Loading...
13 results
Search Results
Now showing 1 - 10 of 13
- Short-term variability of multiple biomarker response in fish from estuaries: Influence of environmental dynamicsPublication . Fonseca, V.F.; França, S.; Vasconcelos, R.P.; Serafim, M.A.; Company, Rui; Lopes, Belisandra; Bebianno, Maria João; Cabral, H.N.Short-term variability in biomarker responses and the effects of temperature and salinity variation were explored in three fish species (Dicentrarchus labrax, Solea senegalensis and Pomatoschistus microps) occurring in the Tejo estuary. Short-term variability in biomarkers was observed in all species although no pattern was discerned over time (days to weeks). Antioxidant enzymes activity (superoxide dismutase (SOD) and catalase (CAT)) showed low temporal variability, indicating some constancy or baseline level in antioxidant responses. Only CAT activity in S. senegalensis was correlated with temperature, suggesting that exposure to contaminants triggered antioxidant acclimation. Higher short-term variability was observed in xenobiotic biotransformation enzymes activity (phase I ethoxyresorufin O-deethylase (EROD) and phase II glutathione S-transferase (GST)). Yet a significant correlation between EROD and GST in D. labrax and S. senegalensis suggests a concomitant response to contaminants. Moreover the lack of correlation between xenobiotic biotransformation enzymes and abiotic variables on concordant time scales, suggest a high specificity of these biomarkers to chemical exposure, rather than high variability due to environmental dynamics.
- Hepatic metallothionein concentrations in the golden grey mullet (Liza aurata): relationship with environmental metal concentrations in a metal-contaminated coastal system in PortugalPublication . Oliveira, M.; Ahmad, I.; Maria, Vera L.; Serafim, A.; Bebianno, Maria João; Pacheco, M.; Santos, M.A.This field survey was designed to assess the environmental metal contamination status of Ria de Aveiro (Portugal). To achieve that goal, the concentrations of Cd, Hg, Cu and Zn in the sediments and water were assessed and Liza aurata hepatic metallothionein (MT) determined. The relationships between MT and environmental metal concentrations and hydrological factors were examined. Results revealed a wide distribution of metals both in water and sediments throughout the lagoon, mainly at Rio Novo do Principe (RIO) and Laranjo (LAR), at concentrations that may affect biota. MT concentrations were higher at the sites with high metal content (RIO and LAR). A significant positive correlation was found between MT and Cd in the sediments as well as with MT and Hg and Cu in the water. Moreover, a negative correlation between MT and salinity was found. Thus, the current data support MT use as a biomarker of metal exposure emphasizing the importance of hydrological parameters in its concentrations. Results suggest the continued monitoring of this lagoon system.
- Multi-biomarker responses to estuarine habitat contamination in three fish species: Dicentrarchus labrax, Solea senegalensis and Pomatoschistus micropsPublication . Fonseca, V. F.; França, S.; Serafim, M.A.; Company, Rui; Lopes, Belisandra; Bebianno, Maria João; Cabral, H. N.Several biomarker responses were determined in three fish species, Dicentrarchus labrax, Solea senegalensis and Pomatoschistus microps, from two estuaries of the Portuguese coast, Ria de Aveiro and Tejo. Both estuaries have significant anthropogenic influences from multiple sources (industrial, agricultural and shipping activities), which was evident from sediment chemical characterization concerning metal (copper, zinc, nickel, lead and chromium) and polycyclic aromatic hydrocarbon (PAH) concentrations. Spatial variability in fish responses was observed across species for most biomarkers of exposure [the activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), ethoxyresorufin O-deethylase (EROD) and glutathione S-transferase (GST), and metallothionein concentrations (MT)] and effect biomarkers [lipid peroxidation (LPO), RNA to DNA ratio (R:D), protein and lipid content]. In general, the interspecific differences in biomarker responses were greater than the spatial differences, due to differences in the behavior and habitat use of the species. Nevertheless, similarities were also observed considering both chemical load and biomarker responses. In highly polluted sites fish showed in general a significant antioxidant enzyme induction, associated with decreased R:D values, while fish from the least impacted site had little enzyme induction and better condition indices (high R:D and low LPO values). EROD activity was also higher for all species in the Tejo than Ria de Aveiro estuary, despite the generally higher total PAH measured in Ria de Aveiro, most likely due to a higher proportion of 4 and 6-ring PAHs, considered more toxic than low molecular weight PAHs, in the Tejo. In conclusion, this multi-biomarker approach considering multiple species provided improved understanding of the diverse responses and effects of exposure to contaminants and the effective risk it poses for different fish species.
