Repository logo
 
Loading...
Profile Picture

Search Results

Now showing 1 - 6 of 6
  • Restoring brain cholesterol turnover improves autophagy and has therapeutic potential in mouse models of spinocerebellar ataxia
    Publication . Nóbrega, Clévio; Mendonca, Liliana; Marcelo, Adriana; Lamaziere, Antonin; Tome, Sandra; Despres, Gaetan; Matos, Carlos A; Mechmet, Fatich; Langui, Dominique; den Dunnen, Wilfred; de Almeida, Luis Pereira; Cartier, Nathalie; Alves, Sandro
    Spinocerebellar ataxias (SCAs) are devastating neurodegenerative disorders for which no curative or preventive therapies are available. Deregulation of brain cholesterol metabolism and impaired brain cholesterol turnover have been associated with several neurodegenerative diseases. SCA3 or Machado-Joseph disease (MJD) is the most prevalent ataxia worldwide. We show that cholesterol 24-hydroxylase (CYP46A1), the key enzyme allowing efflux of brain cholesterol and activating brain cholesterol turnover, is decreased in cerebellar extracts from SCA3 patients and SCA3 mice. We investigated whether reinstating CYP46A1 expression would improve the disease phenotype of SCA3 mouse models. We show that administration of adeno-associated viral vectors encoding CYP46A1 to a lentiviral-based SCA3 mouse model reduces mutant ataxin-3 accumulation, which is a hallmark of SCA3, and preserves neuronal markers. In a transgenic SCA3 model with a severe motor phenotype we confirm that cerebellar delivery of AAVrh10-CYP46A1 is strongly neuroprotective in adult mice with established pathology. CYP46A1 significantly decreases ataxin-3 protein aggregation, alleviates motor impairments and improves SCA3-associated neuropathology. In particular, improvement in Purkinje cell number and reduction of cerebellar atrophy are observed in AAVrh10-CYP46A1-treated mice. Conversely, we show that knocking-down CYP46A1 in normal mouse brain impairs cholesterol metabolism, induces motor deficits and produces strong neurodegeneration with impairment of the endosomal-lysosomal pathway, a phenotype closely resembling that of SCA3. Remarkably, we demonstrate for the first time both in vitro, in a SCA3 cellular model, and in vivo, in mouse brain, that CYP46A1 activates autophagy, which is impaired in SCA3, leading to decreased mutant ataxin-3 deposition. More broadly, we show that the beneficial effect of CYP46A1 is also observed with mutant ataxin-2 aggregates. Altogether, our results confirm a pivotal role for CYP46A1 and brain cholesterol metabolism in neuronal function, pointing to a key contribution of the neuronal cholesterol pathway in mechanisms mediating clearance of aggregate-prone proteins. This study identifies CYP46A1 as a relevant therapeutic target not only for SCA3 but also for other SCAs.
  • ULK overexpression mitigates motor deficits and neuropathology in mouse models of Machado-Joseph disease
    Publication . Vasconcelos-Ferreira, Ana; Martins, Inês Morgado; Lobo, Diana; Pereira, Dina; Lopes, Miguel M.; Faro, Rosário; Lopes, Sara M.; Verbeek, Dineke; Schmidt, Thorsten; Nóbrega, Clévio; Pereira de Almeida, Luís
    Machado-Joseph disease (MJD) is a fatal neurodegenerative disorder clinically characterized by prominent ataxia. It is caused by an expansion of a CAG trinucleotide in ATXN3, translating into an expanded polyglutamine (polyQ) tract in the ATXN3 protein, that becomes prone to misfolding and aggregation. The pathogenesis of the disease has been associated with the dysfunction of several cellular mechanisms, including autophagy and transcription regulation. In this study, we investigated the transcriptional modifications of the autophagy pathway in models of MJD and assessed whether modulating the levels of the affected autophagy-associated transcripts (AATs) would alleviate MJD-associated pathology. Our results show that autophagy is impaired at the transcriptional level in phagy activating kinase 1 and 2 (ULK1 and ULK2), two homologs involved in autophagy induction. Reinstating ULK1/2 levels by adeno-associated virus (AAV)-mediated gene transfer significantly improved motor performance while preventing in vitro studies showed that the observed positive effects may be mainly attributed to ULK1 activity. This study provides strong evidence of the beneficial effect of overexpression of ders.
  • The autophagy‐enhancing drug carbamazepine improves neuropathology and motor impairment in mouse models of Machado–Joseph disease
    Publication . Vasconcelos‐Ferreira, Ana; Carmo‐Silva, Sara; Codêsso, José Miguel; Silva, Patrick; Martinez, Alberto Rolim Muro; França Jr, Marcondes Cavalcante; Nóbrega, Clévio; Pereira de Almeida, Luís
