Loading...
4 results
Search Results
Now showing 1 - 4 of 4
- Drying microalgae using an industrial solar dryer: a biomass quality assessmentPublication . Schmid, Benjamin; Navalho, Sofia; Schulze, Peter S.C.; Van De Walle, Simon; Van Royen, Geert; Schüler, Lisa M.; Maia, Inês Beatriz; Bastos, Carolina; Baune, Marie-Christin; Januschewski, Edwin; Coelho, Ana; Pereira, Hugo; Varela, João; Navalho, João; Rodrigues, Alexandre Miguel CavacoMicroalgae are considered a promising resource of proteins, lipids, carbohydrates, and other functional biomolecules for food and feed markets. Competitive drying solutions are required to meet future demands for high-quality algal biomass while ensuring proper preservation at reduced costs. Since often used drying methods, such as freeze or spray drying, are energy and time consuming, more sustainable processes remain to be developed. This study tested an indirect and hybrid solar dryer as an alternative to conventional freeze drying of industrially produced Tetraselmis chui and Nannochloropsis oceanica wet paste. The effects of the drying method on biomass quality parameters, including biochemical profiles, functional properties, and microbial safety, were assessed. No significant differences were found between the applied drying technologies for total proteins, carbohydrates, lipids, and fatty acid profiles. On the other hand, some pigments showed significant differences, displaying up to 44.5% higher contents in freeze-dried samples. Minor differences were also registered in the mineral profiles (<10%). Analyses of microbial safety and functional properties of the solar-dried biomass appear adequate for food and feed products. In conclusion, industrial solar drying is a sustainable technology with a high potential to preserve high-quality microalgal biomass for various markets at expected lower costs.
- Isolation, identification and biotechnological applications of a novel, robust, free-living Chlorococcum (Oophila) amblystomatis strain isolated from a local pondPublication . Correia, Nádia; Pereira, Hugo; Silva, Joana T.; Santos, Tamara; Soares, Maria; Sousa, Carolina B.; Schüler, Lisa Maylin; Costa, Margarida; J. C. or Varela J. or Varela J.C.S.; Pereira, Leonel; Silva, JoanaBioprospection of novel autochthonous strains is key to the successful industrial-scale production of microalgal biomass. A novel Chlorococcum strain was recently isolated from a pond inside the industrial production facility of Allmicroalgae (Leiria, Portugal). Phylogenetic analysis based on 18S ribosomal ribonucleic acid (rRNA) gene sequences suggests that this isolate is a novel, free-living Oophila amblystomatis strain. However, as our phylogenetic data strongly suggests that the aforementioned taxon belongs to the genus Chlorococcum, it is here proposed to rename this species as Chlorococcum amblystomatis. In order to characterize the biotechnological potential of this novel isolate, growth performance and biochemical composition were evaluated from the pilot (2.5-m3) to industrial (10-m3) scale. The highest maximum areal productivity (36.56 g m2 day1) was reached in a 10-m3 tubular photobioreactor (PBR), as compared to that obtained in a 2.5-m3 PBR (26.75 g m2 day1). Chlorococcum amblystomatis displayed high protein content (48%–56% dry weight (DW)) and moderate levels of total lipids (18%–31% DW), carbohydrates (6%–18% DW) and ashes (9%–16% DW). Furthermore, the lipid profile was dominated by polyunsaturated fatty acids (PUFAs). The highest pigment contents were obtained in the 2.5-m3 PBR, where total chlorophylls accounted for 40.24 mg g1 DW, followed by lutein with 5.37 mg g1 DW. Overall, this free-living Chlorococcum amblystomatis strain shows great potential for nutritional applications, coupling a promising growth performance with a high protein content as well as relevant amounts of PUFAs, chlorophyll, and carotenoids.
- Carotenoid biosynthetic gene expression, pigment and n-3 fatty acid contents in carotenoid-rich Tetraselmis striata CTP4 strains under heat stress combined with high lightPublication . Schüler, Lisa Maylin; Bombo, Gabriel; Duarte, Paulo; Santos, Tamara; Maia, Inês Beatriz; Pinheiro, Filipa; Marques, José; Jacinto, Rita; Schulze, Peter S.C.; Pereira, Hugo; Barreira, Luísa; Varela, JoãoIn this study, two carotenoid-rich strains of the euryhaline microalga Tetraselmis striata CTP4 were isolated by random mutagenesis combined with selection via fluorescence activated cell sorting and growth on norflurazon. Both strains, ED5 and B11, showed an up to 1.5-fold increase in carotenoid contents as compared with the wildtype, independent of the growth conditions. More specifically, violaxanthin, beta-carotene and lutein contents reached as high as 1.63, 4.20 and 3.81 mg g-1 DW, respectively. Genes coding for phytoene synthase, phytoene desaturase, lycopene-beta-cyclase and epsilon-ring hydroxylase involved in carotenoid biosynthesis were found to be upregulated in ED5 and B11 cells as compared to the wildtype. Both strains showed higher contents of eicosapentaenoic acid as compared with those of the wildtype, reaching up to 4.41 and 2.88 mg g-1 DW, respectively. Overall, these results highlight the complexity of changes in carotenoid biosynthesis regulation that are required to improve pigment contents in microalgae.
- Isolation and characterization of novel chlorella vulgaris mutants with low chlorophyll and improved protein contents for food applicationsPublication . Lisa Schueler, Lisa M. Schueler; Morais, Etiele Greque de; Trovão, Mafalda; Machado, Adriana; Carvalho, Bernardo; Carneiro, Mariana; Maia, Inês; Soares, Maria; Duarte, Paulo; Barros, Ana; Pereira, Hugo; Silva, Joana; Varela, JoãoMicroalgae are widely used as food supplements due to their high protein content, essential fatty acids and amino acids as well as carotenoids. The addition of microalgal biomass to food products (e.g., baked confectioneries) is a common strategy to attract novel consumers. However, organoleptic factors such as color, taste and smell can be decisive for the acceptability of foods supplemented with microalgae. The aim of this work was to develop chlorophyll-deficient mutants of Chlorella vulgaris by chemically induced random mutagenesis to obtain biomass with different pigmentations for nutritional applications. Using this strategy, two C. vulgaris mutants with yellow (MT01) and white (MT02) color were successfully isolated, scaled up and characterized. The changes in color of MT01 and MT02 mutant strains were due to an 80 and 99% decrease in their chlorophyll contents, respectively, as compared to the original wild type (WT) strain. Under heterotrophic growth, MT01 showed a growth performance similar to that of the WT, reaching a concentration of 5.84 and 6.06 g L-1, respectively, whereas MT02 displayed slightly lower growth (4.59 g L-1). When grown under a light intensity of 100 μmol m-2 s-1, the pigment content in MT01 increased without compromising growth, while MT02 was not able to grow under this light intensity, a strong indication that it became light-sensitive. The yellow color of MT01 in the dark was mainly due to the presence of the xanthophyll lutein. On the other hand, phytoene was the only carotenoid detected in MT02, which is known to be colorless. Concomitantly, MT02 contained the highest protein content, reaching 48.7% of DW, a 60% increase as compared to the WT. MT01 exhibited a 30% increase when compared to that of the WT, reaching a protein content of 39.5% of DW. Taken together, the results strongly suggest that the partial abrogation of pigment biosynthesis is a factor that might promote higher protein contents in this species. Moreover, because of their higher protein and lower chlorophyll contents, the MT01 and MT02 strains are likely candidates to be feedstocks for the development of novel, innovative food supplements and foods.