran Canaria, Olhos de 

Água and Peniche); 2) Girona with all Atlantic populations; 3) Peniche with Mallorca. 

When considering both genic and genotypic differentiation, Kusadasi was significantly 

differentiated from all Western Mediterranean localities (MU, GI, MA). Some close 

Mediterranean localities, such as Mallorca and Girona, were both genic and genotypic 

differentiated. Genic and genotypic differentiation between some Atlantic and 

Mediterranean localities was also detected, such as Faro with Mallorca, Peniche and 

Murcia. No genotypic differentiation was registered between Atlantic populations. 
. 
Table IX-Total genic and genotypic differentiation between populations. 

Population pair Genic  Genotypic  

 X2 P-value X2 P-value 

PE & OA  53.1819   0.0000***           24.1975   0.1486 
PE & FA  35.9686  0.0071**           18.8824  0.3990 
OA & FA  34.0469  0.0124*           16.7399  0.5410 
PE & GC  32.3995  0.0197*           14.1606  0.7185 
OA & GC  51.5729  0.0000***           24.6982  0.1334 
FA & GC  26.3385  0.0922           14.7107  0.6817 
PE & CC   ∞  0.0000***           38.1237  0.0037** 
OA & CC  43.6410  0.0006***           22.6735  0.2034 
FA & CC  41.9650  0.0011**           21.8335  0.2394 

* FST with significant values (P<0.05). Sign. values after sequential Bonferroni correction are indicated in bold.



46 
 

GC & MU  45.2581  0.0003***           26.0105  0.0995 
PE & MA   ∞  0.0000***            ∞  0.0000*** 
OA & MA  43.1733  0.0007***           21.7408  0.2436 
FA & MA   ∞  0.0000***           36.8643  0.0054** 
GC & MA  45.1418  0.0003***           26.0245  0.0991 
MU & MA  25.0501  0.1235           13.0399  0.7891 
PE & GI   ∞  0.0000***            ∞  0.0000*** 
OA & GI  65.1538  0.0000***           43.1641  0.0007*** 
FA & GI   ∞  0.0000***            ∞  0.0000*** 
GC & GI  79.4786  0.0000***           48.0274  0.0001*** 
MU & GI  43.4457  0.0006***           25.1404  0.1210 
MA & GI  50.0020  0.0000***           29.8102  0.0393* 
PE & KU   ∞  0.0000***            ∞  0.0000*** 
OA & KU  83.8830  0.0000***           67.6200  0.0000*** 
FA & KU   ∞  0.0000***          ∞  0.0000*** 
GC & KU   ∞  0.0000***           53.8369  0.0000*** 
MU & KU  49.1747  0.0001***           31.2676  0.0268* 
MA & KU  55.0049  0.0000***           37.2653  0.0048** 
GI & KU  57.7138  0.0000***           41.9264  0.0011** 

P-value for each population pair across all loci (Fisher’s method). Significance of p codes: *0.01<p<0.05; 
**0.001<p<0.01;***p<0.001 
 

  The STRUCTURE software (Figure 15) identified two genetically differentiated 

clusters corresponding to Atlantic and Mediterranean regions, as the peak in ∆K was for 

K=2. These populations are consistent with the FST values obtained. A gradient of 

admixture between populations is observed, being this gradient lower in Eastern 

Mediterranean region (Kusadasi, KU). Considering the Atlantic localities, Olhos de 

Água (S Portugal) is showing the higher Mediterranean admixture.   

 
Figure 15 - Summary plot of estimates of Q at K=2. Each individual is represented by a single vertical line broken 
into K coloured segments, with lengths proportional to each of the K inferred clusters. The abbreviations correspond 
to the predefined populations. 

 

 The pattern of differentiation between sampled localities was studied trough 

Mantel correlation to establish the relationships among FST values and 
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geographic/oceanographic distances (Table X). The correlations presented significant 

positive values describing a pattern where higher genetic differentiation is observed 

between samples located to larger geographic and oceanographic distances (Figure 16). 

When Kusadasi is not included in these analyses, the correlation between geographic 

distance and FST values decreases and loses significance, however the correlation using 

oceanographic distances improves. 
 

Table X : Mantel test coefficient of correlation (r) and respective p-values between genetic (i.e. FST) and 
geographic/oceanographic distances of Holothuria mammata 

Mantel Test  

(10000 permutations) 

Geographic distances (km) Oceanographic distances (km) 
All Populations Without KU All Populations Without KU 

r (Pearson coefficient) 0.773 0.608 0.764 0.820 
P-value   0.000* 0.056   0.000*   0.004* 

* Coefficient of correlation with significant values (P<0.001).  
 

 
Figure 16- Relationship between pairwise FST and Geographic /Oceanographic distances for the 8 populations of H. 
mammata. 
 

To verify the genetic structure patterns previously described, analysis of 

molecular variance considering different groups (Table XI) were carried out (see 

Methodology section).  

The first grouping of sampling localities was justified by FST values considering 

three groups: Atlantic (PE, OA, FA, GC), south western Mediterranean (MU, MA) and 

other Mediterranean localities (GI, KU). This revealed low but significant percentage of 

variation among groups (0.91%; p=0.000) and high and significant variation within 

populations (98.48%; p=0.009). 
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When considering two groups as Island vs. Continental populations, hardly any 

variance was explained by the groups and most of the variation was within populations. 

Considering the localization of the samples according to the edges of distribution 

of H. mammata two groups were considered: a first one, harbouring the samples located 

on edges of distribution, PE (North-western) and GC (South-Western) and a second one 

including the rest of localities (OA, FA, MU, MA, GI, KU). Small but significant 

differentiation was found among groups (0.56%; p=0.000), and the variation among 

populations within groups was also significant (1.06%; p=0.000). 

The clustering of localities belonging to Atlantic (PE, OA, FA, GC) and 

Mediterranean (MU, MA, GI, KU) groups, found significant differentiation  

Finally, three groups according to biogeographic criteria were established: 

Atlantic (PE, OA, FA, GC), Western (MU, MA, GI) and Eastern Mediterranean (KU). 

0.97% of the variance was attributed to differences among groups, 0.60% among 

populations within groups, but most of the variance (98.43%) was significantly 

attributed within populations. 
 

