Repository logo
 
Loading...
Profile Picture

Search Results

Now showing 1 - 5 of 5
  • The climate of the Common Era off the Iberian Peninsula
    Publication . Abrantes, Fatima; Rodrigues, Teresa; Rufino, Marta; Salgueiro, Emilia; Oliveira, Dulce; Gomes, Sandra; Oliveira, Paulo; Costa, Ana; Mil-Homens, Mario; Drago, Teresa; Naughton, Filipa
    The Mediterranean region is a climate hot spot, sensitive not only to global warming but also to water availability. In this work we document major temperature and precipitation changes in the Iberian Peninsula and margin during the last 2000 years and propose an interplay of the North Atlantic internal variability with the three atmospheric circulation modes (ACMs), (North Atlantic Oscillation (NAO), east atlantic (EA) and Scandinavia (SCAND)) to explain the detected climate variability. We present reconstructions of sea surface temperature (SST derived from alkenones) and on-land precipitation (estimated from higher plant n-alkanes and pollen data) in sedimentary sequences recovered along the Iberian Margin between the south of Portugal (Algarve) and the northwest of Spain (Galiza) (36 to 42 degrees N). A clear long-term cooling trend, from 0 CE to the beginning of the 20th century, emerges in all SST records and is considered to be a reflection of the decrease in the Northern Hemisphere summer insolation that began after the Holocene optimum. Multi-decadal/centennial SST variability follows other records from Spain, Europe and the Northern Hemisphere. Warm SSTs throughout the first 1300 years encompass the Roman period (RP), the Dark Ages (DA) and the Medieval Climate Anomaly (MCA). A cooling initiated at 1300 CE leads to 4 centuries of colder SSTs contemporary with the Little Ice Age (LIA), while a climate warming at 1800 CE marks the beginning of the modern/Industrial Era. Novel results include two distinct phases in the MCA: an early period (900-1100 years) characterized by intense precipitation/flooding and warm winters but a cooler spring-fall season attributed to the interplay of internal oceanic variability with a positive phase in the three modes of atmospheric circulation (NAO, EA and SCAND). The late MCA is marked by cooler and relatively drier winters and a warmer spring-fall season consistent with a shift to a negative mode of the SCAND. The Industrial Era reveals a clear difference between the NW Iberia and the Algarve records. While off NW Iberia variability is low, the Algarve shows large-amplitude decadal variability with an inverse relationship between SST and river input. Such conditions suggest a shift in the EA mode, from negative between 1900 and 1970 CE to positive after 1970, while NAO and SCAND remain in a positive phase. The particularly noticeable rise in SST at the Algarve site by the mid-20th century (+/- 1970), provides evidence for a regional response to the ongoing climate warming. The reported findings have implications for decadal-scale predictions of future climate change in the Iberian Peninsula.
  • Surface and deep water variability in the Western Mediterranean (ODP Site 975) during insolation cycle 74: high-resolution calcareous plankton and molecular biomarker signals
    Publication . Quivelli, Ornella; Marino, Maria; Rodrigues, Teresa; Girone, Angela; Maiorano, Patrizia; Abrantes, Fatima; Salgueiro, Emilia; Bassinot, Frank
    We reconstructed changes in productivity and surface/subsurface and deep-water dynamics in the Western Mediterranean through a multi-proxy study of Ocean Drilling Program Site 975 between late Marine Isotope Stage (MIS) 20 and early interglacial MIS 19. Our high-resolution study (down to similar to 200-year resolution) combines calcareous plankton assemblages (coccolithophores and foraminifera), biomarkers (C-37-alkenones, n-alkanes, n-alcohols) and elemental proxies (total organic carbon, total nitrogen, calcium carbonate). Surface water conditions are derived (i) from high-resolution delta O-18 and delta C-13 records obtained from the planktonic foraminifer Globigerina bulloides, and (ii) from summer and winter, foraminifera-based sea surface temperature reconstructions (SSTJAS-foram, SSTJFM-foram) achieved through transfer function. The integration of the whole dataset makes it possible to identify in the Balearic Sea, and to accurately characterize for the first time, an Organic Rich Layer (ORL) during latest MIS 20-early MIS 19, close to i-cycle 74. Its presence is marked firstly by higher values of total nitrogen (TN) and an increase of total C-37-alkenone and total organic carbon (TOC) preserved in the sediments. The multi-proxy approach reveals that the deglacial phase played a prominent role for ORL formation that was characterized by centennial scale phases. The alcohol preservation index (API) suggests that the shoaling of the circulation, which boosted marine productivity, started in the deglaciation and, in combination with freshening by Atlantic water inflow/riverine input and surface water buoyancy during sea level rising, culminated during the ORL event. At this time calcareous plankton proliferated on subsurface-surface waters, benefiting from ameliorating conditions, which promoted maximum marine productivity and higher organic matter preservation on the seafloor.
  • Mediterranean Outflow and surface water variability off southern Portugal during the early Pleistocene: A snapshot at Marine Isotope Stages 29 to 34 (1020-1135 ka)
    Publication . Voelker, Antje H. L.; Salgueiro, Emilia; Rodrigues, Teresa; Jiménez-Espejo, Francisco J.; Bahr, Andre; Alberto, Ana; Loureiro, Isabel; Padilha, Maria; Rebotim, Andreia; Roehl, Ursula
