Loading...
6 results
Search Results
Now showing 1 - 6 of 6
- Cartilage acidic protein 1, a new member of the beta-propeller protein family with amyloid propensityPublication . Anjos, Lliana; Morgado, Isabel; Guerreiro, Marta; Cardoso, João CR; Melo, Eduardo; Power, DeborahCartilage acidic protein1 (CRTAC1) is an extracellular matrix protein of chondrogenic tissue in humans and its presence in bacteria indicate it is of ancient origin. Structural modeling of piscine CRTAC1 reveals it belongs to the large family of beta-propeller proteins that in mammals have been associated with diseases, including amyloid diseases such as Alzheimer's. In order to characterize the structure/function evolution of this new member of the beta-propeller family we exploited the unique characteristics of piscine duplicate genes Crtac1a and Crtac1b and compared their structural and biochemical modifications with human recombinant CRTAC1. We demonstrate that CRTAC1 has a beta-propeller structure that has been conserved during evolution and easily forms high molecular weight thermo-stable aggregates. We reveal for the first time the propensity of CRTAC1 to form amyloid-like structures, and hypothesize that the aggregating property of CRTAC1 may be related to its disease-association. We further contribute to the general understating of CRTAC1's and beta-propeller family evolution and function. Proteins 2017; 85:242-255. (c) 2016 Wiley Periodicals, Inc.
- Cartilage acidic protein 1 promotes increased cell viability, cell proliferation and energy metabolism in primary human dermal fibroblastsPublication . Letsiou, Sophia; Félix, Rute; Cardoso, João CR; L, Anjos; Mestre, Ana L G; H, Gomes; Power, DeborahCartilage acidic protein 1 (CRTAC1) is an extracellular matrix protein of human chondrogenic tissue that is also present in other vertebrates, non-vertebrate eukaryotes and in some prokaryotes. The function of CRTAC1 remains unknown but the protein's structure indicates a role in cell-cell or cell-matrix interactions and calcium-binding. The aim of the present study was to evaluate the in vitro effects of hCRTAC1-A on normal human dermal fibroblasts (NHDF). A battery of in vitro assays (biochemical and PCR), immunofluorescence and a biosensor approach were used to characterize the protein's biological activities on NHDF cells in a scratch assay. Gene expression analysis revealed that hCRTAC1-A protein is associated with altered levels of expression for genes involved in the processes of cell proliferation (CXCL12 and NOS2), cell migration (AQP3 and TNC), and extracellular matrix-ECM regeneration and remodeling (FMOD, TIMP1, FN1) indicating a role for hCRTAC1-A in promoting these activities in a scratch assay. In parallel, the candidate processes identified by differential gene transcription were substantiated and extended using Electric cell-substrate impedance sensing (ECIS) technology, immunofluorescence and cell viability assays. Our findings indicate that hCRTAC1-A stimulated cell proliferation, migration and ECM production in primary human fibroblasts in vitro. (C) 2020 Elsevier B.V. and Societe Francaise de Biochimie et Biologie Moleculaire (SFBBM). All rights reserved.
- Evolution and diversity of alpha-carbonic anhydrases in the mantle of the Mediterranean mussel (Mytilus galloprovincialis)Publication . Cardoso, João CR; Ferreira, Vinicius; Zhang, Xushuai; Anjos, Liliana; Félix, Rute; Batista, Frederico; Power, DeborahThe α-carbonic anhydrases (α-CAs) are a large and ancient group of metazoan-specific enzymes. They generate bicarbonate from metabolic carbon dioxide and through calcium carbonate crystal formation play a key role in the regulation of mineralized structures. To better understand how α-CAs contribute to shell mineralization in the marine Mediterranean mussel (Mytilus galloprovincialis) we characterized them in the mantle. Phylogenetic analysis revealed that mollusc α-CA evolution was affected by lineage and species-specific events. Ten α-CAs were found in the Mediterranean mussel mantle and the most abundant form was named, MgNACR, as it grouped with oyster nacreins (NACR). Exposure of the Mediterranean mussel to reduced water salinity (18 vs 37 ppt), caused a significant reduction (p < 0.05) in mantle esterase activity and MgNACR transcript abundance (p < 0.05). Protonograms revealed multiple proteins in the mantle with α-CA hydratase activity and mapped to a protein with a similar size to that deduced for monomeric MgNACR. Our data indicate that MgNACR is a major α-CA enzyme in mantle and that by homology with oyster nacreins likely regulates mussel shell production. We propose that species-dependent α-CA evolution may contribute to explain the diversity of bivalve shell structures and their vulnerability to environmental changes.
