Loading...
5 results
Search Results
Now showing 1 - 5 of 5
- A genetic linkage map of the hermaphrodite teleost fish Sparus aurata L.Publication . Bargelloni, L.; Franch, R.; Patarnello, T.; Tsalavouta, M.; Sarropoulou, E.; Magoulas, A.; Kotoulas, G.; Chatziplis, D.; Georgoudis, A.; Louro, Bruno; Power, DeborahThe gilthead sea bream (Sparus aurata L.) is a marine fish of great importance for fisheries and aquaculture. It has also a peculiar sex-determination system, being a protandrous hermaphrodite. Here we report the construction of a first-generation genetic linkage map for S. aurata, based on 204 microsatellite markers. Twenty-six linkage groups (LG) were found. The total map length was 1241.9 cM. The ratio between sex-specific map lengths was 1:1.2 (male:female). Comparison with a preliminary radiation hybrid (RH) map reveals a good concordance, as all markers located in a single LG are located in a single RH group, except for Ad-25 and CId-31. Comparison with the Tetraodon nigroviridis genome revealed a considerable number of evolutionary conserved regions (ECRs) between the two species. The mean size of ECRs was 182 bp (sequence identity 60–90%). Forty-one ECRs have a known chromosomal location in the pufferfish genome. Despite the limited number of anchoring points, significant syntenic relationships were found. The linkage map presented here provides a robust comparative framework for QTL analysis in S. aurata and is a step toward the identification of genetic loci involved both in the determination of economically important traits and in the individual timing of sex reversal.
- A genetic linkage map of the hermaphrodite teleost fish Sparus aurata L.Publication . Franch, Rafaella; Louro, Bruno; Tsalavouta, Matina; Chatziplis, Dimitris; Tsigenopoulos, C.; Sarropoulou, Elena; Antonello, Jenny; Magoulas, Andonis; Mylonas, Constantinos C.; Babbucci, Massimiliano; Patarnello, T.; Power, Deborah; Kotoulas, Georgios; Bargelloni, LucaThe gilthead sea bream (Sparus aurata L.) is a marine fish of great importance for fisheries and aquaculture. It has also a peculiar sex-determination system, being a protandrous hermaphrodite. Here we report the construction of a first-generation genetic linkage map for S. aurata, based on 204 microsatellite markers. Twenty-six linkage groups (LG) were found. The total map length was 1241.9 cM. The ratio between sex-specific map lengths was 1:1.2 (male:female). Comparison with a preliminary radiation hybrid (RH) map reveals a good concordance, as all markers located in a single LG are located in a single RH group, except for Ad-25 and CId-31. Comparison with the Tetraodon nigroviridis genome revealed a considerable number of evolutionary conserved regions (ECRs) between the two species. The mean size of ECRs was 182 bp (sequence identity 60–90%). Forty-one ECRs have a known chromosomal location in the pufferfish genome. Despite the limited number of anchoring points, significant syntenic relationships were found. The linkage map presented here provides a robust comparative framework for QTL analysis in S. aurata and is a step toward the identification of genetic loci involved both in the determination of economically important traits and in the individual timing of sex reversal.
- Transcriptome analysis of the gilthead sea bream (sparus auratus) pituitary gland. Type I markers for molecular geneticsPublication . Louro, Bruno; Passos, A. L.; Power, DeborahThe pituitary gland of vertebrates produces a number of hormones, growth hormone, prolactin, somatolactin, gonadotrophin, thyroid stimulating hormone, proopiomelanocorticotrophin, which regulate a number of important production traits.