Table XI Analysis of molecular variance (AMOVA) among different groups setup. 

Groups Hierarchical level Var. 
% 

Fixation 
indices 

P 
value 

∙ Atlantic (PE, OA, FA, GC) 
∙ SW Mediterranean (MU, MA) 
∙ Other Mediterranean (GI, KU) 

Among groups 0.91 ᶲCT =0.015  0.000* 
Among populations within groups 0.61 ᶲSC =0.006   0.109 

Within populations 98.48 ᶲST =0.009  0.009* 
∙ Island Populations (GC,MA) 
∙ Continental Pop. (PE, OA, FA, MU, 

GI, KU) 

Among groups -0.38   ᶲCT =0.01  0.000* 
Among populations within groups 1.42 ᶲSC =0.014  0.000* 

Within populations 98.96  ᶲST =-0.003   0.931 
∙ Edge Populations (PE, GC) 
∙ Central Populations (OA, FA, MU, 

MA, GI, KU) 

Among groups 0.56 ᶲCT =0.016  0.000* 
Among populations within groups 1.06 ᶲSC =0.010  0.000* 

Within populations 98.38 ᶲST =0.005   0.070 
∙ Atlantic (PE, OA, FA, GC) 
∙ Mediterranean (MU, MA, GI, KU) 

Among groups 0.76 ᶲCT =0.015  0.000* 
Among populations within groups 0.84 ᶲSC =0.008  0.005* 

Within populations 98.40 ᶲST =0.007  0.027* 
∙ Atlantic (PE, OA, FA, GC) 
∙ W Mediterranean (MU, MA, GI) 
∙ E Mediterranean (KU) 

Among groups 0.97 ᶲCT =0.015  0.000* 
Among populations within groups 0.60 ᶲSC =0.006  0.004* 

Within populations 98.43 ᶲST =0.009  0.004* 
*Significant values (p<0.05) 

 

Principal Component Analysis (Figure 17) based on the allele frequencies 

showed two mains groups: Atlantic localities on positive side of Component I and 

Mediterranean samples in the negative side. Kusadasi belonging to this last group was 

located on the negative side of both components and differentiated to the other 

Mediterranean localities grouped on the positive part of component II. Both components 

(I and II) explained 40.8% of the variance. 
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Figure 17 - Correspondence analysis plot based on the allele frequencies for the 8 populations of H. mammata. 

 

4.3. Genetic Connectivity and Effective Population Size 

 

Assignment tests (Figure 18) revealed a general pattern of high gene flow 

between Atlantic populations and consequently a low percentage of individuals were 

assigned to the population where they were collected (geographic origin), except for 

Gran Canaria with a 32% percentage assigned to the origin population showing a high 

self-recruitment. Olhos de Água had assignments to all sampled localities and Peniche 

and Faro to 7 locations. Olhos de Água and Peniche showed a high percentage of 

assignment to Faro with 25% and 28% respectively. 

In the Mediterranean region, Girona and Kusadasi showed the greatest 

percentage of individuals assigned to their own localities (i.e. 32% and 46%), meaning 

lower flow of migrants with another locations and more self-recruitment. However, it is 

important to stress the geographic distance between Kusadasi and any other of the 

Mediterranean sampling localities. In Murcia (SW Mediterranean) similar assignments 

were found with all localities except for Olhos de Água (assignments not registered). 
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Interestingly, 34% of Mallorca individuals (SW Mediterranean) were assigned to Olhos 

de Água (S Portugal). 

 

 
Figure 18 - Assignment tests of H. mammata individuals based on 10 microsatellite loci. The circular charts indicate 
the adjusted mean probability of the assigned individual actually belonging to a given population, based on the 
exclusion-simulation test. 
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 Effective population sizes obtained from MIGRATE analysis (Figure 19), 

showed that Kusadasi and Girona have the highest effective population sizes and Gran 

Canaria and Murcia the lowest ones. 

 
Figure 19- Column chart for each sampling location, showing the mutation scaled estimate of the effective 
populations size (Ne) for each sampling locality. 
 

MIGRATE results (Table XII) allowed us to identify the main sources and sinks 

between our sampled populations. In general, migration rates were higher between 

Atlantic locations than in Mediterranean ones, although the maximum migration rate 

was found between Kusadasi and Murcia (16.6). 

 

The main remarking results from the analysis with MIGRATE  are: 

 

1-High gene flow from Peniche to Olhos de Água and Faro. 

2-Mallorca could be a sink population from Peniche, Faro, Olhos de Água and Murcia, 

although Murcia and Olhos de Água are acting simultaneously as source and recipient 

between them, with high gene flow. 

3-High genetic exchange from Olhos de Água to Gran Canaria, which could be 

influenced due to small sample size of Gran Canaria.  

4-Girona and Kusadasi were the populations with the lowest exchange of migrants, 

except from Kusadasi to Murcia. 

5-Olhos de Água is showing a higher connectivity with SW Mediterranean (Murcia and 

Mallorca) than Atlantic region (Faro or Peniche). 
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Table XII-Migration rates (M = m/μ) based on 9 microsatellites loci of Holothuria mammata from sources (columns) 
to sink populations (rows). 

Locality Migration rates 
 PE to OA to FA to GC to MU to MA to GI to KU to 

Peniche ---- 4.6 4.1 2.7 2.8 5.3 2.8 2.9 
Olhos de Água 12.9 ---- 3.4 11.9 8.8 4.8 7.2 6.4 

Faro 12.3 4.9 ---- 5.0 4.5 4.4 6.6 5.3 
Gran Canaria 4.5 12.4 5.1 ---- 4.2 6.7 6.0 8.6 

Murcia 4.9 8.1 5.5 2.6 ---- 6.8 8.6 16.6 
Mallorca 12.8 7.8 9.3 4.2 9.9 ---- 2.2 1.8 
Girona 1.1 1.8 1.9 2.4 1.0 1.3 ---- 2.4 

Kusadasi 1.5 2.7 2.6 3.3 4.9 1.8 2.2 ---- 
 
 
4.4. Bottlenecks 

 
Tests for signatures of recent population bottlenecks (Table XIII) did not find 

any significant evidence considering Infinite Allele Model (IAM). However, Peniche, 

Faro, Gran Canaria and Murcia presented significant values for Wilcoxon and Sign tests 

under Two Phase Model (TPM), and Olhos de Água showed only significance for the 

Wilcoxon test under TPM. 
Table XIII-: Heterozygosity excess/deficiency under different mutation models in all populations and respective Sign 
and Wilcoxon tests. 