    Centennial-to-millennial scale records from IODP Site U1387, drilled during IODP Expedition 339 into the Faro Drift at 558 m water depth, now allow evaluating the climatic history of the upper core of the Mediterranean Outflow (MOW) and of the surface waters in the northern Gulf of Cadiz during the early Pleistocene. This study focuses on the period from Marine Isotope Stages (MIS) 29 to 34, i.e. the interval surrounding extreme interglacial MIS 31. Conditions in the upper MOW reflect obliquity, precession and millennial-scale variations. The benthic delta O-18 signal follows obliquity with the exception of an additional, smaller delta O-18 peak that marks the MIS 32/31 transition. Insolation maxima (precession minima) led to poor ventilation and a sluggish upper MOW core, whereas insolation minima were associated with enhanced ventilation and often also increased bottom current velocity. Millennial-scale periods of colder sea-surface temperatures (SST) were associated with short-term maxima in flow velocity and better ventilation, reminiscent of conditions known from MIS 3.A prominent contourite layer, coinciding with insolation cycle 100, was formed during MIS 31 and represents one of the few contourites developing within an interglacial period. MIS 31 surface water conditions were characterized by an extended period (1065-1091 ka) of warm SST, but SST were not much warmer than during MIS 33. Interglacial to glacial transitions experienced 2 to 3 stadial/interstadial cycles, just like their mid-to-late Pleistocene counterparts. Glacial MIS 30 and 32 recorded periods of extremely cold (<12 degrees C) SST that in their climatic impact were comparable with the Heinrich events of the mid and late Pleistocene. Glacial MIS 34, on the other hand, was a relative warm glacial period off southern Portugal. Overall, surface water and MOW conditions at Site U1387 show a strong congruence with Mediterranean climate, whereas millennial-scale variations are closely linked to North Atlantic circulation changes. (C) 2015 Elsevier B.V. All rights reserved.
  • delta O-18 and Mg/Ca thermometry in planktonic foraminifera: a multiproxy approach toward tracing oastal upwelling dynamics
    Publication . Salgueiro, Emilia; H L Voelker, Antje; Martin, P. A.; Rodrigues, Teresa; Zuniga, D.; Frojan, M.; de la Granda, F.; Villacieros-Robineau, N.; Alonso-Perez, F.; Alberto, A.; Rebotim, A.; Gonzalez-Alvarez, R.; Castro, C. G.; Abrantes, Fatima
    Planktonic foraminifera delta O-18 and Mg/Ca ratios are widely considered as a powerful proxy to reconstruct past seawater-column temperature. Due to the complex interpretation of planktonic foraminifera delta O-18 data in regard to past seawater temperatures, temperature determination based on the foraminifera shell Mg/Ca ratio is believed to be more accurate. Scarce Mg/Ca calibration data exists for coastal upwelling regions, resulting in incoherent results of past seawater reconstructions. The current study along the NW Iberia coastal upwelling system intends to define the best Mg/Ca temperature equation for the most representative species of this region (Neogloboquadrina incompta, Globigerina bulloides, and Globorotalia inflata). Seawater temperature from delta O-18 and Mg/Ca of these three planktonic foraminifera species was compared with the surface sediments alkenone derived SST and with the in situ temperatures measured at the depths where these foraminifera species currently live and calcify. The equations that better reflect each species calcification depth were selected as our regional equations for delta O-18 and Mg/Ca temperature reconstructions. The delta O-18-estimated temperatures for surface sediment specimens were comparable with in situ seawater-column temperature measurements, whereas the Mg/Ca derived temperatures seem to underestimate in situ values, in special for G. bulloides from samples affected by stronger coastal upwelling. The G. bulloides delta O-18 and Mg/Ca estimated temperatures from samples located offshore, further from coastal upwelling influence, are comparable to surface sediment alkenone derived temperatures. Our study shows that in upwelling areas, regional calibration of planktonic foraminifera Mg/Ca temperature equations is necessary for reliable interpretations of high-resolution past temperature variability in these important environments.
  • Coupled ocean and atmospheric changes during Greenland stadial 1 in southwestern Europe
    Publication . Naughton, F.; Costas, S.; Comes, S. D.; Desprat, S.; Rodrigues, Teresa; Goni, M. F. Sanchez; Renssen, H.; Trigo, R.; Bronk-Ramsey, C.; Oliveira, Dulce; Salgueiro, Emilia; Voelker, Antje H L; Abrantes, Fatima
    Paleoclimate reconstructions suggest that the complex variability within the Greenland stadial 1 (GS-1) over western Europe was governed by coupled ocean and atmospheric changes. However, few works from the North Atlantic mid-latitudes document both the GS-1 onset and its termination, which are often considered as single abrupt transition events. Here, we present a direct comparison between marine (alkenone-based sea surface temperatures) and terrestrial (pollen) data, at very high resolution (28 years mean), from the southwestern Iberian shelf record D13882. Our results reveal a rather complex climatic period with internally changing conditions. The GS-1 onset (GS-1a: 12890-12720 yr BP) is marked by a progressive cooling and drying GS-1b (12720-12390 yr BP) is the coldest and driest phase; GS-1c (12390-12030 yr BP) is marked by a progressive warming and increase in moisture conditions; GS-1 termination (GS-1d: 12030-11770 yr BP) is marked by rapid switches between cool wet, cold dry and cool wet conditions. Although hydroclimate response was very unsteady throughout the GS-1 and in particular during its termination phase, the persistence of an open temperate and Mediterranean forest in southwestern Iberia during the entire episode suggests that at least some moisture was delivered via the Westerlies. We propose coupled ocean and atmospheric mechanisms to reproduce these scenario. Changes in the strength of the Atlantic Meridional Overturning Circulation (AMOC) as well as variations in the North Atlantic sea-ice growth have favoured the displacement of the polar jet stream's latitudinal position and contributed to a complex spatial pattern and strength of the Westerlies across western Europe. (C) 2019 Elsevier Ltd. All rights reserved.