Repository logo
 
Loading...
Profile Picture

Search Results

Now showing 1 - 6 of 6
  • Using remote sensing and machine learning to reconstruct paleoenvironmental features in the Koobi Fora Formation
    Publication . Dorans, Elizabeth R.; Coelho, Joao D'Oliveira; Anemone, Robert L.; Bobe, Rene; Carvalho, Susana; Forrest, Frances; Braun, David R.
    Advances in Geographic Information Systems and Remote Sensing technologies have the potential to revolutionize archaeological and paleontological fieldwork. Machine learning models have been effective in identifying conditions ideal for preservation, exposure, and discovery of fossils in a range of geographic contexts. Researchers working in the Koobi Fora Formation of northern Kenya have long inquired about the geographic patterning of extinct fauna and their respective paleoenvironments. This project is the first attempt to use machine learning techniques to capture paleoecological patterns utilizing topographical and spectral variables that may be predictive of the input of aquatic components in the paleoenvironments of the Koobi Fora Formation.
  • Gorongosa by the sea: First Miocene fossil sites from the Urema Rift, central Mozambique, and their coastal paleoenvironmental and paleoecological contexts
    Publication . Habermann, Jörg M.; Alberti, Matthias; Aldeias, Vera; Alemseged, Zeresenay; Archer, Will; Bamford, Marion; Biro, Dora; Braun, David R.; Capelli, Cristian; Cunha, Eugenia; da Silva, Maria Ferreira; Luedecke, Tina; Madiquida, Hilario; Martinez, Felipe I.; Mathe, Jacinto; Negash, Enquye; Paulo, Luis M.; Pinto, Maria; Stalmans, Marc; Regala, Frederico Tata; Wynn, Jonathan G.; Bobe, Rene; Carvalho, Susana
    The East African Rift System (EARS) has played a central role in our understanding of human origins and vertebrate evolution in the late Cenozoic of Africa. However, the distribution of fossil sites along the rift is highly biased towards its northern extent, and the types of paleoenvironments are primarily restricted to fluvial and lacustrine settings. Here we report the discovery of the first fossil sites from the Urema Rift at Gorongosa National Park (central Mozambique) at the southern end of the EARS, and reconstruct environmental contexts of the fossils. In situ and surface fossils from the lower member of the Mazamba Formation, estimated to be of Miocene age, comprise mammals, reptiles, fishes, invertebrates, palms, and dicot trees. Fossil and geological evidence indicates a coastal-plain paleoenvironmental mosaic of riverine forest/woodland and estuarine habitats that represent the first coastal biomes identified in the Neogene EARS context. Receiving continental sediment from source terranes west of today's Urema Graben, estuarine sequences accumulated prior to rifting as compound incised-valley fills on a low-gradient coastal plain following transgression. Modern environmental analogues are extremely productive habitats for marine and terrestrial fauna, including primates. Thus, our discoveries raise the possibility that the Miocene coastal landscapes of Gorongosa were ecologically-favorable habitats for primates, providing relatively stable maritime climate and ecosystem conditions, year-round freshwater availability, and food both from terrestrial and marine sources. The emerging fossil record from Gorongosa is beginning to fill an important gap in the paleobiogeography of Africa as no fossil sites of Neogene age have previously been reported from the southernmost part of the EARS. Furthermore, this unique window into past continental-margin ecosystems of central Mozambique may allow us to test key paleobiogeographic hypotheses during critical periods of primate evolution.
  • The first Miocene fossils from coastal woodlands in the southern East African Rift
    Publication . Bobe, René; Aldeias, Vera; Alemseged, Zeresenay; Anemone, Robert L.; Archer, Will; Aumaître, Georges; Bamford, Marion K.; Biro, Dora; Bourlès, Didier L.; Doyle Boyd, Melissa; Braun, David R.; Capelli, Cristian; d’Oliveira Coelho, João; Habermann, Jörg M.; Head, Jason J.; Keddadouche, Karim; Kupczik, Kornelius; Lebatard, Anne-Elisabeth; Lüdecke, Tina; Macôa, Amélia; Martínez, Felipe I.; Mathe, Jacinto; Mendes, Clara; Paulo, Luis Meira; Pinto, Maria; Presnyakova, Darya; Püschel, Thomas A.; Regala, Frederico; Sier, Mark; Ferreira da Silva, Maria Joana; Stalmans, Marc; Carvalho, Susana
    The Miocene was a key time in the evolution of African ecosystems witnessing the origin of the African apes and the isolation of eastern coastal forests through an expanding arid corridor. Until recently, however, Miocene sites from the southeastern regions of the continent were unknown. Here, we report the first Miocene fossil teeth from the shoulders of the Urema Rift in Gorongosa National Park, Mozambique. We provide the first 1) radiometric ages of the Mazamba Formation, 2) reconstructions of paleovegetation in the region based on pedogenic carbonates and fossil wood, and 3) descriptions of fossil teeth. Gorongosa is unique in the East African Rift in combining marine invertebrates, marine vertebrates, reptiles, terrestrial mammals, and fossil woods in coastal paleoenvironments. The Gorongosa fossil sites offer the first evidence of woodlands and forests on the coastal margins of southeastern Africa during the Miocene, and an exceptional assemblage of fossils including new species.