  Nº of locus with: PE OA FA GC MU MA GI KU 

In
fin

ite
 A

lle
le

 M
od

el
 (I

AM
) 

Si
gn

 T
es

t Expected He excess 5.47 5.44 5.45 5.44 5.47 5.44 5.44 5.47 
He deficiency 4 5 6 6 6 5 4 5 
He excess 5 4 3 3 3 4 5 4 
Probability 0.498 0.258 0.092 0.093 0.091 0.256 0.506 0.251 

W
ilc

ox
on

 te
st

 P (One tail for He 
deficiency 

0.285 0.410 0.101 0.101 0.179 0.751 0.589 0.410 

P (One tail for He 
excess) 

0.751 0.632 0.917 0.917 0.849 0.285 0.455 0.632 

P (Two tail for He excess 
and deficiency 

0.570 0.820 0.203 0.203 0.359 0.570 0.910 0.820 

Tw
o 

Ph
as

e 
M

od
el

 (T
PM

) 

Si
gn

 T
es

t Expected He excess 5.35 5.36 5.41 5.36 5.37 5.34 5.36 5.35 
He deficiency 8 6 7 7 7 6 6 6 
He excess 1 3 2 2 2 3 3 3 
Probability 0.004 0.104 0.024 0.026 0.026 0.107 0.104 0.105 

W
ilc

ox
on

 te
st

 P (One tail for He 
deficiency 

0.009 0.024 0.006 0.009 0.013 0.064 0.082 0.064 

P (One tail for He 
excess) 

0.993 0.981 0.995 0.993 0.990 0.975 0.935 0.975 

P (Two tail for He excess 
and deficiency 

0.019 0.048 0.013 0.019 0.027 0.128 0.164 0.128 

Parameters for T.P.M: Variance = 30.00; Proportion of SMM in TPM = 70.00%; Estimation based on 100 000 
interactions; He: Heterozygosity. Bold values are significant at P<0.05. 
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4.5. Morphometry Analyses 
 

A total of 298 sea cucumbers were collected and measured in eight localities 

from Northeastern Atlantic Ocean and Mediterranean Sea. In total, length ranged from 9 

cm to 43 cm and eviscerated weight from 17 gr to 235 gr. Holothuria mammata showed 

an average of length and weight of 21.07 ± 4.81 cm and 87.41 ± 40.79 g respectively 

(Table XIV). 

Peniche was the locality showing the biggest individuals reaching values of 

24.09 cm and 160.84 g. The lowest length and weight averages were recorded in 

Murcia, with values of 18.44 cm and 57.25 g respectively. 

 
Table XIV: Summary of the data used in Length-Weight relationship for Holothuria mammata. (N: number of 
individuals sampled; STD: standard deviation; Min: minimum value; Max: maximum value. 

 Length (cm)  Weight (g) 

Localities  N Average ± STD Min Max  Average ± STD Min Max 

Gran Canaria 18 19.78 ± 4.04 14.0 27.0  66.83 ± 24.28 27.0 128.0 

Peniche 32 24.09 ± 6.83 13.0 43.0  160.84 ± 52.51 55.0 235.0 

Olhos de Água 28 20.00 ± 3.24 9.0 27.0  64.00 ± 19.59 24.6 98.8 

Praia de Faro 35 23.01 ± 4.93 14.0 33.0  92.59 ± 31.62 34.0 162.0 

Murcia 52 18.44 ± 4.55 9.0 38.0  57.25 ± 20.33 17.0 104.0 

Mallorca 52 21.38 ± 3.32 13.0 33.0  84.69 ± 26.55 36.0 150.0 

Girona 31 22.39 ± 4.94 15.0 34.0  96.10 ± 30.91 43.0 175.0 

Kusadasi 50 20.81 ± 3.81 15.0 36.0  85.97 ± 21.41 54.0 172.0 

Total 298 21.07 ± 4.81  9.0 43.0  87.41 ± 40.79 17.0 235.0 

 
 

Length and Weight frequencies distribution revealed a unimodal pattern for H. 

mammata (Figure 20 & 21). However considering regions, unimodal frequency 

distribution was observed on Mediterranean localities and a multimodal pattern on 

Atlantic ones (Figures 22 and 23). In general specimens from Atlantic, showed higher 

frequencies of the larger length classes than Mediterranean ones.  

 

 
Figure 20- Weight - Frequency distribution of Holothuria mammata along all sampling locations 
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Figure 21 – Length - Frequency distribution of Holothuria mammata along all sampling locations 

 

 

 

 
Figure 22 - Length-Frequency distribution of Holothuria mammata in Atlantic Ocean sampling localities 

 

 

 

 

 
Figure 23 - Length-Frequency distribution of Holothuria mammata in Mediterranean Sea sampling localities 
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The differences between localities were highly significant (p<0.001) on weight 

and length according ANOVAs analysis (Table XV; Figures 24 & 25), showing Peniche 

and Faro the largest and heaviest individuals. Among regions, the differences on length 

were significant (p=0.02) and highly significant on weight (p<0.001) (Table XV, Figure 

26) with the biggest individuals belonging to Atlantic region. 

 
Table XV- ANOVA considering the “Locality” and “Regions” as factors. 

Factor Variable Sum-of-squares df Mean square F- ratio Pr(>F) 

Localities 
Length 963 7 137.57 6.749    2.02e-7*** 
Weight 243031 7 34719 40.7    <2e-16*** 

Regions 
 

Length 122 1 122 5,36    0.0213* 
Weight 32618 1 32618 20.92    7.06e-06 *** 

  Significance of p codes:0***,0.001**, 0.05*. 

