Loading...
16 results
Search Results
Now showing 1 - 10 of 16
- Isolation of a euryhaline microalgal strain, Tetraselmis sp CTP4, as a robust feedstock for biodiesel productionPublication . Pereira, Hugo; Gangadhar, Katkam N.; Schulze, Peter S.C.; Santos, Tamara; de Sousa, Carolina Bruno; Schueler, Lisa; Custódio, Luísa; Malcata, F. Xavier; Gouveia, Luísa; Varela, J.; Barreira, LuísaBioprospecting for novel microalgal strains is key to improving the feasibility of microalgae-derived biodiesel production. Tetraselmis sp. CTP4 (Chlorophyta, Chlorodendrophyceae) was isolated using fluorescence activated cell sorting (FACS) in order to screen novel lipid-rich microalgae. CTP4 is a robust, euryhaline strain able to grow in seawater growth medium as well as in non-sterile urban wastewater. Because of its large cell size (9-22 mu m), CTP4 settles down after a six-hour sedimentation step. This leads to a medium removal efficiency of 80%, allowing a significant decrease of biomass dewatering costs. Using a two-stage system, a 3-fold increase in lipid content (up to 33% of DW) and a 2-fold enhancement in lipid productivity (up to 52.1 mg L-1 d(-1)) were observed upon exposure to nutrient depletion for 7 days. The biodiesel synthesized from the lipids of CTP4 contained high levels of oleic acid (25.67% of total fatty acids content) and minor amounts of polyunsaturated fatty acids with >= 4 double bonds (< 1%). As a result, this biofuel complies with most of the European (EN14214) and American (ASTM D6751) specifications, which commonly used microalgal feedstocks are usually unable to meet. In conclusion, Tetraselmis sp. CTP4 displays promising features as feedstock with lower downstream processing costs for biomass dewatering and biodiesel refining.
- Development of an organic culture medium for autotrophic production of chlorella vulgaris biomassPublication . Machado, Adriana; Pereira, Hugo; Costa, Margarida; Santos, Tamara; Carvalho, Bernardo; Soares, Maria; Quelhas, Pedro; Silva, Joana T.; Trovão, Mafalda; Barros, Ana; Varela, João; Vicente, António A.; Silva, JoanaMicroalgal biomass has gained increasing attention in the last decade for various biotechnological applications, including human nutrition. Certified organic products are currently a growing niche market in which the food industry has shown great interest. In this context, this work aimed at developing a certified organic culture medium for the production of autotrophic Chlorella vulgaris biomass. A preliminary assay in 2 L bubble column photobioreactors was performed in order to screen di erent commercial organic substrates (OS) at a normalized concentration of N (2 mmol L1). The highest growth performance was obtained using EcoMix4 and Bioscape which showed similar biomass concentrations compared to the synthetic culture medium (control). In order to meet the nutrient needs of Chlorella, both OS underwent elemental analyses to assess their nutrient composition. The laboratory findings allowed the development of a final organic culture medium using a proportion of Bioscape/EcoMix4 (1:1.2, m/m). This organic culture medium was later validated outdoors in 125 L flat panel and 10 m3 tubular flow through photobioreactors. The results obtained revealed that the developed organic medium led to similar microalgal growth performance and biochemical composition of produced biomass, as compared to the traditional synthetic medium. Overall, the formulated organic medium was e ective for the autotrophic production of organic C. vulgaris biomass.
- Pilot scale production of Crocosphaera chwakensis CCY0110 and evaluation of its biomass nutritional potentialPublication . Matinha-Cardoso, Jorge; Santos, Tamara; Pereira, Hugo; Varela, João; Tamagnini, Paula; Mota, RitaIn recent years, the large-scale cultivation and commercialization of microalgae/cyanobacteria biomasses have become a worldwide trend, mainly directed to the animal and human nutrition markets due to their outstanding nutritional value. However, only a very limited number are currently classified as food ingredients by Food Safety regulators worldwide. Crocosphaera chwakensis CCY0110 is a marine unicellular cyanobacterium that produces a promising and versatile extracellular carbohydrate polymer (Cyanoflan). Therefore, envisaging a biorefinery approach with a multi-product stream (zero-waste), C. chwakensis biomass was for the first time cultivated at pilot-scale in a 120 L flat panel photobioreactor and its nutritional composition was evaluated. The results obtained revealed high protein and fat-soluble vitamins content (similar to 54 g of protein, 6 mg vitamin A and 25 mg vitamin E per 100 g biomass dry weight), coupled with a balanced amount of essential amino acids and n-3 polyunsaturated fatty acids (36 % of total fatty acids). Moreover, C. chwakensis biomass can also be considered as a great source of important minerals, such as potassium (3 g per 100 g DW), magnesium (0.5 g per 100 g DW) and iron (95 mg per 100 g DW), as well as phycocyanin, a high-value blue pigment with a wide array of applications. Overall, C. chwakensis biomass displays a nutritional composition that outdo traditional feedstocks and competes with already established and commercially available cyanobacteria and microalgae. This work highlights the potential of C. chwakensis as a multi-product cyanobacterium for blue bioeconomy, combining the production of a promising biopolymer with biomass valorization.