- A multibiomarker approach in Mytilus galloprovincialis to assess environmental qualityPublication . Cravo, Alexandra; Lopes, Belisandra; Serafim, M.A.; Company, Rui; Barreira, Luísa; Gomes, Tânia; Bebianno, Maria JoãoA multibiomarker approach was carried out for the first time in the South Portuguese Coast using Mytilus galloprovincialis, to assess environmental quality, establish if there are adverse biological responses associated to different sources of anthropogenic contamination and to determine spatial and seasonal trends. For this purpose the battery of biomarkers selected was: superoxide dismutase (SOD), catalase (CAT), glutathione peroxidases (GPx total and Se dependent), Cytochrome P450 component system, Glutathione-S-transferase (GST) and acetylcholinesterase (AChE), metallothionein (MT) and lead-delta-aminolevulinic acid dehydratase (ALAD), lipid peroxidation (LPO) and Condition Index (CI) along with the determination of PAHs and metals (Cd, Cu, Ni, Pb and Zn). Results show that despite the levels of both organic and metallic contaminants in these eight spots in the South Coast of Portugal not being particularly high compared with other contaminated/polluted sites worldwide, the selected battery of biomarkers responded efficiently to the environmental changes and allowed an environmental assessment between seasons and sites. Different spatial and seasonal responses were evident along the South Coast of Portugal, meaning that the contamination is not homogeneous. This does not only reflect different competition, origin and intensity of contamination, but also different environmental conditions (e.g. temperature, salinity). Along the South Portuguese Coast site 8 was the most contaminated, while site 2 was considered the least contaminated. Despite environmental factors possibly causing difficulties in the general interpretation of biomarker data, those that better responded to environmental contamination were CYP450, SOD-mit and T-GPx for the summation SigmaPAHs, MT (digestive gland) for metals (especially Cu), ALAD for Pb and LPO for both organic and metallic contamination. These biomarkers were also positively correlated with temperature in summer, revealing this as a more stressful/critical season. In future environmental contamination assessments there is no need to analyse the components b5, P418, NADH and NADPH of phase I MFO system, and MT in the gills, since their responses are not evident.
- Variation of metal and metallothionein concentrations in a natural population of ruditapes decussatusPublication . Bebianno, Maria João; Serafim, A.The spatial and seasonal variation of total and subcellular distribution of Cd, Cu, and Zn was followed in different tissues (gills, digestive gland, and remaining tissues) of the clam Ruditapes decussatus collected along a metal contamination gradient in the Ria Formosa lagoon (southern Portugal) and compared with metallothionein (MT) concentrations.Total metal concentrations decreased according to the sequence digestive gland > gills > remaining tissues for Cd, digestive gland approximately gills > remaining tissues for Cu and gills > digestive gland > remaining tissues for Zn. MT concentrations in these tissues decreased according to the same sequence observed for Cd. In all the tissues, the highest subcellular concentration was in the cytosol for Cd and Cu and in the pellet for Zn. Among the three metals, Cd concentrations showed the most evident spatial variation. In all tissues, total and subcellular Cd concentrations decreased from the inner parts of the lagoon toward the ocean. However, no significant spatial or seasonal variation occurred in clam tissues for the other two metals, though marginal elevated Cu concentrations were observed in the inner parts of the lagoon. Therefore, Cu subcellular distribution in clam tissues was not significantly altered by Cu changes in the lagoon and are the baseline levels for normal metabolism of this clam population. The fact that total Zn concentrations remained unchanged both spatial and seasonal suggested that these clams regulate Zn in their tissues. In the three tissues, MT bind most significantly to Cd and Cu, while Zn, although binding to MT, is preferably bound to other ligands. MT concentrations showed the same spatial and seasonal variation of Cd and were significantly related with total and heat-treated cytosolic Cd in all tissues. For Cu a significant relationship between MT and total or cytosolic Cu was only observed in the remaining tissues. No relationship was observed between MT and total or cytosolic Zn concentrations. Metals and MT concentrations increased with the increase in the condition index for the gills and the digestive gland and decreased from the remaining tissues.Cd concentrations in the gills increased only in the heat-treated cytosolic fraction while Zn in this fraction decreased. Thus Cd concentrations in this tissue displaced Zn from the MT-fraction, leading to a modification of the soluble/insoluble Zn ratio once total Zn concentrations remained unchanged. This modification reflects a perturbation in the normal metabolism in this tissue due to the excess of Cd present. With the exception of the gills, Zn subcellular distribution in the other two tissues was similar among sites and season. The model that describes the relationship between MT, metals, and weight in the gills, digestive gland and remaining tissues also indicates that Cd was the only metal that influence MT synthesis significantly in all the tissues. The induced and/or existent MT was sufficient to bind free Cd ions present in the cells, preventing any damage to cellular metabolism in this clam population. Therefore, MT in the gills and digestive gland of R. decussatus can be used as an early warning signal for Cd exposure and are a useful biomarker to assess the toxicological status of this population in the Ria Formosa lagoon.
