Loading...
23 results
Search Results
Now showing 1 - 10 of 23
- Vanadate effects on bone metabolism: fish cell lines as an alternative to mammalian in vitro systemsPublication . Tiago, Daniel; Laizé, Vincent; Aureliano, M.; Cancela, LeonorVanadate, one of the most relevant forms of vanadium in solution, has been associated with the regulation of various enzyme activities (e.g. phosphatases, ribonucleases, ATPases, etc.) and shown to exhibit important biological effects. Several in vivo and in vitro studies have clearly demonstrated that any deficiency or excess of vanadium can seriously affect bone formation and its metabolism. Bone-related effects result largely from vanadium insulino-mimetic capabilities mediated by specific inhibition of protein tyrosine phosphatases (PTPases) and consequent activation of tyrosine kinase receptors (e.g. insulin receptor). Although mammals have been repetitively shown to be appropriate models to study vanadate mechanisms of action, fish have recently emerged as alternative models. Fish has been recognized as suitable model to study vertebrate bone formation and the natural presence of high quantities of vanadium in water makes it even more suitable to investigate vanadium effect on bone formation. Recent data obtained using fish bone-derived cells revealed that micromolar concentrations (5 mM) of monomeric and decameric vanadate slightly stimulate growth performances while strongly inhibiting extracellular matrix mineralization through mechanisms involving both alkaline phosphatase and MAPK pathways. Recent data obtained in fish cells will be discussed here and further compared to results obtained in mammalian systems.
- Desenvolvimento de sistemas celulares de peixe adequados ao estudo da mineralização in vitroPublication . Marques, C. L.; Rafael, Marta S.; Tiago, Daniel; Cancela, Leonor; Laizé, VincentOs peixes foram recentemente reconhecidos como organismos modelo apropriados para o estudo da biologia de vertebrados, particularmente de processos relacionados com a mineralização tecidular e o desenvolvimento do esqueleto. Apesar de existirem alguns estudos in vivo, a identificação de mecanismos associados à calcificação em peixes tem sido prejudicada pelo facto de não existirem sistemas celulares para estudos in vitro. Este artigo descreve um protocolo simples e de baixo custo adequado ao desenvolvimento de culturas celulares mineralogénicas, derivadas de tecidos calcificados de peixes.
- Existence of a tightly regulated water channel in saccharomyces cerevisiaePublication . Meyrial, V.; Laizé, Vincent; Gobin, R.; Ripoche, P.; Hohmann, S.; Tacnet, F.The Saccharomyces cerevisiae strain Σ1278b possesses two putative aquaporins, Aqy1-1p and Aqy2-1p. Previous work demonstrated that Aqy1-1p functions as a water channel in Xenopus oocyte. However, no function could be attributed to Aqy2-1p in this system. Specific antibodies were used to follow the expression of Aqy1-1p and Aqy2-1p in the yeast. Aqy1-1p was never detected whatever the growth phase and culture conditions tested. In contrast, Aqy2-1p was detected only during the exponential growth phase in rich medium containing glucose. Aqy2-1p expression was repressed by hyper-osmotic culture conditions. Both immunocytochemistry and biochemical subcellular fractionation demonstrated that Aqy2-1p is located on the endoplasmic reticulum (ER) as well as on the plasma membrane. In microsomal vesicles enriched in ER, a water channel activity due to Aqy2-1p was detected by stopped-flow analysis. Our results show that the expression of aquaporins is tightly controlled. The physiological relevance of aquaporin-mediated water transport in yeast is discussed.
- Gla-rich protein (GRP), a new vitamin K-dependent protein identified from sturgeon cartilage and highly conserved in vertebratesPublication . S B Viegas, Carla; Simes, D; Laizé, Vincent; Williamson, M. K.; Price, P. A.; Cancela, LeonorWe report the isolation of a novel vitamin K-dependent protein from the calcified cartilage of Adriatic sturgeon (Acipenser nacarii). This 10.2-kDa secreted protein contains 16 -carboxyglutamic acid (Gla) residues in its 74-residue sequence, the highest Gla percent of any known protein, and we have therefore termed it Gla-rich protein (GRP). GRP has a high charge density (36 negative 16 positive 20 net negative) yet is insoluble at neutral pH. GRP has orthologs in all taxonomic groups of vertebrates, and a paralog (GRP2) in bony fish; no GRP homolog was found in invertebrates. There is no significant sequence homology between GRP and the Gla-containing region of any presently known vitamin K-dependent protein. Forty-seven GRP sequences were obtained by a combination of cDNA cloning and comparative genomics: all 47 have a propeptide that contains a -carboxylase recognition site and a mature protein with 14 highly conserved Glu residues, each of them being carboxylated in sturgeon. The protein sequence of GRP is also highly conserved, with 78% identity between sturgeon and human GRP. Analysis of the corresponding gene structures suggests a highly constrained organization, particularly for exon 4, which encodes the core Gla domain. GRP mRNA is found in virtually all rat and sturgeon tissues examined, with the highest expression in cartilage. Cells expressing GRP include chondrocytes, chondroblasts, osteoblasts, and osteocytes. Because of its potential to bind calcium through Gla residues, we suggest that GRP may regulate calcium in the extracellular environment.