- Dilution of seawater affects the Ca2 + transport in the outer mantle epithelium of crassostrea gigasPublication . Sillanpää, J. Kirsikka; Cardoso, João CR; Félix, Rute; Anjos, Liliana; Power, Deborah; Sundell, KristinaVarying salinities of coastal waters are likely to affect the physiology and ion transport capabilities of calcifying marine organisms such as bivalves. To investigate the physiological effect of decreased environmental salinity in bivalves, adult oysters (Crassostrea gigas) were exposed for 14 days to 50% seawater (14) and the effects on mantle ion transport, electrophysiology and the expression of Ca2+ transporters and channels relative to animals maintained in full strength sea water (28) was evaluated. Exposure of oysters to a salinity of 14 decreased the active mantle transepithelial ion transport and specifically affected Ca2+ transfer. Gene expression of the Na+/K+-ATPase and the sarco(endo)plasmic reticulum Ca2+-ATPase was decreased whereas the expression of the T-type voltage-gated Ca channel and the Na+/Ca2+-exchanger increased compared to animals maintained in full SW. The results indicate that decreased environmental salinities will most likely affect not only osmoregulation but also bivalve biomineralization and shell formation.
- Chronic stress impairs the local immune response during cutaneous repair in gilthead sea bream (Sparus aurata, L.)Publication . Mateus, Ana; Anjos, Liliana; Cardoso, João CR; Power, DeborahScale removal in fish triggers a damage-repair program to re-establish the lost epidermis and scale and an associated local immune response. In mammals, chronic stress is known to delay wound healing and to modulate the cutaneous stress axis, but this is unstudied in teleost fish the most successful extant vertebrates. The present study was designed to test the hypothesis that chronic stress impairs cutaneous repair in teleost fish as a consequence of suppression of the immune response. The hypothesis was tested by removing the scales and damaging the skin on one side of the body of fish previously exposed for 4 weeks to a chronic crowding stress and then evaluating cutaneous repair for 1 week. Scale removal caused the loss of the epidermis although at 3 days it was re-established. At this stage the basement membrane was significantly thicker (p = 0.038) and the hypodermis was significantly thinner (p = 0.016) in the regenerating skin of stressed fish relative to the control fish. At 3 days, stressed fish also had a significantly lower plasma osmolality (p = 0.015) than control fish indicative of reduced barrier function. Chronic stress caused a significant down-regulation of the glucocorticoid receptor (gr) in skin before damage (time 0, p = 0.005) and of star at 3 and 7 days (p < 0.05) after regeneration relative to control fish. In regenerating skin key transcripts of cutaneous repair, pcna, colival and nunp9, and the inflammatory response, tgf beta 1, mpo and crtac2, were down-regulated (p < 0.05) by chronic stress. Irrespective of chronic stress and in contrast to intact skin many hyper pigmented masses, putative melanomacrophages, infiltrated the epidermis of regenerating skin. This study reveals that chronic stress suppresses the local immune response to scale removal and impairs the expression of key transcripts of wound healing. Elements of the stress axis were identified and modulated by chronic stress during cutaneous repair in gilthead seabream skin.
- Four stanniocalcin genes in teleost fish: Structure, phylogenetic analysis, tissue distribution and expression during hypercalcemic challengePublication . Schein, V; Schein, Vanessa; Cardoso, João CR; Pinto, Patricia IS; Anjos, Liliana; Silva, Nadia; Power, Deborah; Canario, Adelino V. M.Stanniocalcin (STC), first isolated from the corpuscles of Stannius (CS) of teleost fishes and a systemic regulator of mineral metabolism, is present in all vertebrates as two isoforms, STC1 and STC2, encoded by separate genes. Here we show that the genome of Tetraodon nigroviridis, and other teleosts, possess duplicate genes for each STC isoform, designated stc1-a and -b, and stc2-a and -b. Stc1-a was cloned from CS, stc2-a from muscle and the two novel cDNAs, stc1-b and stc2-b, from brain. However, stc2-b was isolated as a conjoined (read-through) transcript with bod1 (bi-orientation defective 1, or FAM44B), and two additional alternative conjoined transcripts were also isolated. The predicted STC products shared the typical vertebrate 10 conserved cysteine residues and N-linked glycosylation motifs, in addition to specific features. Gene structure was generally conserved with four exons and three introns with the exception of stc1-a which gained an extra intron in exon three, originating one extra exon. Gene order and synteny is also maintained across vertebrates and the cpeb4 gene identified in the homologue region of the chordate Ciona was linked to vertebrate stc2 but not stc1. Immunohistochemistry in different species revealed that STC1-A was found only in CS and in a few cells in kidney. STC1-B had a restricted expression and was more prominent in the gills. STC2-A was detected in a variety of tissues, including pituitary, with most abundant immunoreaction in kidney cells and gill rakers and the CS was negative. Expression of stc1-a in CS of Tetraodon was 15-fold (p < 0.05) up-regulated 2 h after transfer from 2.9 mM Ca2+ to 10 mM Ca2+ water and down-regulated after 12 hours to 11-fold lower than 2.9 mM Ca2+ fish (p < 0.05). With the exception of stc1-a in CS, low expression levels and high individual variation were generally found for the expression of stc transcripts in kidney and gills, with no statistically significant changes in response to the hypercalcemic shock. In conclusion, both stc1 and stc2 genes are represented by paralogues in teleosts genomes and the analysis performed suggests that only stc1-a in the CS is involved in extracellular calcium regulation. The widespread distribution of stcs in fish tissues supports pleiotropic roles.