Repository logo
 
Loading...
Profile Picture
Person

Trindade, Marlene

Search Results

Now showing 1 - 2 of 2
  • The xenobiotic sensor PXR in a marine flatfish species (Solea senegalensis): Gene expression patterns and its regulation under different physiological conditions
    Publication . Marques, Carlos; Roberto, Vania Palma; Granadeiro, Luis; Trindade, Marlene; Gavaia, Paulo; Laizé, Vincent; Leonor Cancela, M.; Fernandez, Ignacio
    The pregnane X receptor (PXR) is a nuclear receptor belonging to the NR1I sub-family and a known master regulator of xenobiotic metabolism. New roles have been recently proposed in mammals through its activation by vitamin K (VK) such as regulation of glucose metabolism, bone homeostasis, reproduction, neuronal development and cognitive capacities. In marine fish species little is known about PXR and its potential roles. Here, expression patterns of pxr transcripts and conservation of protein domains were determined in the Senegalese sole (Solea senegalensis), a marine flatfish model species in aquatic ecotoxicology. In addition to a full coding sequence transcript (sspxrl), two variants lacking DNA and/or ligand binding domains (sspxr2 and sspxr3) were also identified. The expression of sspxrl during early development and in adult tissues was ubiquitous, but highest levels were observed in liver, intestine and skin. Expression was also detected by in situ hybridization in chondrocytes and cells from the granular and inner nuclear layers in three month old fish. Finally, sspxrl expression was shown to be differentially regulated under physiological conditions related with fasting, VK and warfarin metabolism. The present work provides new and basic knowledge regarding pxr sequence and expression patterns in a marine flatfish species to unveil the potential impact of xenobiotics on marine fish physiology, and will allow a better and more ecosystemic environmental risk assessment of different pollutants over the marine environments with the development of reporter assays using PXR sequences from evolutionary distantly marine species (such as vertebrate and invertebrate marine species). (C) 2017 Elsevier Ltd. All rights reserved.
  • Development of an in vitro cell system from zebrafish suitable to study bone cell differentiation and extracellular matrix mineralization
    Publication . Vijayakumar, Parameswaran; Laizé, Vincent; Cardeira Da Silva, João; Trindade, Marlene; Cancela, M. Leonor
    Mechanisms of bone formation and skeletal development have been successfully investigated in zebrafish using a variety of in vivo approaches, but in vitro studies have been hindered due to a lack of homologous cell lines capable of producing an extracellular matrix (ECM) suitable for mineral deposition. Here we describe the development and characterization of a new cell line termed ZFB1, derived from zebrafish calcified tissues. ZFB1 cells have an epithelium-like phenotype, grow at 28 degrees C in a regular L-15 medium supplemented with 15% of fetal bovine serum, and are maintained and manipulated using standard methods (e.g., trypsinization, cryopreservation, and transfection). They can therefore be propagated and maintained easily in most cell culture facilities. ZFB1 cells show aneuploidy with 2n=78 chromosomes, indicative of cell transformation. Furthermore, because DNA can be efficiently delivered into their intracellular space by nucleofection, ZFB1 cells are suitable for gene targeting approaches and for assessing gene promoter activity. ZFB1 cells can also differentiate toward osteoblast or chondroblast lineages, as demonstrated by expression of osteoblast- and chondrocyte-specific markers, they exhibit an alkaline phosphatase activity, a marker of bone formation in vivo, and they can mineralize their ECM. Therefore, they represent a valuable zebrafish-derived in vitro system for investigating bone cell differentiation and extracellular matrix mineralization.