- Industrial production of Phaeodactylum tricornutum for CO2 mitigation: biomass productivity and photosynthetic efficiency using photobioreactors of different volumesPublication . Quelhas, Pedro M.; Trovao, Mafalda; Silva, Joana T.; Machado, Adriana; Santos, Tamara; Pereira, Hugo; Varela, João; Simoes, Manuel; Silva, Joana L.The photosynthetic efficiency (PE) and potential of Phaeodactylum tricornutum for CO2 mitigation in industrial tubular photobioreactors (PBRs) of different volumes were evaluated. A preliminary assay was performed at lab-scale to optimize the salt concentration of the culture medium. Interestingly, salinity did not affect the growth of P. tricornutum at concentrations of 2.5, 5, 10, and 20 g L-1. Higher volumetric productivities were achieved in the 2.5-m(3) tubular PBR (0.235 g L-1 day(-1)), followed by 35- and 10-m(3) PBRs. Maximum areal productivities corresponded to 48.5, 45.0, and 12.8 g m(-2) day(-1) for the 35-, 10-, and 2.5-m(3) PBRs, respectively. PE was thus higher in the 35- and 10-m(3) PBRs (2.21 and 2.08%, respectively). The 10- and 35-m(3) PBR showed CO2 mitigation efficiencies of 60 and 41%, respectively, of the CO2 introduced into the PBR, corresponding to 2.3 and 2.5 g of fixed CO2 per g of biomass. Overall, cultivation of P. tricornutum couples high PE and areal productivity when the industrial PBRs were used, particularly PBRs of larger volumes. This improved PE performance with larger PBR volumes strongly suggests that large-scale cultivation of this diatom holds great potential for industrial CO2 mitigation.
- Improved production of lutein and β-carotene by thermal and light intensity upshifts in the marine microalga Tetraselmis sp. CTP4Publication . Schüler, Lisa Maylin; Santos, Tamara; Pereira, Hugo; Duarte, Paulo; Katkam, Dr. Gangadhar N.; Florindo, Claudia; Schulze, Peter S.C.; Barreira, Luísa; Varela, JoãoThe industrial microalga Tetraselmis sp. CTP4 is a promising candidate for aquaculture feed, novel food, cosmeceutical and nutraceutical due to its balanced biochemical profile. To further upgrade its biomass value, carotenogenesis was investigated by testing four environmental factors, namely temperature, light intensity, salinity and nutrient availability over different growth stages. The most important factor for carotenoid induction in this species is a sufficient supply of nitrates leading to an exponential growth of the cells. Furthermore, high temperatures of over 30 degrees C compared to lower temperatures (10 and 20 degrees C) induced the accumulation of carotenoids in this species. Remarkably, the two different branches of carotenoid synthesis were regulated depending on different light intensities. Contents of beta-carotene were 3-fold higher under low light intensities (33 mu mol m(-2) s(-1)) while lutein contents increased 1.5-fold under higher light intensities (170 and 280 mu mol m(-2) s(-1)). Nevertheless, highest contents of carotenoids (8.48 +/- 0.47 mg g(-1) DW) were found upon a thermal upshift from 20 degrees C to 35 degrees C after only two days at a light intensity of 170 mu mol m(-2) s(-1). Under these conditions, high contents of both lutein and beta-carotene were reached accounting for 3.17 +/- 0.18 and 3.21 +/- 0.18 mg g(-1) DW, respectively. This study indicates that Tetraselmis sp. CTP4 could be a sustainable source of lutein and beta-carotene at locations where a robust, euryhaline, thermotolerant microalgal strain is required.
