Loading...
78 results
Search Results
Now showing 1 - 10 of 78
- Multi-scale lines and edges in V1 and beyond: brightness, object categorization and recognition, and consciousnessPublication . Rodrigues, J. M. F.; du Buf, J. M. H.In this paper we present an improved model for line and edge detection in cortical area V1. This model is based on responses of simple and complex cells, and it is multi-scale with no free parameters. We illustrate the use of the multi-scale line/edge representation in different processes: visual reconstruction or brightness perception, automatic scale selection and object segregation. A two-level object categorization scenario is tested in which pre-categorization is based on coarse scales only and final categorization on coarse plus fine scales. We also present a multi-scale object and face recognition model. Processing schemes are discussed in the framework of a complete cortical architecture. The fact that brightness perception and object recognition may be based on the same symbolic image representation is an indication that the entire (visual) cortex is involved in consciousness.
- Segmentação de imagem em três dimensõesPublication . Rodrigues, J. M. F.; du Buf, J. M. H.
- BINK: Biological binary keypoint descriptorPublication . Saleiro Filho, Mario; Terzic, Kasim; Rodrigues, João; du Buf, J. M. H.Learning robust keypoint descriptors has become an active research area in the past decade. Matching local features is not only important for computational applications, but may also play an important role in early biological vision for disparity and motion processing. Although there were already some floatingpoint descriptors like SIFT and SURF that can yield high matching rates, the need for better and faster descriptors for real-time applications and embedded devices with low computational power led to the development of binary descriptors, which are usually much faster to compute and to match. Most of these descriptors are based on purely computational methods. The few descriptors that take some inspiration from biological systems are still lagging behind in terms of performance. In this paper, we propose a new biologically inspired binary keypoint descriptor: SINK. Built on responses of cortical V1 cells, it significantly outperforms the other biologically inspired descriptors. The new descriptor can be easily integrated with a V1-based keypoint detector that we previously developed for real-time applications. (C) 2017 Elsevier B.V. All rights reserved.
- Improved line/edge detection and visual reconstructionPublication . Rodrigues, J. M. F.; du Buf, J. M. H.Lines and edges provide important information for object categorization and recognition. In addition, one brightness model is based on a symbolic interpretation of the cortical multi-scale line/edge representation. In this paper we present an improved scheme for line/edge extraction from simple and complex cells and we illustrate the multi-scale representation. This representation can be used for visual reconstruction, but also for nonphotorealistic rendering. Together with keypoints and a new model of disparity estimation, a 3D wireframe representation of e.g. faces can be obtained in the future.
- Luminance, colour, viewpoint and border enhanced disparity energy modelPublication . Martins, Jaime; Rodrigues, Joao; du Buf, J. M. H.The visual cortex is able to extract disparity information through the use of binocular cells. This process is reflected by the Disparity Energy Model, which describes the role and functioning of simple and complex binocular neuron populations, and how they are able to extract disparity. This model uses explicit cell parameters to mathematically determine preferred cell disparities, like spatial frequencies, orientations, binocular phases and receptive field positions. However, the brain cannot access such explicit cell parameters; it must rely on cell responses. In this article, we implemented a trained binocular neuronal population, which encodes disparity information implicitly. This allows the population to learn how to decode disparities, in a similar way to how our visual system could have developed this ability during evolution. At the same time, responses of monocular simple and complex cells can also encode line and edge information, which is useful for refining disparities at object borders. The brain should then be able, starting from a low-level disparity draft, to integrate all information, including colour and viewpoint perspective, in order to propagate better estimates to higher cortical areas.