- Antioxidant biochemical responses to long-term copper exposure in Bathymodiolus azoricus from Menez-Gwen hydrothermal ventPublication . Company, Rui; Serafim, Angela; Cosson, Richard P.; Fiala-Médioni, Aline; Camus, Lionel; Colaço, Ana; Serrão-Santos, Ricardo; Bebianno, Maria JoãoCopper (Cu) is essential to various physiological processes in marine organisms. However, at high concentrations this redox-active transition metal may enhance the formation of reactive oxygen species (ROS) and subsequently initiate oxidative damage. High concentrations of Cu may increase oxidative damage to lipids, proteins and DNA. Bathymodiolus azoricus is a Mytilid bivalve very common in hydrothermal environments near the Azores Triple Junction continuously exposed to high metal concentrations, including Cu, emanating from the vent fluids. The knowledge of antioxidant defence system and other stress related biomarkers in these organisms is still scarce. The aim of this work was to study the effect of Cu (25 microg l(-1); 24 days exposure; 6 days depuration) on the antioxidant stress biomarkers in the gills and mantle of B. azoricus. The expression of stress related biomarkers was tissue-dependent and results suggest that other factors than metal exposure may influence stress biomarkers, since little variation in antioxidant enzymes activities, MT concentrations, LPO and total oxyradical scavenging capacity (TOSC) occurred in both control and Cu-exposed mussels. Moreover, there is a general tendency for these parameters to increase with time, in both control and Cu-exposed mussels, suggesting that reactive oxygen species (ROS) formation is not metal dependent, and may be related with poor physiological conditions of the animals after long periods in adverse conditions compared to those in hydrothermal environments.
- Modeling fish biological responses to contaminants and natural variability in estuariesPublication . Fonseca, V.F.; Vasconcelos, R.P.; França, S.; Serafim, M.A.; Lopes, Belisandra; Company, Rui; Bebianno, Maria João; Costa, M.J.; Cabral, H.N.Understanding the factors that influence biological responses to contaminants has long been a major goal in marine environmental research. Seven estuarine sites along the Portuguese coast were sampled over a year, and different biological responses of Pomatoschistus microps and Atherina presbyter were determined: superoxide dismutase, catalase, ethoxyresorufin O-deethylase, glutathione S-transferase, metallothioneins, lipid peroxidation, RNA:DNA ratio and condition factor K. Generalized linear models (GLM) were developed for each biological variable per species in relation to sediment chemical characterization (metals and polycyclic aromatic hydrocarbons concentration) and environmental conditions (month, site, water temperature, salinity, depth and mud percentage in the sediment). GLM varied in explanatory power and in the set of predictor variables included in the models. Environmental factors were frequently selected as predictor variables. Individual metals concentration and sediment quality guidelines (integrating all metals) were the major contaminants explaining biological variability. Accordingly, models for metallothioneins and lipid peroxidation had highest explanatory power. Species-specific responses and dataset size were the basis of observed differences between GLM for the two species.
- Kinetic model of cadmium accumulation and elimination and metallothionein response in Ruditapes decussatusPublication . Serafim, Angela; Bebianno, Maria JoãoThe aim of the present study was to determine the response of metallothionein (MT) during Cd accumulation and elimination in different tissues of the estuarine bivalve Ruditapes decussatus exposed to two nominal Cd concentrations (4 and 40 microg/L) for 40 d, followed by a depuration period of 50 d. Cadmium was accumulated in all tissues of R. decussatus at both exposure concentrations, and the accumulation was tissue dependent. Use of the kinetic model showed that in the gills and remaining tissues, Cd was assimilated faster at the beginning of the exposure and decreased with time, possibly limited by the diffusion rate of this metal within the cell. In the digestive gland, however, the Cd was continuously accumulated. This could reflect that the Cd uptake rate is considerably higher than the loss rate and, therefore, that this tissue has a higher capacity to accumulate Cd compared to the other two tissues. Moreover, the application of this kinetic model in the different subcellular fractions showed that the bioconcentration factor was significantly higher in the low-molecular-weight fraction (where MT is found), suggesting that this fraction binds Cd faster, with a high uptake rate (K(u) = 32/d), and eliminates this metal more slowly (K(1) = 0.005/d). During the depuration phase, MT decreased simultaneously with Cd elimination in all tissues, although with a shorter half-life. In conclusion, the MT response prevented Cd in the tissues of R. decussatus from interfering in the normal clam metabolism; therefore, MT acts as a detoxification mechanism of Cd.