- Nutritional potential and toxicological evaluation of tetraselmis sp. CTP4 microalgal biomass produced in industrial photobioreactorsPublication . Pereira, Hugo; Silva, Joana; Santos, Tamara; Gangadhar, Katkam N.; Raposo, Ana; Nunes, Cláudia; Coimbra, Manuel A.; Gouveia, Luísa; Barreira, Luísa; Varela, JoãoCommercial production of microalgal biomass for food and feed is a recent worldwide trend. Although it is common to publish nutritional data for microalgae grown at the lab-scale, data about industrial strains cultivated in an industrial setting are scarce in the literature. Thus, here we present the nutritional composition and a microbiological and toxicological evaluation of Tetraselmis sp. CTP4 biomass, cultivated in 100-m3 photobioreactors at an industrial production facility (AlgaFarm). This microalga contained high amounts of protein (31.2 g/100 g), dietary fibres (24.6 g/100 g), digestible carbohydrates (18.1 g/100 g) and ashes (15.2 g/100 g), but low lipid content (7.04 g/100 g). The biomass displayed a balanced amount of essential amino acids, n-3 polyunsaturated fatty acids, and starch-like polysaccharides. Significant levels of chlorophyll (3.5 g/100 g), carotenoids (0.61 g/100 g), and vitamins (e.g., 79.2 mg ascorbic acid /100 g) were also found in the biomass. Conversely, pathogenic bacteria, heavy metals, cyanotoxins, mycotoxins, polycyclic aromatic hydrocarbons, and pesticides were absent. The biomass showed moderate antioxidant activity in several in vitro assays. Taken together, as the biomass produced has a balanced biochemical composition of macronutrients and (pro-)vitamins, lacking any toxic contaminants, these results suggest that this strain can be used for nutritional applications.
- Isolation, identification and biotechnological applications of a novel, robust, free-living Chlorococcum (Oophila) amblystomatis strain isolated from a local pondPublication . Correia, Nádia; Pereira, Hugo; Silva, Joana T.; Santos, Tamara; Soares, Maria; Sousa, Carolina B.; Schüler, Lisa Maylin; Costa, Margarida; J. C. or Varela J. or Varela J.C.S.; Pereira, Leonel; Silva, JoanaBioprospection of novel autochthonous strains is key to the successful industrial-scale production of microalgal biomass. A novel Chlorococcum strain was recently isolated from a pond inside the industrial production facility of Allmicroalgae (Leiria, Portugal). Phylogenetic analysis based on 18S ribosomal ribonucleic acid (rRNA) gene sequences suggests that this isolate is a novel, free-living Oophila amblystomatis strain. However, as our phylogenetic data strongly suggests that the aforementioned taxon belongs to the genus Chlorococcum, it is here proposed to rename this species as Chlorococcum amblystomatis. In order to characterize the biotechnological potential of this novel isolate, growth performance and biochemical composition were evaluated from the pilot (2.5-m3) to industrial (10-m3) scale. The highest maximum areal productivity (36.56 g m2 day1) was reached in a 10-m3 tubular photobioreactor (PBR), as compared to that obtained in a 2.5-m3 PBR (26.75 g m2 day1). Chlorococcum amblystomatis displayed high protein content (48%–56% dry weight (DW)) and moderate levels of total lipids (18%–31% DW), carbohydrates (6%–18% DW) and ashes (9%–16% DW). Furthermore, the lipid profile was dominated by polyunsaturated fatty acids (PUFAs). The highest pigment contents were obtained in the 2.5-m3 PBR, where total chlorophylls accounted for 40.24 mg g1 DW, followed by lutein with 5.37 mg g1 DW. Overall, this free-living Chlorococcum amblystomatis strain shows great potential for nutritional applications, coupling a promising growth performance with a high protein content as well as relevant amounts of PUFAs, chlorophyll, and carotenoids.