 

 
Figure 24 - Mean length in all sampled populations 

 

 
Figure 25 - Mean weight in all sampled populations 

 
 



56 
 

 
Figure 26 - Mean length and weight considering Atlantic Ocean and Mediterranean Sea populations 

 
Pairwise comparisons after Bonferroni correction (Table XVI) revealed that 

Peniche specimens were significantly (p=0.000) heavier than individuals from all the 

others localities. However, the length of individuals from Peniche was not significantly 

different (p>0.05) of individuals from Girona, Mallorca and Faro, the locations showing 

the highest size averages. Murcia having the lowest average size and weight, revealed 

significant differences on weight with all localities except for Olhos de Água and Gran 

Canaria showing both lighter individuals. Only highly significant differences (p=0.000) 

on length were detected between Murcia and Peniche/Faro. 

 

Table XVI-Pairwise comparisons using t test. Bonferroni p-value adjustment method was applied. Below diagonal 
Weight, above diagonal Length. Significant p-values are in bold. 

Pop. Girona Gran 
Canaria Kusadasi Mallorca Murcia Olhos de 

Água Peniche Faro 

GI ---------- 1 1 1 0.003 0.266 1 1 

GC 0.022 ---------- 1 1 1 1 0.036 0.395 

KU 1 0.497 ---------- 1 0.217 1 0.042 0.795 

MA 1 0.731 1 ---------- 0.027 1 0.217 1 

MU 0.000 1 0.000 0.000 ---------- 1 0.000 0.000 
OA 0.001 1 0.050 0.086 1 ---------- 0.001 0.038 

PE 0.000 0.000 0.000 0.000 0.000 0.000 ---------- 1 

FA 1 0.072 1 1 0.000 0.004 0.000 ---------- 

 

Linear regression analysis revealed a highly significant length-weight 

relationship (p<0.001) on H. mammata, although the R-squared (R2=0.414) was low. 

The b value was significantly different from 3, showing a positive allometric value of 

b=5.61 (Figure 27 and Table XXII). 
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Figure 27 - Length-weight relationships and R-squared. 

 

Table XVII: Coefficients of the linear model (EW vs. FW) for Holothuria mammata.  
Coefficients Estimate Std. Error  t value  Pr(>|t|) 
Intercept (a) -30.5131 9.2549 -3.297 0.00112 ** 
Length (b) 5.6094 0.4264 13.155 <2e-16 *** 

Significance of p codes: 0***,0.001**. 
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5. Discussion 
 

 This Master thesis provides the first population genetic assessment carried out 

with novel polymorphic markers (microsatellites) to the commercially valuable species, 

Holothuria mammata. This study considers different spatial scales covering nearly the 

geographical distribution of the species. 

 

5.1. Genetic Diversity 

 

Holothuria mammata showed high genetic diversity (i.e. allelic diversity, private 

alleles, He) in all populations.  The comparison of these values with another holothurian 

species is difficult considering that until now no population genetics studies using 

microsatellites were published on European holothurians species. Only, some studies 

using microsatellites, were published on tropical species such as Stichopus japonicus     

(Chang et al., 2009; Kang et al., 2011). This species showed lower mean number of 

alleles and less observed heterozygosity than values registered on H. mammata. S. 

japonicus has been heavily overfished in the last decades, which could be explaining its 

lower genetic diversity.  

A previous study focused on Holothuria mammata (Borrero-Pérez et al., 2011), 

using mtDNA markers (COI and 16S genes) detected also high genetic diversity (16S 

gene: H=0.93; π=0.006; COI gene: H=0.92; π=0.007) on most of the populations 

covering the geographical distribution of the species. Holothuria arguinensis, a very 

close species of H. mammata distributed in NE Atlantic and colonizing the SW 

Mediterranean Sea, presented lower values of genetic diversity on mtDNA genes (16S 

gene: H=0.88; π=0.005; COI gene: H=0.90; π=0.01), perhaps due to its more restricted 

geographical distribution (Rodrigues et al., 2015). Holothuria polii another species 

belonging to the Holothuria Genus and having overlapped its distribution with H. 

mammata in the Mediterranean Sea, showed lower values of genetic diversity for 16S 

genes (16S gene: H=0.65; π=0.003) than H. mammata, although similar results were 

obtained for COI gene (COI gene: H=0.93; π=0.005) (Valente et al., 2015) 

Considering the spatial scale of regions, our study on H. mammata using 

microsatellites found higher genetic diversity (number of total alleles, private alleles and 

observed and expected heterozygosity) on Mediterranean region than the Atlantic one. 

This pattern of diversity was already described by Borrero-Pérez et al., (2011) on H. 
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mammata using COI gene, however their results obtained from 16S gene did not 

corroborated it. 

Similar results were found for other invertebrates, like equinoderms (Pérez-

Portela et al., 2010) and crustaceans (Roman & Palumbi, 2004) , however they attribute 

these differences in genetic diversity due to former colonization into the Atlantic Ocean 

or vice versa. Higher diversity in the Mediterranean region could be driven by more 

complex environmental conditions and historic climatic fluctuations than the Atlantic 

one. Important gradients of temperature, salinity and nutrients have been described for 

the Mediterranean Sea coupled with highly variable currents circulation (Danovaro et al 

1999, Bethoux et al 1999, Pattarnelo 2007). This historical and contemporaneous 

heterogeneous environmental conditions might induce higher intraspecific variability 

enhancing the adaptive potential for adverse and changing conditions (Pamilo, 1988; 

Lowe et al., 2012; Mitchell et al., 2015) .  

When smaller spatial scale (locations) is taken into account, Kusadasi (Turkey) 

and Murcia (SE Spain) presented the highest mean allelic diversity (13.7 and 14.2 

respectively) and observed heterozygosity (0.71 and 0.61 respectively). In Murcia, the 

influence of different oceanographic regimes (i.e. Atlantic waters, Northern current) 

could increase its connectivity, receiving migrants from the nearby populations of 

Western Mediterranean and Atlantic. Murcia has high gene flow (i.e., no differentiation) 

with Olhos de Água and Faro (S Portugal), but also with Mallorca (E Spain) and Girona 

(i.e. genotypic), which might contribute to its higher gene diversity. Kusadasi (Turkey) 

is influenced by the different hydrographic features of the two Aegean sea sub-basins 

(Ignatiades et al 2002) where the North area is showing a high primary productivity and 

the South area is an oligotrophic environment (Siokou-frangou et al 2002). Migrants 

from both sub basins, might contribute with different gene pools to the recipient 

Kusadasi population. However, this hypothesis must be considered with limitations, 

because only one locality from Eastern Mediterranean was studied. Further genetic 

studies, sampling several localities from this region could be necessary to confirm or 

disregard this hypothesis. Other factor could be considered to explain our results of high 

genetic diversity in Kusadasi, the existence of older lineages from putative glacial 

refugia located in this geographical area. However, this hypothesis does not seem to be 

supported by the previous phylogeographic study on H. mammata using mtDNA 

markers (COI and 16S genes) (Borrero-Pérez et al., 2011) which found the lowest 
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genetic diversity in a Turkish population (Foça); but it is important to stress that this 

locality was under heavy fishery pressure which could affect the results found. 