- A multi-biomarker approach in cross-transplanted mussels Mytilus galloprovincialisPublication . Serafim, M.A.; Lopes, Belisandra; Company, Rui; Cravo, Alexandra; Gomes, Tânia; Serrão Sousa, Vânia; Bebianno, Maria JoãoThe present work integrates the active biomonitoring (ABM) concept in mussels Mytilus galloprovincialis from the South coast of Portugal transplanted during 28 days between two sites with different sources of contamination, and vice versa, in order to assess biological effects in these mussels. For that purpose a multibiomarker approach was used. The suit of biomarkers indicative of metal contamination were metallothioneins (MT) and the enzyme δ-aminolevulinic acid dehydratase (ALAD), for organic contamination mixed function oxidase system (MFO), glutathione-S-transferase (GST) and acetylcholinesterase (AChE), as oxidative stress biomarkers superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and lipid peroxidation (LPO). These biomarkers were used to determine an index to evaluate the stress levels in these two sites. Site A is strongly influenced by metallic contamination, with higher Cu, Cr and Pb in M. galloprovincialis, as well as higher MT levels, antioxidant enzymes activities and LPO concentrations, and lower ALAD activity. In site B organic compounds (PAHs) are prevalent and native mussels show higher activities of the MFO system components and GST. Transplanted mussels had significant alterations in some biomarkers that reflect the type of contaminants present in each site, which demonstrates the primary role of the environment in determining the physiological characteristics of resident mussels. Therefore the application of ABM using a battery of biomarkers turns out to be a useful approach in sites where usually complex mixtures of contaminants occurs. In this study the biomarkers that better differentiate the impact of different contaminants at each site were MT, CYP450, SOD and CAT.
- Metallothionein role in the kinetic model of copper accumulation and elimination in the clam Ruditapes decussatusPublication . Serafim, A.; Bebianno, Maria JoãoIn order to clarify the role of metallothioneins (MT) in copper (Cu) toxicity, this work aimed to assess the involvement of this protein in the accumulation and elimination strategies of Cu in the clam Ruditapes decussatus exposed to two sublethal concentrations (25 and 50 microgCul(-1)). The behaviour of MT in three different tissues of clams during the accumulation and depuration processes was also followed by gel-filtration chromatography to assess if Cu was bound to MT or to other cytosolic components. The 96 h LC50 for water-borne copper was 715 microgL(-1) in R. decussatus. The Cu accumulation pattern was dependent on Cu exposure concentrations. In clams exposed to 25 microgl(-1), total Cu accumulation in the three tissues increased linearly during the exposure period, while in those exposed to 50 microgl(-1) it followed the first order kinetic model. The greatest amount of Cu accumulated in all tissues is associated to the low molecular weight cytosolic fraction (>50%). The chromatographic assay indicated that Cu in the cytosolic fraction is bound to MT and MT levels increase with the increase of Cu exposure confirming the binding affinity of Cu to MT in all tissues. However, a smaller percentage of Cu seems to be bond to other ligands, such as GSH. Copper was exponentially eliminated (only studied in clams exposed to 25 microgl(-1)) and the estimated half-life was tissue dependent (9, 5 and 14 days for the gills, digestive gland and remaining tissues, respectively). Copper bound to the thermostable compounds was eliminated more quickly (t(1/2)=4-7 days) in all tissues than those bound to the thermolabile compounds (t(1/2)=7-18 days). Interestingly, MT is rapidly degraded (t(1/2)=7 and 18 days), suggesting that this protein is actively involved in the elimination of this metal, through the Cu-MT complex since MT and Cu are turning over simultaneously. Therefore, when Cu exposure is low, the clam can cope efficiently with the excess of Cu levels by increasing MT induction as well as rapidly eliminating this metal via the MT-Cu complex. Copper toxicity in the clam R. decussatus is associated to the limited capacity of MT induction at higher and environmental unrealistic Cu exposures especially in the gills and remaining tissues.