Repository logo
 

Search Results

Now showing 1 - 2 of 2
  • Cortical multiscale line-edge disparity model
    Publication . Rodrigues, J. M. F.; Martins, Jaime; Lam, Roberto; du Buf, J. M. H.
    Most biological approaches to disparity extraction rely on the disparity energy model (DEM). In this paper we present an alternative approach which can complement the DEM model. This approach is based on the multiscale coding of lines and edges, because surface structures are composed of lines and edges and contours of objects often cause edges against their background. We show that the line/edge approach can be used to create a 3D wireframe representation of a scene and the objects therein. It can also significantly improve the accuracy of the DEM model, such that our biological models can compete with some state-of-the-art algorithms from computer vision.
  • A disparity energy model improved by line, edge and keypoint correspondences
    Publication . Martins, J. C.; Farrajota, Miguel; Lam, Roberto; Rodrigues, J. M. F.; Terzic, Kasim; du Buf, J. M. H.
    Disparity energy models (DEMs) estimate local depth information on the basis ofVl complex cells. Our recent DEM (Martins et al, 2011 ISSPlT261-266) employs a population code. Once the population's cells have been trained with randorn-dot stereograms, it is applied at all retinotopic positions in the visual field. Despite producing good results in textured regions, the model needs to be made more precise, especially at depth transitions.