Repository logo
 

Search Results

Now showing 1 - 2 of 2
  • Cartilage acidic protein 1, a new member of the beta-propeller protein family with amyloid propensity
    Publication . Anjos, Lliana; Morgado, Isabel; Guerreiro, Marta; Cardoso, João CR; Melo, Eduardo; Power, Deborah
    Cartilage acidic protein1 (CRTAC1) is an extracellular matrix protein of chondrogenic tissue in humans and its presence in bacteria indicate it is of ancient origin. Structural modeling of piscine CRTAC1 reveals it belongs to the large family of beta-propeller proteins that in mammals have been associated with diseases, including amyloid diseases such as Alzheimer's. In order to characterize the structure/function evolution of this new member of the beta-propeller family we exploited the unique characteristics of piscine duplicate genes Crtac1a and Crtac1b and compared their structural and biochemical modifications with human recombinant CRTAC1. We demonstrate that CRTAC1 has a beta-propeller structure that has been conserved during evolution and easily forms high molecular weight thermo-stable aggregates. We reveal for the first time the propensity of CRTAC1 to form amyloid-like structures, and hypothesize that the aggregating property of CRTAC1 may be related to its disease-association. We further contribute to the general understating of CRTAC1's and beta-propeller family evolution and function. Proteins 2017; 85:242-255. (c) 2016 Wiley Periodicals, Inc.
  • Stanniocalcin 1 effects on the renal gluconeogenesis pathway in rat and fish
    Publication . Schein, Vanessa; Kucharski, Luiz C.; M Guerreiro, Pedro; Martins, Tiago Leal; Morgado, Isabel; Power, Deborah M.; Canario, Adelino V. M.; da Silva, Roselis S. M.
    The mammalian kidney contributes significantly to glucose homeostasis through gluconeogenesis. Considering that stanniocalcin 1 (STC1) regulates ATP production, is synthesized and acts in different cell types of the nephron, the present study hypothesized that STC1 may be implicated in the regulation of gluconeogenesis in the vertebrate kidney. Human STC1 strongly reduced gluconeogenesis from C-14-glutamine in rat renal medulla (MD) slices but not in renal cortex (CX), nor from C-14-lactic acid. Total PEPCK activity was markedly reduced by hSTC1 in MD but not in CX. Pck2 (mitochondrial PEPCK isoform) was down-regulated by hSTC1 in MD but not in CX. In fish (Dicentrarchus labrax) kidney slices, both STC1-A and -B isoforms decreased gluconeogenesis from C-14-acid lactic, while STC1-A increased gluconeogenesis from C-14-glutamine. Overall, our results demonstrate a role for STC1 in the control of glucose synthesis via renal gluconeogenesis in mammals and suggest that it may have a similar role in teleost fishes. (C) 2015 Elsevier Ireland Ltd. All rights reserved.