The lowest genetic diversity values were found in Gran Canaria (Atlantic), but 

this result could be biased partially by the low number of individuals sampled there. 

However, other reasons could be affecting the diversity found in Gran Canaria such as 

island isolation and its localization at the Southern edge of geographical distribution of 

H. mammata (Borrero-Pérez et al., 2011). Populations inhabiting the edges of 

distribution usually show a low effective number of individuals suffering a founder 

effect with decrease of genetic diversity and few rare variants (Excoffier 2009). Finally, 

the high abundance of another sea cucumber species, Holothuria sanctori, on this 

locality (Navarro et al., 2013) competing by the same resources, could affect the H. 

mammata population size and therefore its genetic diversity.  

 Heterozygote deficiency in relation to HWE and positive significant FIS values 

were found in all populations of H. mammata. Significant and positive FIS values were 

also found (although not in all loci) in populations of S. japonicus in both published 

studies using microsatellites (Chang et al., 2009; Kang et al., 2011). This deficit of 

heterozygotes could be explained by several causes such as laboratory artefacts, 

unidentified null alleles, loci under selection, non-random mating and Wahlund effect 

(Allendorf et al., 2013). Results from INEST analysis on H. mammata, clearly indicated 

the null alleles as the most contributing factor for positive and significant FIS values in 

most of the populations. Some studies have found that free-spawners producing millions 

of eggs could have higher mutation rates caused by larger numbers of cell cycles, 

contributing to an increase in the frequency of null alleles, due to mutations on the 

microsatellite primer binding sites (Addison & Hart, 2005). Since most sea cucumbers 

(including Holothuria mammata) are broadcast spawners, it would be possible the 

existence of null alleles in our populations due to higher rates of natural mutations on 

primers binding sites. Gran Canaria was the only place where INEST did not attributed 

null alleles as the main factor contributing to the HWE deviations found, which 

supports evidences for true inbreeding in this population. In Gran Canaria, one third of 

the individuals are potential descendants from local population, meaning an important 

local retention of larvae (self-recruitment), which could promote inbreeding on this 

population and deficit of heterozygosity. On the other hand, the effective population 

size on this location was the smallest one, favouring also the inbreeding and loss of 

genetic variation due to stronger effects of the stochastic genetic drift. 
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The hypothesis of sweepstakes reproductive success promoting inbreeding and 

low effective population sizes (Hedgecock et al., 2007b) , could also explain the HW 

disequilibrium detected on our populations but further studies must be done to 

corroborate it.  

 

5.2. Genetic Differentiation 

 

5.2.1. Great Spatial Scale: Atlantic and Mediterranean Regions 

 

The genetic analysis performed on H. mammata revealed genetic subdivision 

between Eastern Mediterranean (i.e. Kusadasi), Western Mediterranean and the NE 

Atlantic regions. At this great spatial scale, pairwise FST comparisons showed a 

significant subdivision and STRUCTURE analyses also confirmed clearly the genetic 

break between NE Atlantic Ocean and Mediterranean Sea, revealing a decreasing 

gradient of Atlantic pool admixture in Eastern direction. These results agree with the 

previous ones obtained for the same species by Borrero-Pérez et al., (2011) using 

mtDNA markers (COI and 16S genes). These authors also found genetic breaks 

between populations from the North-Eastern Mediterranean Sea (i.e. Aegen Sea), West 

Mediterranean and NE Atlantic Ocean, although considered Algarve (i.e. FA) and West 

Mediterranean (i.e. MU&MA) as a panmictic metapopulation.  

Differentiation between Atlantic and Mediterranean basins have been widely 

illustrated on other echinoderms, such as sea urchins (Duran et al., 2004) which only 

disperse at the larval phase (i.e. Pelagic larval duration or PLD, between 20-40 days), 

molluscs, like limpets (Sá-Pinto et al., 2012) which also disperse with pelagic larvae 

(PLD up to 31.5 days) or crustaceans, like the global invasive crab Carcinus maenas 

(Roman & Palumbi, 2004), which have a approx. 40 days of PLD (Mohamedeen & 

Hartnoll, 1990) . This Atlanto-Mediterranean genetic break pattern was also described 

in fishes, as the swordfish, with high dispersal ability during adult stage and able to 

perform long distance migrations (Vinas et al., 2010). Some Sparids, closely related 

species, with similar ecological, behavioural and evolution, such as Diplodus puntazzo 

and Diplodus sargus also presented marked differences in the differentiation patterns 

between both basins, with the former presenting marked genetic differentiation and 

latter with no significant genetic divergence between Atlantic and Mediterranean, 

respectively (Bargelloni et al., 2005). 
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At NE Atlantic spatial scale, a lack of genetic structure was found. Two 

hypothesis could explain these results. First one considers that Atlantic populations 

could be the result of an historical expansion from the Mediterranean Sea, in which due 

to a limited evolutionary time passed since the Atlantic colonization, populations did 

not have enough time to differentiate between them. This hypothesis is supported by 

bottleneck results, lower number of rare alleles in Atlantic than Mediterranean and 

lower genetic diversity.  The second hypothesis is the existence of high gene flow and 

connectivity between Atlantic locations which hampers their genetic differentiation. The 

oceanographic features of this region are showing a predominant southward flow (but 

not exclusively) moving at relatively faster speed, connecting genetically the Atlantic 

locations which could be considered as a panmictic metapopulation. This high gene 

flow scenario between Atlantic localities as it was stressed previously, could prevent 

genetic differentiation, but at the same time increase the genetic diversity in the edges of 

H. mammata distribution. 

According to our results, the Atlantic populations seem to be genetically 

connected with Southern-Western Mediterranean (i.e. Murcia and Mallorca), perhaps 

favoured by the constant Atlantic water inflow into the Alborán sea and seasonally in 

Balearic Sea (Renault et al., 2012b; Sayol et al., 2013a). However this Atlantic 

influence does not seems to reach the NW Mediterranean area (i.e. Girona). Similar 

results were found by Borrero-Pérez et al., (2011) establishing the Algarve region (FA) 

and West Mediterranean (MU&MA) as a panmictic metapopulation.  

