Repository logo
 
Loading...
Profile Picture

Search Results

Now showing 1 - 10 of 15
  • Recent advances in nutrition of fish larval | Avanços recentes em nutrição de larvas de peixes
    Publication . Conceição, L. E. C.; Aragão, C.; Richard, Nadège; Engrola, S.; Gavaia, Paulo J.; Mira, Sara; Dias, J.
    Os requisitos nutricionais de larvas de peixes são ainda mal compreendidos, o que leva a altas mortalidades e problemas de qualidade no seu cultivo. Este trabalho pretende fazer uma revisão de novas metodologias de investigação, tais como estudos com marcadores, genómica populacional, programação nutricional, génomica e proteómica funcionais, e fornecer ainda alguns exemplos das utilizações presentes e perspectivas futuras em estudos de nutrição de larvas de peixes.
  • High stocking density induces crowding stress and affects amino acid metabolism in Senegalese sole Solea senegalensis (Kaup 1858) juveniles
    Publication . Costas, B.; Aragão, C.; Mancera, J. M.; Dinis, Maria Teresa; Conceição, L. E. C.; Refojos, B. C.
    Fish held at high stocking densities are generally exposed to chronic stress situations that impose severe energy demands and may predispose the ¢sh to infection. Senegalese sole Solea senegalensis (Kaup) juveniles (78.8 18.9 g body weight) were maintained at low (LSD; 4 kg m2 at the end of the experiment), medium (MSD; 9 kg m2 ) and high (HSD;14 kg m2 ) stocking densities during a period of 63 days. Although disease outbreaks were observed in ¢sh reared at HSD, growth and food consumption did not vary among di¡erent treatments. Results from plasma cortisol and free amino acids (FAAs) showed signi¢- cant di¡erences among di¡erent rearing densities pointing to HSD as stressful rearing condition.
  • Free amino acids are absorbed faster and assimilated more efficiently than protein in postlarval Senegal sole (Solea senegalensis)
    Publication . Rønnestad, I.; Conceição, L. E. C.; Aragão, C.; Dinis, Maria Teresa
    To improve the formulation of diets for the early stages of marine fish, assimilation rates of free amino acids (FAA) and protein in postlarval Senegal sole (Solea senegalensis) were determined. Fish (2.45 ± 0.87 mg dry weight) were tube fed 36 nL of a diet of FAA containing L-[35S] methionine (FAA diet) or bovine serum albumin, containing L-[methylated-14C]bovine serum albumin (Prot-diet), both at a concentration of 4.08 g/L. A time series was performed, and the amounts of label in incubation water, liver, gut and body carcass were quantified. The FAA diet was absorbed with a 3.5-times-higher transfer rate (P < 0.001) from the gut into the larval body tissues compared with the Prot-diet. The FAA diet also was assimilated with greater efficiency than the Prot-diet (80% versus 58%, P = 0.001). If we assume that the label present in the gut represents amino acids incorporated into the intestinal tissue, the assimilation efficiencies for the two diets were 89 and 64%. Therefore, FAA seems to be superior to protein as a dietary source of amino acids in Senegal sole postlarvae. However, because the absorption dynamics of protein and FAA differ, care should be taken when using the sources together to avoid amino acid imbalance.
  • Stress response and changes in amino acid requirements in Senegalese sole (Solea senegalensis Kaup 1858)
    Publication . Aragão, C.; Corte-Real, Joana; Costas, B.; Dinis, Maria Teresa; Conceição, L. E. C.
    Fish in aquaculture are often exposed to various stressors that may change their ability to survive or limit growth. Amino acids are used for processes other than growth, including stress response. This study intended to analyse how repeated acute handling stress can affect growth and amino acid requirements in fish. Senegalese sole juveniles were weekly held in the air during 3min (Handling) for 9 weeks; Control groups were left undisturbed. Growth and plasma levels of stress indicators and of free amino acids were assessed at the end of the experiment. Plasma cortisol and osmolality levels showed that fish in the Handling treatment were stressed, but growth was unaffected. Plasma amino acid concentrations indicate that their requirements in stressed fish were altered, which probably reflects the synthesis of proteins or other specific compounds related to stress response.
  • How does fish metamorphosis affect aromatic amino acid metabolism?
    Publication . Pinto, W.; Figueira, L.; Dinis, Maria Teresa; Aragão, C.