- Impairment of mineralization by metavanadate and decavanadate solutions in a fish bone-derived cell linePublication . Tiago, Daniel; Laizé, Vincent; Cancela, Leonor; Aureliano, M.Vanadium, a trace metal known to accumulate in bone and to mimic insulin, has been shown to regulate mammalian bone formation using in vitro and in vivo systems. In the present work, short- and long-term effects of metavanadate (containing monomeric, dimeric, tetrameric and pentameric vanadate species) and decavanadate (containing decameric vanadate species) solutions on the mineralization of a fish bone-derived cell line (VSa13) were studied and compared to that of insulin. After 2 h of incubation with vanadate (10 μM in monomeric vanadate), metavanadate exhibited higher accumulation rates than decavanadate (6.85±0.40 versus 3.95±0.10 μg V/g of protein, respectively) in fish VSa13 cells and was also shown to be less toxic when applied for short periods. In longer treatments with both metavanadate and decavanadate solutions, similar effects were promoted: stimulation of cell proliferation and strong impairment (75%) of extracellular matrix (ECM) mineralization. The effect of both vanadate solutions (5 μM in monomeric vanadate), on ECM mineralization was increased in the presence of insulin (10 nM). It is concluded that chronic treatment with both vanadate solutions stimulated fish VSa13 cells proliferation and prevented ECM mineralization. Newly developed VSa13 fish cells appeared to be appropriate in the characterization of vanadate effects on vertebrate bone formation, representing a good alternative to mammalian systems.
- Whole-genome sequence analysis: Evidences for new osteocalcin isoforms in fish and tetrapodsPublication . Laizé, Vincent; Gavaia, Paulo J.; S B Viegas, Carla; Cancela, LeonorThe evolution of calcified tissues is a defining feature in vertebrate evolution. Investigating evolution of proteins involved in tissue calcification should help elucidate how calcified tissues have evolved. Osteocalcin (OC) is a small calcium-binding protein accumulated exclusively in bone and teeth, whose function, although essential for tissue calcification, remains unclear. Until recently, only a single osteocalcin isoform had been described (OC I).
- Alternatively spliced transcripts of Sparus aurata insulin-like growth factor 1 are differentially expressed in adult tissues and during early developmentPublication . Tiago, Daniel; Laizé, Vincent; Cancela, LeonorSpliced variants of insulin-like growth factor 1 (IGF-1), a small peptide with a critical role in metabolism and growth, have been identified in various vertebrate species. However, despite recent functional data in mammalian systems suggesting specific roles (e.g. in muscle formation) for their pro-peptides and/or E domains, their function remains unclear. In this study, three alternatively spliced variants of Sparus aurata proIGF-1 (1a, 1b, and 1c) were identified and their expression analyzed. In adult fish, IGF-1 gene expression was observed in various soft tissues (highest levels in liver) and calcified tissues, with IGF-1c being always the most expressed isoform. In developing larvae, each isoform presented a specific pattern of expression, characterized by different onset and extent and consistent with a possible role of IGF-1a and 1b during early post-hatching events (e.g. bone or muscle formation), while IGF-1c would be rather involved in early larvae formation but probably acts in concerted action with other isoforms at later stages. We also propose that, in adults, IGF-1a and 1b isoforms may have a local action, while isoform 1c would assume a systemic action, as its mammalian counterpart. This hypothesis was further supported by in silico analysis of isoform distribution, revealing that only IGF-1c/Ea isoform has been conserved throughout evolution and that other fish isoforms (i.e. 1a and 1b) may be associated with mechanisms of osmoregulation. We finally propose that IGF-1 variants may exhibit different modes of action (systemic or local) and may be involved in different developmental and adaptive mechanisms.