- Minimalistic vision-based cognitive SLAMPublication . Saleiro, Mário; Rodrigues, J. M. F.; du Buf, J. M. H.The interest in cognitive robotics is still increasing, a major goal being to create a system which can adapt to dynamic environments and which can learn from its own experiences. We present a new cognitive SLAM architecture, but one which is minimalistic in terms of sensors and memory. It employs only one camera with pan and tilt control and three memories, without additional sensors nor any odometry. Short-term memory is an egocentric map which holds information at close range at the actual robot position. Long-term memory is used for mapping the environment and registration of encountered objects. Object memory holds features of learned objects which are used as navigation landmarks and task targets. Saliency maps are used to sequentially focus important areas for object and obstacle detection, but also for selecting directions of movements. Reinforcement learning is used to consolidate or enfeeble environmental information in long-term memory. The system is able to achieve complex tasks by executing sequences of visuomotor actions, decisions being taken by goal-detection and goal-completion tasks. Experimental results show that the system is capable of executing tasks like localizing specific objects while building a map, after which it manages to return to the start position even when new obstacles have appeared.
- Fast segmentation of 3D data using an octreePublication . Rodrigues, J. M. F.; Loke, R. E.; du Buf, J. M. H.The algorithm developed uses an octree pyramid in which noise is reduced at the expense of the spatial resolution. At a certain level an unsupervised clustering without spatial connectivity constraints is applied. After the classification, isolated voxels and insignificant regions are removed by assigning them to their neighbours. The spatial resolution is then increased by the downprojection of the regions, level by level. At each level the uncertainty of the boundary voxels is minimised by a dynamic selection and classification of these, using an adaptive 3D filtering. The algorithm is tested using different data sets, including NMR data.
- BIMP: A real-time biological model of multi-scale keypoint detection in V1Publication . Terzic, Kasim; Rodrigues, J. M. F.; du Buf, J. M. H.We present an improved, biologically inspired and multiscale keypoint operator. Models of single- and double-stopped hypercomplex cells in area V1 of the mammalian visual cortex are used to detect stable points of high complexity at multiple scales. Keypoints represent line and edge crossings, junctions and terminations at fine scales, and blobs at coarse scales. They are detected by applying first and second derivatives to responses of complex cells in combination with two inhibition schemes to suppress responses along lines and edges. A number of optimisations make our new algorithm much faster than previous biologically inspired models, achieving real-time performance on modern GPUs and competitive speeds on CPUs. In this paper we show that the keypoints exhibit state-of-the-art repeatability in standardised benchmarks, often yielding best-in-class performance. This makes them interesting both in biological models and as a useful detector in practice. We also show that keypoints can be used as a data selection step, significantly reducing the complexity in state-of-the-art object categorisation. (C) 2014 Elsevier B.V. All rights reserved.
- Object segregation and local gist vision using low-level geometryPublication . Martins, J. C.; Rodrigues, J. M. F.; du Buf, J. M. H.Multi-scale representations of lines, edges and keypoints on the basis of simple, complex, and end-stopped cells can be used for object categorisation and recognition. These representations are complemented by saliency maps of colour, texture, disparity and motion information, which also serve to model extremely fast gist vision in parallel with object segregation. We present a low-level geometry model based on a single type of self-adjusting grouping cell, with a circular array of dendrites connected to edge cells located at several angles. Different angles between active edge cells allow the grouping cell to detect geometric primitives like corners, bars and blobs. Such primitives forming different configurations can then be grouped to identify more complex geometry, like object shapes, without much additional effort. The speed of the model permits it to be used for fast gist vision, assuming that edge cells respond to transients in colour, texture, disparity and motion. The big advantage of combining this information at a low level is that local (object) gist can be extracted first, ie, which types of objects are about where in a scene, after which global (scene) gist can be processed at a semantic level.
- Fast cortical keypoints for real-time object recognitionPublication . Terzic, Kasim; Rodrigues, J. M. F.; du Buf, J. M. H.Best-performing object recognition algorithms employ a large number features extracted on a dense grid, so they are too slow for real-time and active vision. In this paper we present a fast cortical keypoint detector for extracting meaningful points from images. It is competitive with state-of-the-art detectors and particularly well-suited for tasks such as object recognition. We show that by using these points we can achieve state-of-the-art categorization results in a fraction of the time required by competing algorithms.