  • Quantifying traces of tool use: a novel morphometric analysis of damage patterns on percussive tools
    Publication . Caruana, Matthew V.; Carvalho, Susana; Braun, David R.; Presnyakova, Darya; Haslam, Michael; Archer, Will; Bobe, René; Harris, John W. K.
    Percussive technology continues to play an increasingly important role in understanding the evolution of tool use. Comparing the archaeological record with extractive foraging behaviors in nonhuman primates has focused on percussive implements as a key to investigating the origins of lithic technology. Despite this, archaeological approaches towards percussive tools have been obscured by a lack of standardized methodologies. Central to this issue have been the use of qualitative, non-diagnostic techniques to identify percussive tools from archaeological contexts. Here we describe a new morphometric method for distinguishing anthropogenically-generated damage patterns on percussive tools from naturally damaged river cobbles. We employ a geomatic approach through the use of three-dimensional scanning and geographical information systems software to statistically quantify the identification process in percussive technology research. This will strengthen current technological analyses of percussive tools in archaeological frameworks and open new avenues for translating behavioral inferences of early hominins from percussive damage patterns.
  • Carbon, nitrogen, and oxygen stable isotopes in modern tooth enamel: A case study from Gorongosa National Park, central Mozambique
    Publication . Lüdecke, Tina; Leichliter, Jennifer N.; Aldeias, Vera; Bamford, Marion K.; Biro, Dora; Braun, David R.; Capelli, Cristian; Cybulski, Jonathan D.; Duprey, Nicolas N.; Ferreira da Silva, Maria J.; Foreman, Alan D.; Habermann, Jörg M.; Haug, Gerald H.; Martínez, Felipe I.; Mathe, Jacinto; Mulch, Andreas; Sigman, Daniel M.; Vonhof, Hubert; Bobe, Rene; Carvalho, Susana; Martínez-García, Alfredo
    The analyses of the stable isotope ratios of carbon (delta C-13), nitrogen (delta N-15), and oxygen (delta O-18) in animal tissues are powerful tools for reconstructing the feeding behavior of individual animals and characterizing trophic interactions in food webs. Of these biomaterials, tooth enamel is the hardest, most mineralized vertebrate tissue and therefore least likely to be affected by chemical alteration (i.e., its isotopic composition can be preserved over millions of years), making it an important and widely available archive for biologists and paleontologists. Here, we present the first combined measurements of delta C-13, delta N-15, and delta O-18 in enamel from the teeth of modern fauna (herbivores, carnivores, and omnivores) from the well-studied ecosystem of Gorongosa National Park (GNP) in central Mozambique. We use two novel methods to produce high-precision stable isotope enamel data: (i) the "oxidation-denitrification method," which permits the measurement of mineral-bound organic nitrogen in tooth enamel (delta N-15(enamel)), which until now, has not been possible due to enamel's low organic content, and (ii) the "cold trap method," which greatly reduces the sample size required for traditional measurements of inorganic delta C-13(enamel) and delta O-18(enamel) (from >= 0.5 to <= 0.1 mg), permitting analysis of small or valuable teeth and high-resolution serial sampling of enamel. The stable isotope results for GNP fauna reveal important ecological information about the trophic level, dietary niche, and resource consumption. delta N-15(enamel) values clearly differentiate trophic level (i.e., carnivore delta N-15(enamel) values are 4.0 parts per thousand higher, on average, than herbivores), delta C-13(enamel) values distinguish C-3 and/or C-4 biomass consumption, and delta O-18(enamel) values reflect local meteoric water (delta O-18(water)) in the park. Analysis of combined carbon, nitrogen, and oxygen stable isotope data permits geochemical separation of grazers, browsers, omnivores, and carnivores according to their isotopic niche, while mixed-feeding herbivores cannot be clearly distinguished from other dietary groups. These results confirm that combined C, N, and O isotope analyses of a single aliquot of tooth enamel can be used to reconstruct diet and trophic niches. Given its resistance to chemical alteration, the analysis of these three isotopes in tooth enamel has a high potential to open new avenues of research in (paleo)ecology and paleontology.