- Carotenoid biosynthetic gene expression, pigment and n-3 fatty acid contents in carotenoid-rich Tetraselmis striata CTP4 strains under heat stress combined with high lightPublication . Schüler, Lisa Maylin; Bombo, Gabriel; Duarte, Paulo; Santos, Tamara; Maia, Inês Beatriz; Pinheiro, Filipa; Marques, José; Jacinto, Rita; Schulze, Peter S.C.; Pereira, Hugo; Barreira, Luísa; Varela, JoãoIn this study, two carotenoid-rich strains of the euryhaline microalga Tetraselmis striata CTP4 were isolated by random mutagenesis combined with selection via fluorescence activated cell sorting and growth on norflurazon. Both strains, ED5 and B11, showed an up to 1.5-fold increase in carotenoid contents as compared with the wildtype, independent of the growth conditions. More specifically, violaxanthin, beta-carotene and lutein contents reached as high as 1.63, 4.20 and 3.81 mg g-1 DW, respectively. Genes coding for phytoene synthase, phytoene desaturase, lycopene-beta-cyclase and epsilon-ring hydroxylase involved in carotenoid biosynthesis were found to be upregulated in ED5 and B11 cells as compared to the wildtype. Both strains showed higher contents of eicosapentaenoic acid as compared with those of the wildtype, reaching up to 4.41 and 2.88 mg g-1 DW, respectively. Overall, these results highlight the complexity of changes in carotenoid biosynthesis regulation that are required to improve pigment contents in microalgae.
- The osteogenic and mineralogenic potential of the microalgae Skeletonema costatum and Tetraselmis striata CTP4 in fish modelsPublication . Carletti, Alessio; Rosa, Joana; Pes, Katia; Borges, Inês; Santos, Tamara; Barreira, Luísa; Varela, João; Pereira, Hugo; Cancela, M. Leonor; J. Gavaia, Paulo; Laizé, VincentSkeletal disorders are problematic aspects for the aquaculture industry as skeletal deformities, which affect most species of farmed fish, increase production costs and affect fish welfare. Following recent findings that show the presence of osteoactive compounds in marine organisms, we evaluated the osteogenic and mineralogenic potential of commercially available microalgae strains Skeletonema costatum and Tetraselmis striata CTP4 in several fish systems. Ethanolic extracts increased extracellular matrix mineralization in gilthead seabream (Sparus aurata) bone-derived cell cultures and promoted osteoblastic differentiation in zebrafish (Danio rerio) larvae. Long-term dietary exposure to both extracts increased bone mineralization in zebrafish and upregulated the expression of genes involved in bone formation (sp7, col1a1a, oc1, and oc2), bone remodeling (acp5a), and antioxidant defenses (cat, sod1). Extracts also improved the skeletal status of zebrafish juveniles by reducing the incidence of skeletal anomalies. Our results indicate that both strains of microalgae contain osteogenic and mineralogenic compounds, and that ethanolic extracts have the potential for an application in the aquaculture sector as dietary supplements to support fish bone health. Future studies should also identify osteoactive compounds and establish whether they can be used in human health to broaden the therapeutic options for bone erosive disorders such as osteoporosis.
- Scale-up and large-scale production of Tetraselmis sp CTP4 (Chlorophyta) for CO2 mitigation: from an agar plate to 100-m(3) industrial photobioreactorsPublication . Pereira, Hugo; Paramo, Jaime; Silva, Joana; Marques, Ana; Barros, Ana; Mauricio, Dinis; Santos, Tamara; Schulze, Peter; Raul J Barros; Gouveia, Luisa; Barreira, Luísa; Varela, J.Industrial production of novel microalgal isolates is key to improving the current portfolio of available strains that are able to grow in large-scale production systems for different biotechnological applications, including carbon mitigation. In this context, Tetraselmis sp. CTP4 was successfully scaled up from an agar plate to 35-and 100-m(3) industrial scale tubular photobioreactors (PBR). Growth was performed semi-continuously for 60 days in the autumn-winter season (17th October -14th December). Optimisation of tubular PBR operations showed that improved productivities were obtained at a culture velocity of 0.65-1.35 m s(-1) and a pH set-point for CO2 injection of 8.0. Highest volumetric (0.08 +/- 0.01 g L-1 d(-1)) and areal (20.3 +/- 3.2 g m(-2) d(-1)) biomass productivities were attained in the 100-m(3) PBR compared to those of the 35-m(3) PBR (0.05 +/- 0.02 g L-1 d(-1) and 13.5 +/- 4.3 g m(-2) d(-1), respectively). Lipid contents were similar in both PBRs (9-10% of ash free dry weight). CO2 sequestration was followed in the 100-m(3) PBR, revealing a mean CO2 mitigation efficiency of 65% and a biomass to carbon ratio of 1.80. Tetraselmis sp. CTP4 is thus a robust candidate for industrial-scale production with promising biomass productivities and photosynthetic efficiencies up to 3.5% of total solar irradiance.