 

5.2.2. Small Spatial Scale: Sampled Locations 

 

The migration rates obtained from Migrate analysis should be considered 

carefully and taking into account the time scale of models and markers used. The 

coalescent approach combines the mutational-scaled immigration rates, meaning that 

the results (average migration rates) are a combination of historical and 

contemporaneous gene flow (Vitor C. Sousa et al., 2011; Wilkinson-Herbots, 2012). 

Therefore, we only consider the migration rates and their directionality, when they are 

showing biological meaning and are congruent with the actual oceanographic patterns 

and with the results from the assignment tests. In this way, we could obtain a more 

accurate model of the actual source and sink dynamics on H. mammata. 
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It is important to stress that, the low FST values found between some locations 

should be interpreted with caution and to be considered another parameters assessing 

genetic structure such as genic and genotypic differentiation. The mathematical 

dependency of FST on the allele frequencies and diversities must be taken in account, 

particularly when the population presents high diversities (as H. mammata) which 

biases downwards the FST values. Genic and genotypic differentiation between 

populations could detect in these cases more accurately the subdivision patterns 

(Jakobsson et al., 2012).  

At location scale, the connectivity patterns are strongly influenced by the ocean 

currents, such as it was demonstrated from the results obtained by Mantel test using 

oceanographic distances. In our study, some localities presented significant 

genic/genotypic differentiation (e.g. Girona (NE Spain) and Mallorca (E Spain) 

separated by 240 km) while other ones, such as Olhos de Água (S Portugal) and 

Mallorca separated by 1000 km, showed a lack of differentiation (i.e. genotypic and FST 

values). In NW Mediterranean Sea, the existence of the predominant Northern Current 

flowing southward and the Atlantic water flowing northeastward are acting as a density 

barrier between Mallorca and Girona forming the Balearic Front (Robinson & Leslie, 

2001), explaining why these localities have negligible genetic exchange (i.e. are 

isolated), in spite of being geographically close. This pattern of genetic isolation 

between Mallorca and the Northeastern coast of Spain, was also found in several fish 

species with different early life histories traits (e.g. egg type, pelagic larval duration), 

reinforcing evidences that oceanographic patterns play a bigger role in shaping 

connectivity at this spatial scale (Galarza et al., 2009; Schunter et al., 2011) than just 

ecological dispersal potential of species.  

Murcia (SE Spain), in opposite way to Mallorca, seems to have some gene flow 

with Girona (i.e. supported by non-genotypic differentiation and migration rates) in 

spite of FST significant values, and high gene flow with the Atlantic populations. The 

Northern Current, which flows slowly (i.e. low kinetic energy) in only southward 

direction close to the Spanish coast, suggests Girona as probable source population. The 

Atlantic waters moving rapidly with high kinetic energy and periodically (i.e. in Mid-

Summer, the AOF relaxes and AW moves through the Ibiza Channel), arrive to Murcia 

allowing a high gene flow from the Atlantic populations (i.e. source populations). 

Murcia in fact could be considered as a sink but also as source population because 

receives migrants from several sources depending on the oceanographic regime in this 
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zone (if WA dominates or if the AOF pushes AW to African Coast allowing to the 

Northern current to reach Murcia), and also send migrants to another locations such as 

Mallorca.  

 According our results, Girona has more local recruitment than immigrants 

arriving from the rest of sampled locations. However, the AW moving southward into a 

slower mesoscale gyre along African, Corsica and French coast in an anti-clock wise 

direction and eventually becoming the dense Northern current after travelling thousands 

of km, could suggest another source populations for Girona. However we cannot assess 

this hypothesis because no sampling was performed in those areas.  

Kusadasi (SW Turkey) shows clearly an isolation by distance (IBD) that 

complicates the assessment of connectivity patterns with the rest of our sampling 

localities, since it was the only sampled population in the Eastern Mediterranean Sea. 

Due to this IBD pattern, the migration rates obtained for Kusadasi were the lowest ones 

detected, (except with Murcia) and the migration rates for this locality are probably 

related to a historical pattern of gene flow, rather than a contemporaneous exchange of 

migrants. 

Peniche (W Portugal) could be considered as source of Olhos de Água and Faro 

(S Portugal) according to Migrate results. The oceanographic patterns in the Iberian 

Coast during the spawning season of H. mammata have an interannual variability 

circulation patterns which favours bidirectional North / South exchange of larvae at a 

interannual temporal scale, which could favour the connectivity between these 

locations.  

 Faro (S  Portugal) is acting mainly as a sink population, receiving migrants from 

the different populations. The role of source for Faro population is not likely since H. 

mammata population inhabiting Ria Formosa is not very abundant considering that the 

sandy/muddy bottoms with seagrass is not suitable habitat for this species which prefers 

rocky bottoms (Borrero-Pérez et al., 2011; Siegenthaler, 2013). This role is different to 

the previously observed for Holothuria arguinensis inhabiting Ria Formosa (Rodrigues 

et al., 2015). These authors found evidences that Ria Formosa populations of H. 

arguinensis are contributing to the overall genetic diversity of the species acting as 

source. In that case, it was demonstrated that the populations of H. arguinensis in Ria 

Formosa have high effective population sizes and show high densities ranged from 140 

to 563 ind ha-1 (González-Wangüemert et al., 2013; Siegenthaler et al., 2015). 
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Olhos de Água (S Portugal) and Gran Canaria are acting simultaneously between 

them as source and sink. This pattern could be explained by the current system only 

with gene flow from Olhos de Água to Canaries, but not the inverse. This corroborates 

the fact that results between Canaries and the others populations must be considered 

carefully because they could be influenced by the small sample size of Gran Canaria.  