- Persistence of duplicated PAC(1) receptors in the teleost, Sparus auratusPublication . Cardoso, J. C. R.; Vet, Edwin C. J. M. de; Louro, Bruno; Elgar, Greg; Clar, M. S.; Power, DeborahBackground: Duplicated genes are common in vertebrate genomes. Their persistence is assumed to be either a consequence of gain of novel function (neofunctionalisation) or partitioning of the function of the ancestral molecule (sub-functionalisation). Surprisingly few studies have evaluated the extent of such modifications despite the numerous duplicated receptor and ligand genes identified in vertebrate genomes to date. In order to study the importance of function in the maintenance of duplicated genes, sea bream (Sparus auratus) PAC1 receptors, sequence homologues of the mammalian receptor specific for PACAP (Pituitary Adenylate Cyclase-Activating Polypeptide), were studied. These receptors belong to family 2 GPCRs and most of their members are duplicated in teleosts although the reason why both persist in the genome is unknown. Results: Duplicate sea bream PACAP receptor genes (sbPAC1A and sbPAC1B), members of family 2 GPCRs, were isolated and share 77% amino acid sequence identity. RT-PCR with specific primers for each gene revealed that they have a differential tissue distribution which overlaps with the distribution of the single mammalian receptor. Furthermore, in common with mammals, the teleost genes undergo alternative splicing and a PAC1Ahop1 isoform has been characterised. Duplicated orthologous receptors have also been identified in other teleost genomes and their distribution profile suggests that function may be species specific. Functional analysis of the paralogue sbPAC1s in Cos7 cells revealed that they are strongly stimulated in the presence of mammalian PACAP27 and PACAP38 and far less with VIP (Vasoactive Intestinal Peptide). The sbPAC1 receptors are equally stimulated (LOGEC50 values for maximal cAMP production) in the presence of PACAP27 (-8.74 ± 0.29 M and -9.15 ± 0.21 M, respectively for sbPAC1A and sbPAC1B, P > 0.05) and PACAP38 (-8.54 ± 0.18 M and -8.92 ± 0.24 M, respectively for sbPAC1A and sbPAC1B, P > 0.05). Human VIP was found to stimulate sbPAC1A (-7.23 ± 0.20 M) more strongly than sbPAC1B (-6.57 ± 0.14 M, P <0.05) and human secretin (SCT), which has not so far been identified in fish genomes, caused negligible stimulation of both receptors. Conclusion: The existence of functionally divergent duplicate sbPAC1 receptors is in line with previously proposed theories about the origin and maintenance of duplicated genes. Sea bream PAC1 duplicate receptors resemble the typical mammalian PAC1, and PACAP peptides were found to be more effective than VIP in stimulating cAMP production, although sbPAC1A was more responsive for VIP than sbPAC1B. These results together with the highly divergent pattern of tissue distribution suggest that a process involving neofunctionalisation occurred after receptor duplication within the fish lineage and probably accounts for their persistence in the genome. The characterisation of further duplicated receptors and their ligands should provide insights into the evolution and function of novel protein-protein interactions associated with the vertebrate radiation.
- A gene-based radiation hybrid map of the gilthead sea bream Sparus aurata refines and exploits conserved synteny with Tetraodon nigroviridisPublication . Sarropoulou, Elena; Franch, Rafaella; Louro, Bruno; Power, Deborah; Bargelloni, Luca; Magoulas, Antonio; Senger, Fabrice; Kotoulas, Georgios; Geisler, RobertBackground: Comparative teleost studies are of great interest since they are important in aquaculture and in evolutionary issues. Comparing genomes of fully sequenced model fish species with those of farmed fish species through comparative mapping offers shortcuts for quantitative trait loci (QTL) detections and for studying genome evolution through the identification of regions of conserved synteny in teleosts. Here a comparative mapping study is presented by radiation hybrid (RH) mapping genes of the gilthead sea bream Sparus aurata, a non-model teleost fish of commercial and evolutionary interest, as it represents the worldwide distributed species-rich family of Sparidae. Results: An additional 74 microsatellite markers and 428 gene-based markers appropriate for comparative mapping studies were mapped on the existing RH map of Sparus aurata. The anchoring of the RH map to the genetic linkage map resulted in 24 groups matching the karyotype of Sparus aurata. Homologous sequences to Tetraodon were identified for 301 of the gene-based markers positioned on the RH map of Sparus aurata. Comparison between Sparus aurata RH groups and Tetraodon chromosomes (karyotype of Tetraodon consists of 21 chromosomes) in this study reveals an unambiguous one-to-one relationship suggesting that three Tetraodon chromosomes correspond to six Sparus aurata radiation hybrid groups. The exploitation of this conserved synteny relationship is furthermore demonstrated by in silico mapping of gilthead sea bream expressed sequence tags (EST) that give a significant similarity hit to Tetraodon. Conclusion: The addition of primarily gene-based markers increased substantially the density of the existing RH map and facilitated comparative analysis. The anchoring of this gene-based radiation hybrid map to the genome maps of model species broadened the pool of candidate genes that mainly control growth, disease resistance, sex determination and reversal, reproduction as well as environmental tolerance in this species, all traits of great importance for QTL mapping and marker assisted selection. Furthermore this comparative mapping approach will facilitate to give insights into chromosome evolution and into the genetic make up of the gilthead sea bream.