Repository logo
 
Loading...
Profile Picture

Search Results

Now showing 1 - 10 of 18
  • Nutritional and functional evaluation of inula crithmoides and mesembryanthemum nodiflorum grown in different salinities for human consumption
    Publication . Ribeiro Lima, Alexandre; Gama, Florinda; Castañeda-Loaiza, Viana; Costa, Camila; Schueler, Lisa M.; Santos, Tamara; Salazar, Miguel; Nunes, Carla; Cruz, Rui M. S.; Varela, J.; Barreira, Luísa
    The nutritional composition and productivity of halophytes is strongly related to the biotic/abiotic stress to which these extremophile salt tolerant plants are subjected during their cultivation cycle. In this study, two commercial halophyte species (Inula crithmoides and Mesembryanthemum nodiflorum) were cultivated at six levels of salinity using a soilless cultivation system. In this way, it was possible to understand the response mechanisms of these halophytes to salt stress. The relative productivity decreased from the salinities of 110 and 200 mmol L−1 upwards for I. crithmoides and M. nodiflorum, respectively. Nonetheless, the nutritional profile for human consumption remained balanced. In general, I. crithmoides vitamin (B1 and B6) contents were significantly higher than those of M. nodiflorum. For both species, β-carotene and lutein were induced by salinity, possibly as a response to oxidative stress. Phenolic compounds were more abundant in plants cultivated at lower salinities, while the antioxidant activity increased as a response to salt stress. Sensory characteristics were evaluated by a panel of culinary chefs showing a preference for plants grown at the salt concentration of 350 mmol L−1. In summary, salinity stress was effective in boosting important nutritional components in these species, and the soilless system promotes the sustainable and safe production of halophyte plants for human consumption.
  • Isolation of a euryhaline microalgal strain, Tetraselmis sp CTP4, as a robust feedstock for biodiesel production
    Publication . Pereira, Hugo; Gangadhar, Katkam N.; Schulze, Peter S.C.; Santos, Tamara; de Sousa, Carolina Bruno; Schueler, Lisa; Custódio, Luísa; Malcata, F. Xavier; Gouveia, Luísa; Varela, J.; Barreira, Luísa
    Bioprospecting for novel microalgal strains is key to improving the feasibility of microalgae-derived biodiesel production. Tetraselmis sp. CTP4 (Chlorophyta, Chlorodendrophyceae) was isolated using fluorescence activated cell sorting (FACS) in order to screen novel lipid-rich microalgae. CTP4 is a robust, euryhaline strain able to grow in seawater growth medium as well as in non-sterile urban wastewater. Because of its large cell size (9-22 mu m), CTP4 settles down after a six-hour sedimentation step. This leads to a medium removal efficiency of 80%, allowing a significant decrease of biomass dewatering costs. Using a two-stage system, a 3-fold increase in lipid content (up to 33% of DW) and a 2-fold enhancement in lipid productivity (up to 52.1 mg L-1 d(-1)) were observed upon exposure to nutrient depletion for 7 days. The biodiesel synthesized from the lipids of CTP4 contained high levels of oleic acid (25.67% of total fatty acids content) and minor amounts of polyunsaturated fatty acids with >= 4 double bonds (< 1%). As a result, this biofuel complies with most of the European (EN14214) and American (ASTM D6751) specifications, which commonly used microalgal feedstocks are usually unable to meet. In conclusion, Tetraselmis sp. CTP4 displays promising features as feedstock with lower downstream processing costs for biomass dewatering and biodiesel refining.
