Repository logo
 
Loading...
Profile Picture

Search Results

Now showing 1 - 6 of 6
  • Central role of betaine-homocysteine S-methyltransferase 3 in chondral ossification and evidence for sub-functionalization in neoteleost fish
    Publication . Rosa, Joana; Tiago, Daniel; Marques, Cátia L.; Vijayakumar, Parameswaran; Fonseca, Luís; Cancela, Leonor; Laizé, Vincent
    Background: To better understand the complex mechanisms of bone formation it is fundamental that genes central to signaling/regulatory pathways and matrix formation are identified. Cell systems were used to analyze genes differentially expressed during extracellular matrix mineralization and bhmt3, coding for a betaine-homocysteine S-methyltransferase, was shown to be down-regulated in mineralizing gilthead seabream cells.Methods: Levels and sites of bhmt3 expression were determined by qPCR and in situ hybridization throughout seabream development and in adult tissues. Transcriptional regulation of bhmt3 was assessed from the activity of promoter constructs controlling luciferase gene expression. Molecular phylogeny of vertebrate BHMT was determined from maximum likelihood analysis of available sequences.Results: bhmt3 transcript is abundant in calcified tissues and localized in cartilaginous structures undergoing endo/perichondral ossification. Promoter activity is regulated by transcription factors involved in bone and cartilage development, further demonstrating the central role of Bhmt3 in chondrogenesis and/or osteogenesis. Molecular phylogeny revealed the explosive diversity of bhmt genes in neoteleost fish, while tissue distribution of bhmt genes in seabream suggested that neoteleostean Bhmt may have undergone several steps of sub-functionalization.Conclusions: Data on bhmt3 gene expression and promoter activity evidences a novel function for betaine-homocysteine S-methyltransferase in bone and cartilage development, while phylogenetic analysis provides new insights into the evolution of vertebrate BHMTs and suggests that multiple gene duplication events occurred in neoteleost fish lineage.General significance: High and specific expression of Bhmt3 in gilthead seabream calcified tissues suggests that bone-specific betaine-homocysteine S-methyltransferases could represent a suitable marker of chondral ossification.
  • Serum-specific stimulation of proliferation and mineralization of fish bone-derived cells
    Publication . Rosa, Joana; Tiago, Daniel; Dias, J.; Cancela, Leonor; Laizé, Vincent
    Teleost fish have recently been implemented as suitable model organisms to study vertebrate development, in particular skeletogenesis. In vitro cell systems derived from fish bone have been successfully established, although their development has been hampered by the limited availability of fish serum to supplement culture medium. Commercially available sera are mostly of mammalian origin and thus not necessarily adequate to fish cell growth. The main objective of this work was to compare proliferative and mineralogenic potential of bovine and fish sera using fish bone-derived cell lines VSa13 and VSa16. Fish serum was shown to (i) strongly stimulate cell proliferation in an apparent dose-dependent and cell type-specific manner, (ii) induce morphological changes, and (iii) enhance extracellular matrix mineralization of bone cells, although cytotoxic for fish osteoblast-like cells at the concentration tested. To better understand mechanisms underlying mineralogenic effect of fish serum in fish chondrocytes, expression of several mineralization-related genes was evaluated by qPCR. Regulation of matrix Gla protein (MGP) and bone morphogenetic protein 2 (BMP2) gene expression was modified upon culture with fish serum in a way compatible with an early onset and an increase in mineralization. In conclusion, fish serum was shown to be more adequate to proliferation and differentiation/mineralization of fish bone-derived cells.
  • Identification of a new cartilage-specific S100-like protein up-regulated during endo/perichondral mineralization in gilthead seabream
    Publication . Fonseca, V. G.; Rosa, Joana; Laizé, Vincent; Gavaia, Paulo J.; Cancela, Leonor
    Calcium ions and calcium-binding proteins play a major role in many cellular processes, in particular skeletogenesis and bone formation. We report here the discovery of a novel S100 protein in fish and the analysis of its gene expression patterns. A 648-bp full-length cDNA encoding an 86-amino acid S100-like calcium-binding protein was identified through the subtractive hybridization of a gilthead seabream (Sparus aurata) cDNA library constructed to identify genes associated with in vitro mineralization. Deduced protein lacks an identifiable signal peptide and exhibits two EF-hand motifs characteristic of S100 proteins. Phylogenetic and bioinformatic analyses of S100 sequences suggested that gilthead seabream protein represents a novel and fish-specific member of the S100 protein family. Expression of S100-like gene was up-regulated during the in vitro mineralization of bone-derived cell lines and during seabream development, from larvae throughout adulthood, reflecting skeletogenesis. Restriction of S100-like gene expression to chondrocytes of cartilaginous tissues undergoing endo/perichondral mineralization in juvenile fish further confirmed the mineralogenic role of the protein in fish and emphasized the potential of S100-like as a marker of mineralizing cartilage in developing fish.
  • Dietary lipid quality regulates bone composition and metabolism in gilthead seabream (Sparus aurata) juveniles
    Publication . Dias, J.; Rodrigues, V.; Colen, Rita; Rosa, Joana; Viegas, Michael; Cardeira Da Silva, João; Cancela, Leonor; Gavaia, Paulo J.; Laizé, Vincent
    Replacement of significant amounts of marine fish oils by vegetable oils is a major trend in the aquaculture feed industry. However, knowledge on the mechanisms underlying the nutritional regulation of bone metabolism is extremely scarce in fish. We speculate that changes in the dietary ratio of fatty acids may modulate tissue eicosanoids production and affect bone formation in fastgrowing gilthead seabream, an important fish species for aquaculture in the Mediterranean region.