Repository logo
 
Loading...
Profile Picture

Search Results

Now showing 1 - 2 of 2
  • Genetic structure of amphi-Atlantic Laminaria digitata (Laminariales, Phaeophyceae) reveals a unique range-edge gene pool and suggests post-glacial colonization of the NW Atlantic
    Publication . Neiva, J.; Serrao, Ester; Paulino, Cristina; Gouveia, Licínia; Want, Andrew; Tamigneaux, Éric; Ballenghien, Marion; Mauger, Stéphane; Fouqueau, Louise; Engel-Gautier, Carolyn; Destombe, Christophe; Valero, Myriam
    In the North-east (NE) Atlantic, most intertidal fucoids and warm-temperate kelps show unique low-latitude gene pools matching long-term climatic refugia. For cold-temperate kelps data are scarcer despite their unique cultural, ecological and economic significance. Here we test whether the amphi-Atlantic range of Laminaria digitata is derived from past glacial survival (and vicariance) in both NE and North-west (NW) Atlantic refugia (as suggested by niche modelling), or post-glacial (re)colonization (as suggested by low mtDNA divergence). We screened 14 populations from across the species range for 12 microsatellite loci to identify and map major gene pools and refugia. We assessed if NW Atlantic survival was supported by unique endemic variation, and if genetic diversity and structure were, as predicted from larger hindcasted glacial ranges, higher in the NE Atlantic. Microsatellite data subdivided L. digitata into three main genetic groups matching Brittany, northern Europe and the NW Atlantic, with finer-scale sub-structuring within European clusters. The relatively diverse NE Atlantic lineages probably survived the Last Glacial Maximum along unglaciated periglacial shorelines of the Armorican and Celtic Seas (Brittany cluster) and Ireland (northern European cluster), and remain well differentiated despite their relative proximity. The unique Brittany gene pool, at the contemporary European rear edge, is projected to disappear in the near future under high greenhouse gas emission scenarios. Low allelic diversity and low endemism in the NW Atlantic are consistent with recent post-glacial colonization from Europe, challenging the long-standing hypothesis of in situ glacial survival. Confusion with Hedophyllum nigripes may have led to underestimation of regional diversity of L. digitata, but also to overestimation of its presence along putative trans-Atlantic migration routes. Partial incongruence between modelling and genetic-based biogeographic inferences highlights the benefits of comparing both approaches to understand how shifting climatic conditions affect marine species distributions and explain large-scale patterns of spatial genetic structure.
  • Past and future climate effects on population structure and diversity of North Pacific surfgrasses
    Publication . Tavares, Ana I; Assis, Jorge; Anderson, Laura; Raimondi, Pete; Coelho, Nelson; Paulino, Cristina; Ladah, Lydia; Nakaoka, Masahiro; Pearson, Gareth Anthony; Serrao, Ester A.
    Understanding the impacts of past and future climate change on genetic diversity and structure is a current major research gap. We ask whether past range shifts explain the observed genetic diversity of surfgrass species and if future climate change projections anticipate genetic diversity losses. Our study aims to identify regions of long-term climate suitability with higher and unique seagrass genetic diversity and predict future impacts of climate change on them.LocationNortheast Pacific.Time PeriodAnalyses considered a timeframe from the Last Glacial Maximum (LGM; 20 kybp) until one Representative Concentration Pathway (RCP) scenario of future climate changes (RCP 8.5; 2100).Major Taxa StudiedTwo seagrass species belonging to the genus Phyllospadix.MethodsWe estimated population genetic diversity and structure using 11 polymorphic microsatellite markers. We predicted the distribution of the species for the present, LGM, and near future (RCP 8.5, no climate mitigation) using Species Distribution Models (SDMs).ResultsSDMs revealed southward range shifts during the LGM and potential poleward expansions in the future. Genetic diversity of Phyllospadix torreyi decreases from north to south, but in Phyllospadix scouleri the trend is variable. Phyllospadix scouleri displays signals of genome admixture at the southernmost and northernmost edges of its distribution.Main ConclusionsThe genetic patterns observed in the present reveal the influence of climate-driven range shifts in the past and suggest further consequences of climate change in the future, with potential loss of unique gene pools. This study also shows that investigating climate links to present genetic information at multiple timescales can establish a historical context for analyses of the future evolutionary history of populations.