  • Improved production of lutein and β-carotene by thermal and light intensity upshifts in the marine microalga Tetraselmis sp. CTP4
    Publication . Schüler, Lisa Maylin; Santos, Tamara; Pereira, Hugo; Duarte, Paulo; Katkam, Dr. Gangadhar N.; Florindo, Claudia; Schulze, Peter S.C.; Barreira, Luísa; Varela, João
    The industrial microalga Tetraselmis sp. CTP4 is a promising candidate for aquaculture feed, novel food, cosmeceutical and nutraceutical due to its balanced biochemical profile. To further upgrade its biomass value, carotenogenesis was investigated by testing four environmental factors, namely temperature, light intensity, salinity and nutrient availability over different growth stages. The most important factor for carotenoid induction in this species is a sufficient supply of nitrates leading to an exponential growth of the cells. Furthermore, high temperatures of over 30 degrees C compared to lower temperatures (10 and 20 degrees C) induced the accumulation of carotenoids in this species. Remarkably, the two different branches of carotenoid synthesis were regulated depending on different light intensities. Contents of beta-carotene were 3-fold higher under low light intensities (33 mu mol m(-2) s(-1)) while lutein contents increased 1.5-fold under higher light intensities (170 and 280 mu mol m(-2) s(-1)). Nevertheless, highest contents of carotenoids (8.48 +/- 0.47 mg g(-1) DW) were found upon a thermal upshift from 20 degrees C to 35 degrees C after only two days at a light intensity of 170 mu mol m(-2) s(-1). Under these conditions, high contents of both lutein and beta-carotene were reached accounting for 3.17 +/- 0.18 and 3.21 +/- 0.18 mg g(-1) DW, respectively. This study indicates that Tetraselmis sp. CTP4 could be a sustainable source of lutein and beta-carotene at locations where a robust, euryhaline, thermotolerant microalgal strain is required.
  • Nutritional potential and toxicological evaluation of tetraselmis sp. CTP4 microalgal biomass produced in industrial photobioreactors
    Publication . Pereira, Hugo; Silva, Joana; Santos, Tamara; Gangadhar, Katkam N.; Raposo, Ana; Nunes, Cláudia; Coimbra, Manuel A.; Gouveia, Luísa; Barreira, Luísa; Varela, João
    Commercial production of microalgal biomass for food and feed is a recent worldwide trend. Although it is common to publish nutritional data for microalgae grown at the lab-scale, data about industrial strains cultivated in an industrial setting are scarce in the literature. Thus, here we present the nutritional composition and a microbiological and toxicological evaluation of Tetraselmis sp. CTP4 biomass, cultivated in 100-m3 photobioreactors at an industrial production facility (AlgaFarm). This microalga contained high amounts of protein (31.2 g/100 g), dietary fibres (24.6 g/100 g), digestible carbohydrates (18.1 g/100 g) and ashes (15.2 g/100 g), but low lipid content (7.04 g/100 g). The biomass displayed a balanced amount of essential amino acids, n-3 polyunsaturated fatty acids, and starch-like polysaccharides. Significant levels of chlorophyll (3.5 g/100 g), carotenoids (0.61 g/100 g), and vitamins (e.g., 79.2 mg ascorbic acid /100 g) were also found in the biomass. Conversely, pathogenic bacteria, heavy metals, cyanotoxins, mycotoxins, polycyclic aromatic hydrocarbons, and pesticides were absent. The biomass showed moderate antioxidant activity in several in vitro assays. Taken together, as the biomass produced has a balanced biochemical composition of macronutrients and (pro-)vitamins, lacking any toxic contaminants, these results suggest that this strain can be used for nutritional applications.
  • Influence of cultivation salinity in the nutritional composition, antioxidant capacity and microbial quality of Salicornia ramosissima commercially produced in soilless systems
    Publication . Lima, Alexandre R.; Castaneda-Loaiza, Viana; Salazar, Miguel; Nunes, Carla; Quintas, Celia; Gama, Florinda; Pestana, Maribela; Correia, Pedro J.; Santos, Tamara; Varela, João; Barreira, Luísa
    the consumption of halophytes as healthy gourmet food has increased considerably in the past few years. However, knowledge on the nutritional profile of domesticated halophytes is scarce and little is known on which cultivation conditions can produce plants with the best nutritional and functional properties. In this context, Salicornia ramosissima J. Woods was cultivated in six different salt concentrations, ranging from 35 to 465 mM of NaCl. Both the nutritional profile, the antioxidant capacity, and microbial quality of the produced plants were evaluated including minerals and vitamins. Salt has a marked effect on growth, which decreases for salinities higher than 110 mM. Nonetheless, plants cultivated with intermediate levels of salinity (110 and 200 mM) revealed better antioxidant status with higher amounts of phenolic compounds. Overall, results from this paper indicated that soilless culture systems using low-intermediate salinities produces S. ramosissima plants fit for commercialization and human consumption.
