Repository logo
 
Loading...
Profile Picture

Search Results

Now showing 1 - 5 of 5
  • Industrial production of Phaeodactylum tricornutum for CO2 mitigation: biomass productivity and photosynthetic efficiency using photobioreactors of different volumes
    Publication . Quelhas, Pedro M.; Trovao, Mafalda; Silva, Joana T.; Machado, Adriana; Santos, Tamara; Pereira, Hugo; Varela, João; Simoes, Manuel; Silva, Joana L.
    The photosynthetic efficiency (PE) and potential of Phaeodactylum tricornutum for CO2 mitigation in industrial tubular photobioreactors (PBRs) of different volumes were evaluated. A preliminary assay was performed at lab-scale to optimize the salt concentration of the culture medium. Interestingly, salinity did not affect the growth of P. tricornutum at concentrations of 2.5, 5, 10, and 20 g L-1. Higher volumetric productivities were achieved in the 2.5-m(3) tubular PBR (0.235 g L-1 day(-1)), followed by 35- and 10-m(3) PBRs. Maximum areal productivities corresponded to 48.5, 45.0, and 12.8 g m(-2) day(-1) for the 35-, 10-, and 2.5-m(3) PBRs, respectively. PE was thus higher in the 35- and 10-m(3) PBRs (2.21 and 2.08%, respectively). The 10- and 35-m(3) PBR showed CO2 mitigation efficiencies of 60 and 41%, respectively, of the CO2 introduced into the PBR, corresponding to 2.3 and 2.5 g of fixed CO2 per g of biomass. Overall, cultivation of P. tricornutum couples high PE and areal productivity when the industrial PBRs were used, particularly PBRs of larger volumes. This improved PE performance with larger PBR volumes strongly suggests that large-scale cultivation of this diatom holds great potential for industrial CO2 mitigation.
  • Nutritional potential and toxicological evaluation of tetraselmis sp. CTP4 microalgal biomass produced in industrial photobioreactors
    Publication . Pereira, Hugo; Silva, Joana; Santos, Tamara; Gangadhar, Katkam N.; Raposo, Ana; Nunes, Cláudia; Coimbra, Manuel A.; Gouveia, Luísa; Barreira, Luísa; Varela, João
    Commercial production of microalgal biomass for food and feed is a recent worldwide trend. Although it is common to publish nutritional data for microalgae grown at the lab-scale, data about industrial strains cultivated in an industrial setting are scarce in the literature. Thus, here we present the nutritional composition and a microbiological and toxicological evaluation of Tetraselmis sp. CTP4 biomass, cultivated in 100-m3 photobioreactors at an industrial production facility (AlgaFarm). This microalga contained high amounts of protein (31.2 g/100 g), dietary fibres (24.6 g/100 g), digestible carbohydrates (18.1 g/100 g) and ashes (15.2 g/100 g), but low lipid content (7.04 g/100 g). The biomass displayed a balanced amount of essential amino acids, n-3 polyunsaturated fatty acids, and starch-like polysaccharides. Significant levels of chlorophyll (3.5 g/100 g), carotenoids (0.61 g/100 g), and vitamins (e.g., 79.2 mg ascorbic acid /100 g) were also found in the biomass. Conversely, pathogenic bacteria, heavy metals, cyanotoxins, mycotoxins, polycyclic aromatic hydrocarbons, and pesticides were absent. The biomass showed moderate antioxidant activity in several in vitro assays. Taken together, as the biomass produced has a balanced biochemical composition of macronutrients and (pro-)vitamins, lacking any toxic contaminants, these results suggest that this strain can be used for nutritional applications.
  • Isolation, identification and biotechnological applications of a novel, robust, free-living Chlorococcum (Oophila) amblystomatis strain isolated from a local pond
    Publication . Correia, Nádia; Pereira, Hugo; Silva, Joana T.; Santos, Tamara; Soares, Maria; Sousa, Carolina B.; Schüler, Lisa Maylin; Costa, Margarida; J. C. or Varela J. or Varela J.C.S.; Pereira, Leonel; Silva, Joana
    Bioprospection of novel autochthonous strains is key to the successful industrial-scale production of microalgal biomass. A novel Chlorococcum strain was recently isolated from a pond inside the industrial production facility of Allmicroalgae (Leiria, Portugal). Phylogenetic analysis based on 18S ribosomal ribonucleic acid (rRNA) gene sequences suggests that this isolate is a novel, free-living Oophila amblystomatis strain. However, as our phylogenetic data strongly suggests that the aforementioned taxon belongs to the genus Chlorococcum, it is here proposed to rename this species as Chlorococcum amblystomatis. In order to characterize the biotechnological potential of this novel isolate, growth performance and biochemical composition