- New insights into mineralogenic effects of vanadatePublication . Laizé, Vincent; Tiago, Daniel; Aureliano, M.; Cancela, LeonorVanadium is a transition metal that occurs naturally in a variety of minerals and exhibits an exceptional complex chemistry in solution, e.g., several oxidation states ranging from ?2 to ?5, and formation of vanadium oligomers such as decameric vanadate (?5) species [1–4]. Besides its metallurgical role in steel alloys, vanadium is also an ultra trace element known to participate in many biological processes and considered to be essential for living organisms [5, 6]. It accumulates in a variety of organisms ranging from microbes to vertebrates, where it modulates the activity of an array of key enzymes or participates as a cofactor in the active centre of others [1, 2, 5–9]. In mammals, vanadium compounds can mimic insulin action and may prevent chemical carcinogenesis, most probably through the inhibition of cellular tyrosine phosphatases and subsequent activation of signalling pathways, suggesting their use as pharmacological tools to treat human diabetes mellitus and cancer, respectively [10–14]. Anti-tumoral action of vanadium is, however, controversial as several studies have proposed that vanadium could act as a mitogen, tumor promoter and co-carcinogen (see [15] and references therein). Other studies have reported an osteogenic role for vanadium compounds and suggest that vanadium could also have a therapeutic application in bone-related diseases, such as osteoporosis [16–18]. Decades of research have thus provided evidence for vanadium’s physiological and pharmacological properties, supporting the claim that it may represent a promising therapeutic agent for diseases targeting billions of human beings and affecting a wide range of pathological conditions. However, the development of vanadium-based pharmaceuticals will probably take some time since various issues related to vanadium toxicity, speciation and multiple targeting will need to be solved before advancing to clinical trials. Despite being used for decades by researchers as an inhibitor of protein tyrosine phosphatases, it is still not totally clear which vanadium species induce or which signalling pathways transduce physiological and pharmacological effects. Vanadium chemistry is complex, and different species or complexes may induce different pathways [5], affecting different biological processes. This work intends to review what is presently known about the bone-related role of vanadium in mammals and present recent in vitro data on the mineralogenic effect of vanadate in fish, which have become promising model organisms for vertebrate bone-related studies.
- Establishment of primary cell cultures from fish calcified tissuesPublication . Marques, C. L.; Rafael, Marta S.; Cancela, Leonor; Laizé, VincentFishes have been recently recognized as a suitable model organism to study vertebrate physiological processes, in particular skeletal development and tissue mineralization. However, there is a lack of well characterized in vitro cell systems derived from fish calcified tissues. We describe here a protocol that was successfully used to develop the first calcified tissue-derived cell cultures of fish origin. Vertebra and branchial arches collected from young gilthead seabreams were fragmented then submitted to the combined action of collagenase and trypsin to efficiently release cells embedded in the collagenous extracellular matrix. Primary cultures were maintained under standard conditions and spontaneously transformed to form continuous cell lines suitable for studying mechanisms of tissue mineralization in seabream. This simple and inexpensive protocol is also applicable to other calcified tissues and species by adjusting parameters to each particular case.
- Impairment of mineralization by metavanadate and decavanadate solutions in a fish bone-derived cell linePublication . Tiago, Daniel; Laizé, Vincent; Cancela, Leonor; Aureliano, M.Vanadium, a trace metal known to accumulate in bone and to mimic insulin, has been shown to regulate mammalian bone formation using in vitro and in vivo systems. In the present work, short- and long-term effects of metavanadate (containing monomeric, dimeric, tetrameric and pentameric vanadate species) and decavanadate (containing decameric vanadate species) solutions on the mineralization of a fish bone-derived cell line (VSa13) were studied and compared to that of insulin. After 2 h of incubation with vanadate (10 μM in monomeric vanadate), metavanadate exhibited higher accumulation rates than decavanadate (6.85±0.40 versus 3.95± 0.10 μg V/g of protein, respectively) in fish VSa13 cells and was also shown to be less toxic when applied for short periods. In longer treatments with both metavanadate and decavanadate solutions, similar effects were promoted: stimulation of cell proliferation and strong impairment (75%) of extracellular matrix (ECM) mineralization. The effect of both vanadate solutions (5 μM in monomeric vanadate), on ECM mineralization was increased in the presence of insulin (10 nM). It is concluded that chronic treatment with both vanadate solutions stimulated fish VSa13 cells proliferation and prevented ECM mineralization. Newly developed VSa13 fish cells appeared to be appropriate in the characterization of vanadate effects on vertebrate bone formation, representing a good alternative to mammalian systems.
- «
- 1 (current)
- 2
- 3
- »