  • Wild vs cultivated halophytes: Nutritional and functional differences
    Publication . Castañeda-Loaiza, Viana; Oliveira, Marta; Santos, Tamara; Schüler, Lisa M.; Ribeiro Lima, Alexandre; Gama, Florinda; Salazar, Miguel; Neng, N.R.; Nogueira, J. M. F.; Varela, João; Barreira, Luísa
    Some halophyte plants are currently used in gourmet cuisine due to their unique organoleptic properties. Moreover, they exhibit excellent nutritional and functional properties, being rich in polyphenolics and vitamins. These compounds are associated to strong antioxidant activity and enhanced health benefits. This work compared the nutritional properties and antioxidant potential of three species (Mesembryanthemum nodiflorum, Suaeda maritima and Sarcocornia fruticosa) collected in saltmarshes from Portugal and Spain with those of cultivated plants. the latter were generally more succulent and had higher contents of minerals than plants obtained from the wild and contained less fibre. All species assayed are a good source of proteins, fibres and minerals. Additionally, they are good sources of carotenoids and vitamins A, C and B-6 and showed good antioxidant potential particularly S. maritima. Chromatographic analysis of the phenolic profile revealed that ferulic and caffeic acids as the most relevant phenolic compounds detected in the halophytes tested.
  • Searching for new sources of innovative products for the food industry within halophyte aromatic plants: In vitro antioxidant activity and phenolic and mineral contents of infusions and decoctions of Crithmum maritimum L.
    Publication . Pereira, Catarina Guerreiro; Barreira, Luísa; Neng, Nuno da Rosa; Florencio Nogueira, Jose Manuel; Marques, Catia; Santos, Tamara; Varela, J.; Custódio, Luísa
    Aromatic halophyte plants are an outstanding source of bioactive compounds and natural products with potential use in the food industry. This work reports the in vitro antioxidant activity, toxicity, poly phenolic profile and mineral contents of infusions and decoctions from stems, leaves and flowers of Crithmum maritimum L, an aromatic and edible maritime halophyte (sea fennel). Aspalathus linearis (Burm.f.) Dahlg. (rooibos) herbal tea was used as a reference. Sea fennel's tisanes, particularly from leaves, were rich in phenolic compounds and five of them (p-hydroxybenzoic and ferulic acids, epicatechin, pyrocatechol and 4-hydroxybenzaldehyde) were here described in C maritimum for the first time. Chlorogenic acid was the dominant phenolic determined. Na was the most abundant mineral in all tisanes followed by Ca and Mg in leaves' tisanes and K in flowers. Sea fennel's samples had a similar antioxidant activity than those from A. linearis, and had no significant toxicity towards four different mammalian cell lines. Altogether, our results suggest that sea fennel can be a source of products and/or molecules for the food industry with antioxidant properties and minerals in the form, for example, of innovative health-promoting herbal beverages.