    Aims Machado-Joseph disease (MJD), or spinocerebellar ataxia type 3 (SCA3), is the most common autosomal dominantly-inherited ataxia worldwide and is characterised by the accumulation of mutant ataxin-3 (mutATXN3) in different brain regions, leading to neurodegeneration. Currently, there are no available treatments able to block disease progression. In this study, we investigated whether carbamazepine (CBZ) would activate autophagy and mitigate MJD pathology. Methods The autophagy-enhancing activity of CBZ and its effects on clearance of mutATXN3 were evaluated using in vitro and in vivo models of MJD. To investigate the optimal treatment regimen, a daily or intermittent CBZ administration was applied to MJD transgenic mice expressing a truncated human ATXN3 with 69 glutamine repeats. Motor behaviour tests and immunohistology was performed to access the alleviation of MJD-associated motor deficits and neuropathology. A retrospective study was conducted to evaluate the CBZ effect in MJD patients. Results We found that CBZ promoted the activation of autophagy and the degradation of mutATXN3 in MJD models upon short or intermittent, but not daily prolonged, treatment regimens. CBZ up-regulated autophagy through activation of AMPK, which was dependent on the myo-inositol levels. In addition, intermittent CBZ treatment improved motor performance, as well as prevented neuropathology in MJD transgenic mice. However, in patients, no evident differences in SARA scale were found, which was not unexpected given the small number of patients included in the study. Conclusions Our data support the autophagy-enhancing activity of CBZ in the brain and suggest this pharmacological approach as a promising therapy for MJD and other polyglutamine disorders.
  • Trehalose alleviates the phenotype of Machado–Joseph disease mouse models
    Publication . Santana, Magda M.; Paixão, Susana; Cunha-Santos, Janete; Silva, Teresa Pereira; Trevino-Garcia, Allyson; Gaspar, Laetitia S.; Nóbrega, Clévio; Nobre, Rui Jorge; Cavadas, Cláudia; Greif, Hagar; Pereira de Almeida, Luís
    Machado-Joseph disease (MJD), also known as spinocerebellar ataxia type 3, is the most common of the dominantly inherited ataxias worldwide and is characterized by mutant ataxin-3 aggregation and neuronal degeneration. There is no treatment available to block or delay disease progression. In this work we investigated whether trehalose, a natural occurring disaccharide widely used in food and cosmetic industry, would rescue biochemical, behavioral and neuropathological features of an in vitro and of a severe MJD transgenic mouse model.
  • Mutant Ataxin-2 expression in aged animals aggravates neuropathological features associated with Spinocerebellar Ataxia type 2
    Publication . Afonso, Inês T.; Lima, Patrícia; Conceição, André; Matos, Carlos A; Nóbrega, Clévio
    Spinocerebellar ataxia type 2 (SCA2) is a rare autosomal, dominantly inherited disease, in which the affected individuals have a disease onset around their third life decade. The molecular mechanisms underlying SCA2 are not yet completely understood, for which we hypothesize that aging plays a role in SCA2 molecular pathogenesis. In this study, we performed a striatal injection of mutant ataxin-2 mediated by lentiviral vectors, in young and aged animals. Twelve weeks post-injection, we analyzed the striatum for SCA2 neuropathological features and specific aging hallmarks. Our results show that aged animals had a higher number of mutant ataxin-2 aggregates and more neuronal marker loss, compared to young animals. Apoptosis markers, cleaved caspase-3, and cresyl violet staining also indicated increased neuronal death in the aged animal group. Additionally, mRNA levels of microtubule-associated protein 1 light-chain 3B (LC3) and sequestosome-1 (SQSTM1/p62) were altered in the aged animal group, suggesting autophagic pathway dysfunction. This work provides evidence that aged animals injected with expanded ataxin-2 had aggravated SCA2 disease phenotype, suggesting that aging plays an important role in SCA2 disease onset and disease progression.
  • Autophagy in Spinocerebellar Ataxia Type 3: From pathogenesis to therapeutics
    Publication . Paulino, Rodrigo; Nóbrega, Clévio
    Machado–Joseph disease (MJD) or spinocerebellar ataxia 3 (SCA3) is a rare, inherited, monogenic, neurodegenerative disease, and the most common SCA worldwide. MJD/SCA3 causative mutation is an abnormal expansion of the triplet CAG at exon 10 within the ATXN3 gene. The gene encodes for ataxin-3, which is a deubiquitinating protein that is also involved in transcriptional regulation. In normal conditions, the ataxin-3 protein polyglutamine stretch has between 13 and 49 glutamines. However, in MJD/SCA3 patients, the size of the stretch increases from 55 to 87, contributing to abnormal protein conformation, insolubility, and aggregation. The formation of aggregates, which is a hallmark of MJD/SCA3, compromises different cell pathways, leading to an impairment of cell clearance mechanisms, such as autophagy. MJD/SCA3 patients display several signals and symptoms in which the most prominent is ataxia. Neuropathologically, the regions most affected are the cerebellum and the pons. Currently, there are no disease-modifying therapies, and patients rely only on supportive and symptomatic treatments. Due to these facts, there is a huge research effort to develop therapeutic strategies for this incurable disease. This review aims to bring together current state-of-the-art strategies regarding the autophagy pathway in MJD/SCA3, focusing on evidence for its impairment in the disease context and, importantly, its targeting for the development of pharmacological and gene-based therapies.