Olhos de Água is showing a higher connectivity with SW Mediterranean (Murcia and 

Mallorca) than Atlantic region (Faro or Peniche). According the oceanographic patterns 

for the Southern Iberian Coast (García-Lafuente et al., 2006), Olhos de Água is more 

influenced by the Cyclonic eddy (i.e. core N1, figure 3) than Faro, which could result in 

increased larval export to Mediterranean. Also, Olhos de Água is more exposed to 

oceanographic conditions (i.e. the current that flows over the continental shelf break and 

slope) than the Ria Formosa coastal lagoon (Faro), increasing the chance of gene flow 

from Olhos de Água to Murcia and Mallorca. 

 

5.3. Bottlenecks 

 

Populations that have experienced a recent expansion of their effective 

population sizes exhibit a correlative increase of the allele number and heterozygosity at 

polymorphic loci. Usually, the allele number is raised faster than heterozygosity (He), 

therefore the He becomes smaller (i.e. deficiency) than the expected heterozygosity at 

mutation-drift equilibrium (Maruyama & Fuerst, 1984; Cornuet & Luikart, 1996; Piry et 

al., 1999; Girod et al., 2011). 

Although detected only in the T.P.M model, significant signature of recent 

expansion after bottleneck or founder event was found in Peniche, Olhos de Água, Faro, 

Gran Canaria and Murcia meaning that these populations are not in a drift-mutation 

equilibrium. In the cases of Peniche and Gran Canaria, their localization in the edges of 

H. mammata distribution could explain their signature of found event.  

 Murcia, Faro and Olhos de Água have bottleneck signatures difficult to justify 

although anthropogenic factors (such as fishery catches) cannot be ruled out. 

Availability of optimal habitat area, or inter-annual variability of food resources in these 

areas could also affect the demography of these populations. However no clear 

evidences were found about reasons explaining the bottlenecks, and therefore further 

ecology studies should be done. 
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5.4. Morphometry 

 

There is a generalised lack of information about length and weight frequencies 

for Holothuria mammata, except for Turkish region (González-Wangüemert et al., 

2014) and Canaries (Navarro et al., 2013) . This study compiles considerable amount of 

weight and length data from Holothuria mammata, covering most of its distribution 

area. Our results demonstrated that there is high variability in  size and weight  between 

locations along the distribution of the target species. This might be related to local 

nutrient regimes at each particular site (see below). However, significant trend was 

found with larger animals in the Atlantic than in the Mediterranean, and in the Western 

than in the Eastern Mediterranean. 

The average size (21.07±4.81cm) of H.mammata is in general smaller than other 

commercial species of Holothuria genus from the Indo-pacific such as H. scabra (29.00 

cm), H. pulla (30.90 cm), H. atra (32.00 cm), H. nobilis (27.00 cm) and H. fuscogilva 

(29.50) (Khalfan et al. 2007, Herrero-Pérezrul & Reyes-Bonilla 2008). However, sea 

cucumbers are soft body individuals with the ability of high body contraction which 

brings a common larger error on the length measurements due to the difficulty in 

obtaining the complete relaxation of the body muscle. Thus, the use of gutted weight 

measurements could be more accurate than length to estimate population dynamics as it 

was stressed by other authors (Conand 1981, Bulteel et al. 1992, Tuwo & Conand, 

1992, Kazanidis et al. 2010). 

In Peniche, H. mammata specimens presented marked and significant 

differences in weight with all others localities. In this location, Northerly winds 

favoring seasonal coastal upwelling which are observed especially during summer (June 

to September) (Peliz et al. 2002; Álvarez-Salgado et al. 2003), enhancing the 

availability of nutrients in this area. Moreover, this locality is also positioned at the top 

of the Nazaré Canyon, a topographic feature that penetrates the continental platform 

allowing a very close to shore upwelling and additional enrichment in this region 

(Mendes et al. 2011). A higher availability of nutrients could favor the faster growth of 

bacteria community and diatoms in the bottom allowing a higher size and weight of H. 

mammata individuals inhabiting this area. 

Inversely, Gran Canaria and Murcia presents the lightest and shortest specimens 

of H. mammata. The seafloor bathymetry around Canaries is abrupt with narrow shelf 

and a steep slope to more than 1000 meters depth, producing near shore conditions 
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similar to open sea (Navarro-Pérez & Barton 2001). These features could limit the 

abundance of some species (Popescu & Gras 2013) such as H. mammata. Moreover, 

Canary Islands are located in the southern edge of distribution of H. mammata (Borrero-

Pérez et al. 2009). Usually resources and conditions (abiotic and biotic) of these 

marginal habitats are not optimal for growing and reproduction (Kawecki 2008). In 

addition, H. mammata could compete for food and habitat with another sea cucumber 

species (H. sanctori) very abundant in Canary Islands, since both species have similar 

rocky bottoms preferences (Navarro et al. 2013) 

In Murcia the low size and weight values are difficult to explain, since the 

abundance of H. mammata in this location was high. This population is inhabiting a 

rocky restricted area showing the optimal habitat for this species but surrounded by sand 

beaches, which could be affecting to the biological features of the species. Further 

ecology studies are necessary to better understand our morphometric results in this 

locality. 

Girona was the Mediterranean locality with biggest specimens (i.e. weight and 

length). The sampling locality in Girona is influenced by sewage discharges (pers. 

observation) which can promote nutrient and organic matter enrichment of the marine 

environment (Guidetti et al. 2003, Vizzini & Mazzola 2006)⁠. The input of nutrients 

(mainly nitrates and phosphates) could stimulate algal growth and increase the input of 

organic matter to the sediment - water interface (Boesch 2002)⁠, also increasing 

heterotrophic bacteria that utilize organic carbon produced by algae (Amin et al. 2012). 

Both microalgae and bacteria are the main food sources for sea cucumbers (Uthicke 

1999, 2001). Since sea cucumbers are deposit feeders which use the organic matter 

directly at the sediment surface, they are likely to benefit from the high food availability 

in this location, therefore reaching higher sizes (Amon & Herndl 1991a, b, Navarro et 

al. (2013). 