    Aromatic amino acids (AAs, phenylalanine and tyrosine) may be specifically required during fish metamorphosis, since they are the precursors of thyroid hormones which regulate this process. This project attempted to evaluate aromatic AA metabolism during the ontogenesis of fish species with a marked (Senegalese sole; Solea senegalensis) and a less accentuated metamorphosis (gilthead seabream; Sparus aurata). Fish were tube-fed with three l-[U-14C] AA solutions at pre-metamorphic, metamorphic and post-metamorphic stages of development: controlled AA mixture (Mix), phenylalanine (Phe) and tyrosine (Tyr). Results showed a preferential aromatic AA retention during the metamorphosis of Senegalese sole, rather than in gilthead seabream. Senegalese sole’s highly accentuated metamorphosis seems to increase aromatic AA physiological requirements, possibly for thyroid hormone production. Thus, Senegalese sole seems to be especially susceptible to dietary aromatic AA deficiencies during the metamorphosis period, and these findings may be important for physiologists, fish nutritionists and the flatfish aquaculture industry.
  • Amino acid pools of rotifers and Artemia under different conditions: Nutritional implications for fish larvae
    Publication . Aragão, C.; Conceição, L. E. C.; Dinis, Maria Teresa; Fyhn, H. -J.
    The rearing of most marine fish species still relies on live food. Amino acids (AA) are the building blocks for protein synthesis, are important energy substrates, and are involved in specific physiological functions. Thus, the AA pools (free and protein-bound) of the rotifer Brachionus rotundiformis and of Artemia parthenogenetica metanauplii were analysed, after enrichment with different diets or at different salinities. The changes in these pools were related to their impact when used as feed for the developing fish larvae. Rotifers and Artemia were enriched for 24 h in microalgae, in commercial diets, or starved for the same time period. The enrichment at different salinities was also tested using Artemia. The free AA (FAA) quantity and quality was strongly affected by the enrichment used, in both rotifers and Artemia metanauplii. The relative FAA content was significantly higher in rotifers and Artemia enriched with microalgae than in the ones enriched with commercial products, and between the different microalgae tested, the enrichment in T. chui resulted in the highest FAA content for both preys. Differences regarding the FAA quantity and quality were also found between rotifers and Artemia. With the exception of the starved preys, a higher relative FAA content was found in rotifers than in Artemia metanauplii and while the FAA pool of the rotifers was dominated by alanine, taurine was the dominant AA in the FAA pool of Artemia. Salinity had only a small effect on the FAA pool of Artemia. Concerning the protein fraction, starvation increased the relative protein content in the rotifers. Among the metanauplii, the relative protein content was affected neither by the enrichment nor by salinity, except for a significantly lower content found when the microalgae Nannochloropsis gaditana was used. The quality of the protein pool is affected by the different enrichments, but not by salinity. However, the changes in the protein-bound AA pool were less pronounced than for the FAA pool and reflect differences in the protein content and/or quality of the diet. This study showed that the AA composition of cultured zooplankton is affected by feeding regime and by salinity. The choice of the best zooplankton enrichment and/or mixture of enrichments for the different fish larval stages, should take into account the AA composition, in order to fulfil the energetic and nutritional requirements of the larvae.
  • Nutritional physiology during development of Senegalese sole (Solea senegalensis)
    Publication . Conceição, L. E. C.; Ribeiro, Laura; Engrola, S.; Aragão, C.; Morais, S.; Lacuisse, M.; Soares, Florbela; Dinis, Maria Teresa
    The Senegalese sole, a species with a complex metamorphosis, difficulties in weaning and with occasional problems of malpigmentation and skeletal deformities, is a good model species to study larval nutritional physiology. In addition, the early metamorphosis and acquisition of a peculiar non-proactive bottom-feeding behaviour make early weaning an important issue in sole hatcheries. The present work reviews recent findings in different aspects of nutritional physiology during the development of Senegalese sole, in an attempt to optimize the composition of sole diets and to understand what are the limiting factors for weaning sole. Both digestive enzymes activity and tracer studies using 14C-Artemia show that sole larvae, even at young stages, have a high capacity for digesting live preys. This is reflected in a high growth potential and low mortality rates for this species during the larval stage compared to other marine fish species. Based on the observation of the digestive enzymes profile, early introduction of inert microdiets in co-feeding with Artemia does not seem to affect intestinal function. However, when co-feeding is not provided, intestinal activity may be depressed. Furthermore, early introduction of microdiets in co-feeding with Artemia may have a positive effect on survival rates, but at the expense of lower growth rates and higher size dispersal. This may reflect variation in the adaptation capacity of individual larvae to inert diets. High dietary neutral lipid (soybean oil) content results in reduced growth and accumulation of lipid droplets in the enterocytes and affects the capacity of Senegalese sole larvae to absorb and metabolise dietary fatty acids (FA) and amino acids (AA). Through tube feeding of different 14C-lipids and free FA it has been shown that FA absorption efficiency increases with unsaturation and that sole larvae spare DHA from catabolism. In addition, it was demonstrated that absorption efficiency varies according to molecular form, being highest for free FA, lowest for triacylglycerols and intermediate for phospholipids. Live preys commonly used in larviculture do not seem to have a balanced AA profile for sole larvae. Furthermore, the ideal dietary AA composition probably changes during development. Rotifers and Artemia metanauplii are apparently deficient in one or more of the following AA depending on the larval development stage: histidine, sulphur AA, lysine, aromatic AA, threonine and arginine. It has also been demonstrated that balancing the dietary AA profile with dipeptides inArtemia-fed larvae increases AA retention and reduces AA catabolism. When supplementing larval diets with limiting AA it should also be considered that sole larvae have different absorption, and retention efficiencies for individual AA, and that they have the capacity to spare indispensable AA. In addition, the absorption of free AA is faster and more efficient than that of complex proteins. Improvements in biochemical composition of inert microdiets for sole are likely to contribute to the reproducible weaning success of Senegalese sole.
