Loading...
2 results
Search Results
Now showing 1 - 2 of 2
- Surface and deep water variability in the Western Mediterranean (ODP Site 975) during insolation cycle 74: high-resolution calcareous plankton and molecular biomarker signalsPublication . Quivelli, Ornella; Marino, Maria; Rodrigues, Teresa; Girone, Angela; Maiorano, Patrizia; Abrantes, Fatima; Salgueiro, Emilia; Bassinot, FrankWe reconstructed changes in productivity and surface/subsurface and deep-water dynamics in the Western Mediterranean through a multi-proxy study of Ocean Drilling Program Site 975 between late Marine Isotope Stage (MIS) 20 and early interglacial MIS 19. Our high-resolution study (down to similar to 200-year resolution) combines calcareous plankton assemblages (coccolithophores and foraminifera), biomarkers (C-37-alkenones, n-alkanes, n-alcohols) and elemental proxies (total organic carbon, total nitrogen, calcium carbonate). Surface water conditions are derived (i) from high-resolution delta O-18 and delta C-13 records obtained from the planktonic foraminifer Globigerina bulloides, and (ii) from summer and winter, foraminifera-based sea surface temperature reconstructions (SSTJAS-foram, SSTJFM-foram) achieved through transfer function. The integration of the whole dataset makes it possible to identify in the Balearic Sea, and to accurately characterize for the first time, an Organic Rich Layer (ORL) during latest MIS 20-early MIS 19, close to i-cycle 74. Its presence is marked firstly by higher values of total nitrogen (TN) and an increase of total C-37-alkenone and total organic carbon (TOC) preserved in the sediments. The multi-proxy approach reveals that the deglacial phase played a prominent role for ORL formation that was characterized by centennial scale phases. The alcohol preservation index (API) suggests that the shoaling of the circulation, which boosted marine productivity, started in the deglaciation and, in combination with freshening by Atlantic water inflow/riverine input and surface water buoyancy during sea level rising, culminated during the ORL event. At this time calcareous plankton proliferated on subsurface-surface waters, benefiting from ameliorating conditions, which promoted maximum marine productivity and higher organic matter preservation on the seafloor.
- Holocene climate variability of the Western Mediterranean: surface water dynamics inferred from calcareous plankton assemblagesPublication . Bazzicalupo, Pietro; Maiorano, Patrizia; Girone, Angela; Marino, Maria; Combourieu-Nebout, Nathalie; Pelosi, Nicola; Salgueiro, Emilia; Incarbona, AlessandroA high-resolution study (centennial scale) has been performed on the calcareous plankton assemblage of the Holocene portion of the Ocean Drilling Program Site 976 (Alboran Sea) with the aim to identify the main changes in the surface water dynamic. The dataset also provided a seasonal foraminiferal sea surface water temperatures (SSTs), estimated using the modern analog technique SIMMAX 28, and it was compared with available geochemical and pollen data at the site. Three main climate shifts were identified as (1) the increase in abundance of Syracosphaera spp. and Turborotalita quinqueloba marks the early Holocene humid phase, during maximum summer insolation and enhanced river runoff. It is concomitant with the expansion of Quercus, supporting high humidity on land. It ends at 8.2 ka, registering a sudden temperature and humidity reduction; (2) the rise in the abundances of Florisphaera profunda and Globorotalia inflata, at ca. 8 ka, indicates the development of the modern geostrophic front, gyre circulation, and of a deep nutricline following the sea-level rise; and (3) the increase of small Gephyrocapsa and Globigerina bulloides at 5.3 ka suggests enhanced nutrient availability in surface waters, related to more persistent wind-induced upwelling conditions. Relatively higher winter SST in the last 3.5 ka favored the increase of Trilobatus sacculifer, likely connected to more stable surface water conditions. Over the main trends, a short-term cyclicity is registered in coccolithophore productivity during the last 8 ka. Short periods of increased productivity are in phase with Atlantic waters inflow, and more arid intervals on land. This cyclicity has been related with periods of positive North Atlantic Oscillation (NAO) circulations. Spectral analysis on coccolithophore productivity confirms the occurrence of millennial-scale cyclicity, suggesting an external (i.e. solar) and an internal (i.e. atmospheric/oceanic) forcing.