Unimodal length and weight frequency distributions were obtained for H. 

mammata. Other studies involving another species of sea cucumbers such as Actinopyga 

echinites, Stichopus variegatus, and Holothuria forskali (Conand et al. 1982, 1993, 

Tuwo and Conand, 1992) also showed a unimodal length frequency-distribution. 

However multimodal length frequency distributions were obtained when we considered 

each sampling locality separately (data not showed). Mediterranean studies of H. 

mammata (González-Wangüemert et al., 2014) confirms this same length frequency 
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distribution pattern in Turkish waters. The most probable causes explaining the different 

patterns of size distributions between localities could be due to differences on 

environmental features such as temperature, nutrient availability and competition for 

food resources due to the presence of other sea cucumber species.  

Morphometric relationships followed a positive allometric growth for H. 

mammata (b = 5.60). This allometric positive growth was previously described for H. 

mammata in Turkish waters (González-Wangüemert et al., 2014a), and it was also 

described as characteristic growth for most holothurian species (Ramon et al., 2010). 

This strong positive relationship (0.4 < r index <= 0.7) between length and weight, was 

significantly different from isometric growth (b ≠ 3) and highly correlated (p < 2.2e-16). 

Similar values of parameter b (i.e. b > 3) were registered on H. mammata from Turkey 

(González-Wangüemert et al., 2014) suggesting that larger specimens increase in height 

or width more than in length. Accordingly to Froese (2006), this could result from two 

reasons: 1) ontogenetic changes in body shape, it could be rejected because as far as we 

know, sea cucumbers only suffer strong ontogenetic changes on body shape during 

larval development; 2) most common reason is the presence of larger individuals being 

thicker than smaller ones, meaning a better nutritional condition in larger specimens 

than in juveniles. Better condition on adults is expected, since they reduce their energy 

demands necessary for growth when reach the maturity. Adult’s life strategy implies 

energy storage, which is used for gonads maturation and better condition of their eggs, 

however juveniles use the energy for growth mainly (Reyes-Bonilla & Herrero-Pérezrul 

2003, So et al. 2010, Poot-Salazar et al. 2014)⁠. 
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6. Conclusion 

 
6.1. Populations Genetics 

 

This study was the first population genetics evaluation using polymorphic 

microsatellites markers in order to compensate the lack of knowledge for this ecological 

important species, and to provide important data for future management and 

conservation. 

Holothuria mammata showed great genetic diversity, and differentiation 

between Atlantic and Mediterranean basins. The gene flow within and between Atlantic 

Ocean and Mediterranean sea populations is greater when oceanographic conditions 

favors the exchange of larvae, connecting Atlantic populations with Mediterranean 

ones, and thus increasing the populations genetic variation. In Mediterranean the spatial 

scale of differentiation is smaller than the Atlantic, due to historical events and 

contemporaneous complex spatial patterns of oceanographic regimes. 

 

6.2. Morphometry 

 

In conclusion, this morphometric analysis allowed us to have a first insight into 

the length-weight classes and growth pattern of Holothuria mammata, a species with 

commercial interest. Length-weight classes and relationships have not been previously 

reported for the species in such a wide geographical distribution range and by which 

allowed biogeographic comparisons. Due to their high commercial value coupled with a 

high risk of stock depletion, management measures should be taken. Therefore, besides 

setting biometric baselines, these results could be useful to create new legislation as 

well as used as reference to compare between natural / protected and exploited 

populations in order to evaluate the fishery effects on these target species. 
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7. Recommendations for Fisheries and Conservation Management 

 

Considering the results obtained in this Thesis, we suggest the following 

recommendations for management of H. mammata as a resource: 

 

1. Holothuria mammata should be managed taking in account three distinct 

units/stocks: 1) the northeast Atlantic Ocean; 2) the western Mediterranean Sea; 3) in 

the eastern Mediterranean Sea. Management regulations should be aimed at this spatial 

scale in order to avoid overfishing of smaller discrete populations. 

 

2.  At small spatial scale (locations), the resource in Gran Canaria should not be 

harvested, due to small effective population size and low genetic diversity. Fisheries 

focused on these island populations should be avoided in order to impede further 

deterioration of the adaptive potential of the population. 

 

3. Source populations in the NE Atlantic Ocean, especially in Peniche, should 

also be conserved in order to maintain the patterns of connectivity, and consequently 

larval spillover to southern populations of the Portuguese Coast. Moreover this 

population appears to live in an edge distribution limit, reinforcing their fragility to 

climatic oscillations and consequently to fisheries. 

 

4. Ria Formosa (i.e. Faro) also presents a unique population (i.e. high diversity, 

high number of rare alleles), that should be conserved, so it can become well established 

and increase exportation of larvae to others sink populations such as Gran Canaria and 

Murcia, improving their gene pool. 

 

5. In the Eastern Mediterranean Sea, the Kusadasi population should also be 

subject of a precautionary approach when implementing fisheries, since it is harboring 

the highest genetic diversity. 

 

6. In the Western Mediterranean Sea, the Murcia populations is showing a small 

effective population size and the smallest size individuals. Therefore any catches should 

not be authorized in this location until the reasons explaining these features are 

understood. 
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9.  Appendix  

 
Figure 28-Magnitude of ∆K as a function of K (mean ± SD over 10 replicates) for 9 microsatellites. 
 

 
Table XVIII-Table output of the Evanno method results. Bold values shows the largest value in the Delta K column. 

# K Reps Mean LnP(K) Stdev LnP(K) Ln'(K) |Ln''(K)| Delta K 

1 10 -9672.95 0.4836 NA NA NA 
2 10 -9645.75 31.9718 27.2 106.04 3.316676 
3 10 -9724.59 115.3233 -78.84 36.34 0.315114 
4 10 -9767.09 138.3375 -42.5 37.31 0.269703 
5 10 -9772.28 228.4774 -5.19 227.68 0.99651 
6 10 -10005.2 514.6602 -232.87 212.78 0.413438 
7 10 -10025.2 551.3388 -20.09 2.72 0.004933 
8 10 -10048.1 409.1386 -22.81 274.22 0.670237 

 