were evaluated from the pilot (2.5-m3) to industrial (10-m3) scale. The highest maximum areal productivity (36.56 g m􀀀2 day􀀀1) was reached in a 10-m3 tubular photobioreactor (PBR), as compared to that obtained in a 2.5-m3 PBR (26.75 g m􀀀2 day􀀀1). Chlorococcum amblystomatis displayed high protein content (48%–56% dry weight (DW)) and moderate levels of total lipids (18%–31% DW), carbohydrates (6%–18% DW) and ashes (9%–16% DW). Furthermore, the lipid profile was dominated by polyunsaturated fatty acids (PUFAs). The highest pigment contents were obtained in the 2.5-m3 PBR, where total chlorophylls accounted for 40.24 mg g􀀀1 DW, followed by lutein with 5.37 mg g􀀀1 DW. Overall, this free-living Chlorococcum amblystomatis strain shows great potential for nutritional applications, coupling a promising growth performance with a high protein content as well as relevant amounts of PUFAs, chlorophyll, and carotenoids.
  • Carotenoid biosynthetic gene expression, pigment and n-3 fatty acid contents in carotenoid-rich Tetraselmis striata CTP4 strains under heat stress combined with high light
    Publication . Schüler, Lisa Maylin; Bombo, Gabriel; Duarte, Paulo; Santos, Tamara; Maia, Inês Beatriz; Pinheiro, Filipa; Marques, José; Jacinto, Rita; Schulze, Peter S.C.; Pereira, Hugo; Barreira, Luísa; Varela, João
    In this study, two carotenoid-rich strains of the euryhaline microalga Tetraselmis striata CTP4 were isolated by random mutagenesis combined with selection via fluorescence activated cell sorting and growth on norflurazon. Both strains, ED5 and B11, showed an up to 1.5-fold increase in carotenoid contents as compared with the wildtype, independent of the growth conditions. More specifically, violaxanthin, beta-carotene and lutein contents reached as high as 1.63, 4.20 and 3.81 mg g-1 DW, respectively. Genes coding for phytoene synthase, phytoene desaturase, lycopene-beta-cyclase and epsilon-ring hydroxylase involved in carotenoid biosynthesis were found to be upregulated in ED5 and B11 cells as compared to the wildtype. Both strains showed higher contents of eicosapentaenoic acid as compared with those of the wildtype, reaching up to 4.41 and 2.88 mg g-1 DW, respectively. Overall, these results highlight the complexity of changes in carotenoid biosynthesis regulation that are required to improve pigment contents in microalgae.
  • Incorporation of defatted microalgal biomass (Tetraselmis sp. CTP4) at the expense of soybean meal as a feed ingredient for juvenile gilthead seabream (Sparus aurata)
    Publication . Pereira, Hugo; Sardinha, Manuel; Santos, Tamara; Gouveia, Luisa; Barreira, Luísa; Dias, Jorge; Varela, João
    The forecasted growth of the aquaculture sector requires the use of novel and sustainable ingredients in aquaculture feeds. A study was undertaken to evaluate the effect of a 10% incorporation of defatted microalgal biomass (DMB) of Tetraselmis sp. CTP4, used at the expense of dehulled solvent-extracted soybean meal (SBM), on the growth performance, nutrient digestibility and physiological response to confinement stress in gilthead seabream juveniles. The trial comprised two dietary treatments: a control diet (CTRL) with relatively high levels of marine-derived proteins and 10% SBM; and a test diet (DMB10) with the incorporation of 10% DMB at the expense of SBM, while maintaining a fair constancy of all other ingredients. Triplicate groups of 30 fish, with a mean initial body weight of 6.0 +/- 0.2 g were fed the experimental diets for 61 days. At the end of the trial, fish tripled their initial body weight, but the overall growth performance criteria (final body weight, daily growth index, feed conversion ratio and protein efficiency ratio), whole-body composition and nutrient retention were not significantly affected by the dietary treatments (p > 0.05). The DMB10 diet showed a significantly higher apparent digestibility coefficients (ADC) of dry matter, energy and phosphorus (p < 0.05). When measured as an isolated feed ingredient, the DMB had an ADC of protein, fat, energy and phosphorus of 87.9, 85.3, 75.5 and 41.4%, respectively. After an acute confinement stress test, fish fed with DMB10 diet displayed a significantly lower plasma cortisol response (120 +/- 23 ng/mL) than those fed with the control diet (160 +/- 33 ng/mL) (p < 0.05). Overall results showed that DMB, issued from biorefinery processes, could potentially spare the use of soybean meal in aquaculture feeds, contributing towards a reduction of the current protein deficit in the European market.