  • Growth, stress response and free amino acid levels in Senegalese sole (Solea senegalensis Kaup 1858) chronically exposed to exogenous ammonia
    Publication . Pinto, W.; Aragão, C.; Soares, Florbela; Dinis, Maria Teresa; Conceição, L. E. C.
    Stressful husbandry conditions are likely to a¡ect growth and amino acid metabolism in ¢sh. In this study, chronic ammonia exposure was used to test the e¡ects of a stressor on growth and amino acid metabolism of Senegalese sole juveniles. The ¢sh were exposed for 52 days to 11.6 mg L 1 [low-TAN (L-TAN)] or 23.2 mg L 1 [high-TAN (H-TAN)] of total ammonia nitrogen (TAN), or to 0 mg L 1 (Control). Growth in L-TAN groups was slightly but signi¢- cantly di¡erent from the Control groups [relative growth rate (RGR50.35 0.13 and 0.52 0.23% day 1respectively)]. In H-TAN groups, growth was severely a¡ected (RGR50.01 0.13% day 1 ).
  • A balanced dietary amino acid profile improves amino acid retention in post-larval Senegalese sole (Solea senegalensis)
    Publication . Aragão, C.; Conceição, L. E. C.; Martins, Dulce Alves; Rønnestad, I.; Gomes, E.; Dinis, Maria Teresa
    The rearing of most marine fish larvae still relies on live food. Dietary amino acid (AA) imbalances when using live food in the larval rearing of flatfishes have been suggested. The aim of this study was to test if dietary AA supplementation affects AA metabolism in Senegalese sole (Solea senegalensis) post-larvae. This was done by tube-feeding Artemia-fed sole with a dipeptide solution containing two potential limiting AA (leucine and phenylalanine), in order to supplement the larval gut content and to balance the dietary AA profile.
  • Soy protein concentrate as a protein source for Senegalese sole (Solea senegalensis Kaup 1858) diets: Effects on growth and amino acid metabolism of postlarvae
    Publication . Aragão, C.; Conceição, L. E. C.; Dias, J.; Marques, A. C.; Gomes, E.; Dinis, Maria Teresa
    The objective of this workwas to evaluate the effect of a dietary amino acid imbalance, originating from the use of a soy protein concentrate (SPC) as the major protein source, on the growth performance and amino acid metabolism of Senegalese sole (Solea senegalensis) postlarvae. Senegalese sole (85.6724.6mg wet weight) were fed one of two experimental diets: one based on fish meal (FM) and another based on SPC. Diet were isonitrogenous (around 56% crude protein) and isoenergetic. Diet acceptability was very good and the growth rate was 6.9%day 1 for sole eating the FM diet and 6.0%day 1 for sole eating the SPC diet. Mass-speci¢c ammonia excretion and the activities of selected amino acid metabolic enzymes (ALAT, ASATand GDH) did not present significant differences between treatments, although this may have been due to the high variability found for these parameters in the SPC treatment. This variability may suggest different capacities of individual fish to adapt to the possible methionine dietary deficiency. The utilization of amino acids as a substrate for lipogenesis does not seem to be affected by the dietary protein source, since NAPDH-generating enzymes (G6PD and ME) had similar activities in both treatments. Amino acid metabolism in Senegalese sole postlarvae seems to be slightly affected by the dietary protein source. Nevertheless, the changes induced by the SPC diet do not seem to impair growth, at least at the high dietary protein level used in this experiment.