Repository logo
 

Search Results

Now showing 1 - 3 of 3
  • Inhibition of SERCA and PMCA Ca2+-ATPase activities by polyoxotungstates
    Publication . Aureliano, Manuel; Fraqueza, Gil; Berrocal, Maria; Cordoba-Granados, Juan J.; Gumerova, Nadiia I.; Rompel, Annette; Gutierrez-Merino, Carlos; Mata, Ana M.
    Plasma membrane calcium ATPases (PMCA) and sarco(endo) reticulum calcium ATPases (SERCA) are key proteins in the maintenance of calcium homeostasis. Herein, we compare for the first time the inhibition of SERCA and PMCA calcium pumps by several polyoxotungstates (POTs), namely by Wells-Dawson phospho-tungstate anions [P2W18O62]6-(intact, {P2W18}), [P2W17O61]10-(monolacunary, {P2W17}), [P2W15O56]12-(trilacunary, {P2W15}), [H2P2W12O48]12-(hexalacunary, {P2W12}), [H3P2W15V3O62]6- (trivanadium-substituted, {P2W15V3}) and by Preyssler-type anion [NaP5W30O110]14-({P5W30}). The speciation in the solu-tions of tested POTs was investigated by 31P and 51V NMR spectroscopy. The tested POTs inhibited SERCA Ca2+- ATPase activity, whereby the Preyssler POT showed the strongest effect, with an IC50 value of 0.37 mu M. For {P2W17} and {P2W15V3} higher IC50 values were determined: 0.72 and 0.95 mu M, respectively. The studied POTs showed to be more potent inhibitors of PMCA Ca2+-ATPase activity, with lower IC50 values for {P2W17}, {P5W30} and {P2W15V3}.
  • Inhibition of Na+/K+- and Ca2+-ATPase activities by phosphotetradecavanadate
    Publication . Fraqueza, Gil; Fuentes, Juan; Krivosudský, Lukáš; Dutta, Saikat; Mal, Sib Sankar; Roller, Alexander; Giester, Gerald; Rompel, Annette; Aureliano, Manuel
    Polyoxometalates (POMs) are promising inorganic inhibitors for P-type ATPases. The experimental models used to study the effects of POMs on these ATPases are usually in vitro models using vesicles from several membrane sources. Very recently, some polyoxotungstates, such as the Dawson anion [P2W18O62]6-, were shown to be potent P-type ATPase inhibitors; being active in vitro as well as in ex-vivo. In the present study we broaden the spectrum of highly active inhibitors of Na+/K+-ATPase from basal membrane of epithelial skin to the bi-capped Keggin-type anion phosphotetradecavanadate Cs5.6H3.4PV14O42 (PV14) and we confront the data with activity of other commonly encountered polyoxovanadates, decavanadate (V10) and monovanadate (V1). The X-ray crystal structure of PV14 was solved and contains two trans-bicapped α-Keggin anions HxPV14O42(9-x)-. The anion is built up from the classical Keggin structure [(PO4)@(V12O36)] capped by two [VO] units. PV14 (10 μM) exhibited higher ex-vivo inhibitory effect on Na+/K+-ATPase (78%) than was observed at the same concentrations of V10 (66%) or V1 (33%). Moreover, PV14 is also a potent in vitro inhibitor of the Ca2+-ATPase activity (IC50 5 μM) exhibiting stronger inhibition than the previously reported activities for V10 (15 μM) and V1 (80 μM). Putting it all together, when compared both P-typye ATPases it is suggested that PV14 exibited a high potential to act as an in vivo inhibitor of the Na+/K+-ATPase associated with chloride secretion.
  • The P-type ATPase inhibiting potential of polyoxotungstates.
    Publication . Gumerova, Nadiia; Krivosudský, Lukáš; Fraqueza, Gil; Breibeck, Joscha; Al-Sayed, Emir; Tanuhadi, Elias; Bijelic, Aleksandar; Fuentes, Juan; Aureliano, M.; Rompel, Annette
    Polyoxometalates (POMs) are transition metal complexes that exhibit a broad diversity of structures and properties rendering them promising for biological purposes. POMs are able to inhibit a series of biologically important enzymes, including phosphatases, and thus are able to affect many biochemical processes. In the present study, we analyzed and compared the inhibitory effects of nine different polyoxotungstates (POTs) on two P-type ATPases, Ca2+-ATPase from skeletal muscle and Na+/K+-ATPase from basal membrane of skin epithelia. For Ca2+-ATPase inhibition, an in vitro study was performed and the strongest inhibitors were determined to be the large heteropolytungstate K9(C2H8N)5[H10Se2W29O103] (Se2W29) and the Dawson-type POT K6[α-P2W18O62] (P2W18) exhibiting IC50 values of 0.3 and 0.6 μM, respectively. Promising results were also shown for the Keggin-based POTs K6H2[CoW11TiO40] (CoW11Ti, IC50 = 4 μM) and Na10[α-SiW9O34] (SiW9, IC50 = 16 μM), K14[As2W19O67(H2O)] (As2W19, IC50 = 28 μM) and the lacunary Dawson K12[α-H2P2W12O48] (P2W12, IC50 = 11 μM), whereas low inhibitory potencies were observed for the isopolytungstate Na12[H4W22O74] (W22, IC50 = 68 μM) and the Anderson-type Na6[TeW6O24] (TeW6, IC50 = 200 μM). Regarding the inhibition of Na+/K+-ATPase activity, for the first time an ex vivo study was conducted using the opercular epithelium of killifish in order to investigate the effects of POTs on the epithelial chloride secretion. Interestingly, 1 μM of the most potent Ca2+-ATPase inhibitor, Se2W29, showed only a minor inhibitory effect (14% inhibition) on Na+/K+-ATPase activity, whereas almost total inhibition (99% inhibition) was achieved using P2W18. The remaining POTs exhibited similar inhibition rates on both ATPases. These results reveal the high potential of some POTs to act as P-type ATPase inhibitors, with Se2W29 showing high selectivity towards Ca2+-ATPase.