Repository logo
 
Loading...
Profile Picture

Search Results

Now showing 1 - 4 of 4
  • Central role of betaine-homocysteine S-methyltransferase 3 in chondral ossification and evidence for sub-functionalization in neoteleost fish
    Publication . Rosa, Joana; Tiago, Daniel; Marques, Cátia L.; Vijayakumar, Parameswaran; Fonseca, Luís; Cancela, Leonor; Laizé, Vincent
    Background: To better understand the complex mechanisms of bone formation it is fundamental that genes central to signaling/regulatory pathways and matrix formation are identified. Cell systems were used to analyze genes differentially expressed during extracellular matrix mineralization and bhmt3, coding for a betaine-homocysteine S-methyltransferase, was shown to be down-regulated in mineralizing gilthead seabream cells.Methods: Levels and sites of bhmt3 expression were determined by qPCR and in situ hybridization throughout seabream development and in adult tissues. Transcriptional regulation of bhmt3 was assessed from the activity of promoter constructs controlling luciferase gene expression. Molecular phylogeny of vertebrate BHMT was determined from maximum likelihood analysis of available sequences.Results: bhmt3 transcript is abundant in calcified tissues and localized in cartilaginous structures undergoing endo/perichondral ossification. Promoter activity is regulated by transcription factors involved in bone and cartilage development, further demonstrating the central role of Bhmt3 in chondrogenesis and/or osteogenesis. Molecular phylogeny revealed the explosive diversity of bhmt genes in neoteleost fish, while tissue distribution of bhmt genes in seabream suggested that neoteleostean Bhmt may have undergone several steps of sub-functionalization.Conclusions: Data on bhmt3 gene expression and promoter activity evidences a novel function for betaine-homocysteine S-methyltransferase in bone and cartilage development, while phylogenetic analysis provides new insights into the evolution of vertebrate BHMTs and suggests that multiple gene duplication events occurred in neoteleost fish lineage.General significance: High and specific expression of Bhmt3 in gilthead seabream calcified tissues suggests that bone-specific betaine-homocysteine S-methyltransferases could represent a suitable marker of chondral ossification.
  • Evaluation of MGP gene expression in colorectal cancer
    Publication . Caiado, Helena; Conceição, Natércia; Tiago, Daniel; Marreiros, Ana; Vicente, Susana; Enriquez, Jose Luis; Vaz, Ana Margarida; Antunes, Artur; Guerreiro, Horacio; Caldeira, Paulo; Leonor Cancela, M.
    Purpose: Matrix Gla protein (MGP) is a vitamin K-dependent, gamma-carboxylated protein that was initially found to be a physiological inhibitor of ectopic calcifications affecting mainly cartilage and the vascular system. Mutations in the MGP gene were found to be responsible for a human pathology, the Keutel syndrome, characterized by abnormal calcifications in cartilage, lungs, brain and vascular system. MGP was recently implicated in tumorigenic processes such as angiogenesis and shown to be abnormally regulated in several tumors, including cervical, ovarian, urogenital and breast. This fact has triggered our interest in analyzing the expression of MGP and of its regulator, the transcription factor runt related transcription factor 2 (RUNX2), in colorectal cancer (CRC). Methods: MGP and RUNX2 expression were analyzed in cancer and non-tumor biopsies samples from 33 CRC patients and 9 healthy controls by RT-qPCR. Consequently, statistical analyses were performed to evaluate the clinical-pathological significance of MGP and RUNX2 in CRC. MGP protein was also detected by immunohistochemical analysis. Results: Showed an overall overexpression of MGP in the tumor mucosa of patients at mRNA level when compared to adjacent normal mucosa and healthy control tissues. In addition, analysis of the expression of RUNX2 mRNA demonstrated an overexpression in CRC tissue samples and a positive correlation with MGP expression (Pearson correlation coefficient 0.636; p <= 0.01) in tumor mucosa. However correlations between MGP gene expression and clinical-pathological characteristics, such as gender, age and pathology classification did not provide relevant information that may shed light towards the differences of MGP expression observed between normal and malignant tissue. Conclusions: We were able to associate the high levels of MGP mRNA expression with a worse prognosis and survival rate lower than five years. These results contributed to improve our understanding of the molecular mechanism underlying MGP deregulation in cancer.
  • Retinoic acid differentially affects in vitro proliferation, differentiation and mineralization of two fish bone-derived cell lines: Different gene expression of nuclear receptors and ECM proteins
    Publication . Fernández, Ignacio; Tiago, Daniel; Laizé, Vincent; Cancela, Leonor; Gisbert, Enric
    Retinoic acid (RA), the main active metabolite of vitamin A, regulates vertebrate morphogenesis through signaling pathways not yet fully understood. Such process involves the specific activation of retinoic acid and retinoid X receptors (RARs and RXRs), which are nuclear receptors of the steroid/thyroid hormone receptor superfamily. Teleost fish are suitable models to study vertebrate development, such as skeletogenesis. Cell systems capable of in vitro mineralization have been developed for several fish species and may provide new insights into the specific cellular and molecular events related to vitamin A activity in bone, complementary to in vivo studies. This work aims at investigating the in vitro effects of RA (0.5 and 12.5 μM) on proliferation, differentiation and extracellular matrix (ECM) mineralization of two gilthead seabream bone-derived cell lines (VSa13 and VSa16), and at identifying molecular targets of its action through gene expression analysis. RA induced phenotypic changes and cellular proliferation was inhibited in both cell lines in a cell type-dependent manner (36–59% in VSa13 and 17–46% in VSa16 cells). While RA stimulated mineral deposition in VSa13 cell cultures (50–62% stimulation), it inhibited the mineralization of extracellular matrix in VSa16 cells (11–57% inhibition). Expression of hormone receptor genes (rars and rxrs), and extracellular matrix-related genes such as matrix and bone Gla proteins (mgp and bglap), osteopontin (spp1) and type I collagen (col1a1) were differentially regulated upon exposure to RA in proliferating, differentiating and mineralizing cultures of VSa13 and VSa16 cells. Altogether, our results show: (i) RA affects proliferative and mineralogenic activities in two fish skeletal cell types and (ii) that during phenotype transitions, specific RA nuclear receptors and bone-related genes are differentially expressed in a cell type-dependent manner.
  • Data on the evaluation of FGF2 gene expression in Colorectal Cancer
    Publication . Caiado, Helena; Conceição, Natércia; Tiago, Daniel; Marreiros, Ana; Vicente, Susana; Enriquez, Jose Luis; Vaz, Ana Margarida; Antunes, Artur; Guerreiro, Horacio; Caldeira, Paulo; Cancela, M. Leonor
    The data presented in this article is related with the research paper entitled "Evaluation of MGP gene expression in colorectal cancer", available on Gene journal [1]. From all the transcription factors known to regulate MGP, FGF2 is the most described in colon adenocarcinoma and colon tumor cell lines, where it was shown to: i) contribute for the invasiveness potential; and ii) promote proliferation and survival of colorectal cancer cells. These in vitro studies pose the hypothesis that FGF2 associated signaling pathways could be promoting the regulation of others genes, such as MGP, that may lead to tumor progression which ultimately could result in poor prognosis in colon adenocarcinoma.