  • Natural products from marine invertebrates against Leishmania parasites: a comprehensive review
    Publication . Oliveira, Marta; Barreira, Luísa; Gangadhar, Katkam N.; Rodrigues, Maria Joao; Santos, Tamara; Varela, J.; Custódio, Luísa
    Parasitic infections by Leishmania parasites remains a severe public health problem, especially in developing countries where it is highly endemic. Chemotherapy still remains a first option for the treatment of those diseases, despite the fact that available drugs exhibit a variety of shortcomings. Thus, innovative, less toxic more affordable and effective antileishmanial agents are urgently needed. The marine environment holds an immeasurable bio- and chemical diversity, being a valuable source of natural products with therapeutic potential. As invertebrates comprise about 60 % of all marine organisms, bioprospecting this class of organisms for antileishmanial properties may unravel unique and selective hit molecules. In this context, this review covers results on the literature of marine invertebrate extracts and pure compounds evaluated against Leishmania parasites mainly by in vitro methods. It comprises results obtained from the phyla Porifera, Cnidaria, Bryozoa (Ectoprota), Mollusca, Echinodermata, Annelida, Cetnophora, Platyhelminthes, sub phyla Crustacea (phylum Arthropoda) and Tunicata (phylum Chordata). Moreover, structure-activity relationships and possible mechanisms of action are mentioned, whenever available information is provided. About 70 species of marine invertebrates belonging to seven different phyla are included in this work. Besides a variety of crude extracts, a total of 140 pure compounds was tested against different Leishmania species. Although the research on the antileishmanial potential of marine invertebrates is in its early beginnings, promising results have been achieved that encourage further research. As more extracts and compounds are being screened, the possibility of finding active and selective antileishmanial molecules increases, rising new hope in the search for new treatments against leishmaniases.
  • Urban wastewater treatment by Tetraselmis sp CTP4 (Chlorophyta)
    Publication . Schulze, Peter S.C.; Carvalho, Carolina F. M.; H., Pereira; Gangadhar, Katkam N.; Lisa Schueler, Lisa M. Schueler; Santos, Tamara; Varela, J.; Barreira, Luísa
    The ability of a recent isolate, Tetraselmis sp. CTP4, for nutrient removal from sewage effluents before and after the nitrification process under batch and continuous cultivation was studied. Biomass productivities in both wastewaters were similar under continuous conditions ( 0.343 +/- 0.053 g L-1 d(-1)) and nutrient uptake rates were maximal 31.4 +/- 0.4 mg N L-1 d(-1) and 6.66 +/- 1.57 mg P-PO43 L- 1 d(-1) in WW before nitrification when cultivated in batch. Among batch treatments, cellular protein, carbohydrate and lipid levels shifted with aging cultures from 71.7 +/- 6.3 to 29.2 +/- 1.2%, 17.4 +/- 7.2 to 57.2 +/- 3.9% and 10.9 +/- 1.7 to 13.7 +/- 4.7%, respectively. In contrast, CTP4 cultivated continuously in Algal medium (control) showed lower biomass productivities ( 0.282 g VSS L-1 d(-1)) although improved lipid content (up to 20% lipids) in batch cultivation. Overall, Tetraselmis sp. CTP4 is promising for WW treatment as a replacement of the costly nitrification process, fixating more nutrients and providing a protein and carbohydrate-rich biomass as by-product. (C) 2016 Elsevier Ltd. All rights reserved.
  • Carotenoid biosynthetic gene expression, pigment and n-3 fatty acid contents in carotenoid-rich Tetraselmis striata CTP4 strains under heat stress combined with high light
    Publication . Schüler, Lisa Maylin; Bombo, Gabriel; Duarte, Paulo; Santos, Tamara; Maia, Inês Beatriz; Pinheiro, Filipa; Marques, José; Jacinto, Rita; Schulze, Peter S.C.; Pereira, Hugo; Barreira, Luísa; Varela, João
    In this study, two carotenoid-rich strains of the euryhaline microalga Tetraselmis striata CTP4 were isolated by random mutagenesis combined with selection via fluorescence activated cell sorting and growth on norflurazon. Both strains, ED5 and B11, showed an up to 1.5-fold increase in carotenoid contents as compared with the wildtype, independent of the growth conditions. More specifically, violaxanthin, beta-carotene and lutein contents reached as high as 1.63, 4.20 and 3.81 mg g-1 DW, respectively. Genes coding for phytoene synthase, phytoene desaturase, lycopene-beta-cyclase and epsilon-ring hydroxylase involved in carotenoid biosynthesis were found to be upregulated in ED5 and B11 cells as compared to the wildtype. Both strains showed higher contents of eicosapentaenoic acid as compared with those of the wildtype, reaching up to 4.41 and 2.88 mg g-1 DW, respectively. Overall, these results highlight the complexity of changes in carotenoid biosynthesis regulation that are required to improve pigment contents in microalgae.