Loading...
7 results
Search Results
Now showing 1 - 7 of 7
- Differential effects of clinically used derivatives and metabolites of artemisinin in the activation of constitutive androstane receptor isoformsPublication . Burk, O.; Piedade, R.; Ghebreghiorghis, L.; Fait, J. T.; Nussler, A. K.; Gil, J. P.; Windshuegel, B.; Schwab, M.BACKGROUND AND PURPOSE Widespread resistance to antimalarial drugs requires combination therapies with increasing risk of pharmacokinetic drugdrug interactions. Here, we explore the capacity of antimalarial drugs to induce drug metabolism via activation of constitutive androstane receptors (CAR) by ligand binding. EXPERIMENTAL APPROACH A total of 21 selected antimalarials and 11 major metabolites were screened for binding to CAR isoforms using cellular and in vitro CAR-coactivator interaction assays, combined with in silico molecular docking. Identified ligands were further characterized by cell-based assays and primary human hepatocytes were used to elucidate induction of gene expression. KEY RESULTS Only two artemisinin derivatives arteether and artemether, the metabolite deoxyartemisinin and artemisinin itself demonstrated agonist binding to the major isoforms CAR1 and CAR3, while arteether and artemether were also inverse agonists of CAR2. Dihydroartemisinin and artesunate acted as weak inverse agonists of CAR1. While arteether showed the highest activities in vitro, it was less active than artemisinin in inducing hepatic CYP3A4 gene expression in hepatocytes. CONCLUSIONS AND IMPLICATIONS Artemisinin derivatives and metabolites differentially affect the activities of CAR isoforms and of the pregnane X receptor (PXR). This negates a common effect of these drugs on CAR/PXR-dependent induction of drug metabolism and further provides an explanation for artemisinin consistently inducing cytochrome P450 genes in vivo, whereas arteether and artemether do not. All these drugs are metabolized very rapidly, but only artemisinin is converted to an enzyme-inducing metabolite. For better understanding of pharmacokinetic drugdrug interaction possibilities, the inducing properties of artemisinin metabolites should be considered.
- Population pharmacokinetics and pharmacodynamics of artemether and lumefantrine during combination treatment in children with uncomplicated falciparum malaria in TanzaniaPublication . Hietala, Sofia Friberg; Martensson, Andreas; Ngasala, Billy; Dahlstrom, Sabina; Lindegardh, Niklas; Annerberg, Anna; Premji, Zul; Farnert, Anna; Gil, J. P.; Bjorkman, Anders; Ashton, MichaelThe combination of artemether (ARM) and lumefantrine is currently the first-line treatment of uncomplicated falciparum malaria in mainland Tanzania. While the exposure to lumefantrine has been associated with the probability of adequate clinical and parasitological cure, increasing exposure to artemether and the active metabolite dihydroartemisinin (DHA) has been shown to decrease the parasite clearance time. The aim of this analysis was to describe the pharmacokinetics and pharmacodynamics of artemether, dihydroartemisinin, and lumefantrine in African children with uncomplicated malaria. In addition to drug concentrations and parasitemias from 50 Tanzanian children with falciparum malaria, peripheral parasite densities from 11 asymptomatic children were included in the model of the parasite dynamics. The population pharmacokinetics and pharmacodynamics of artemether, dihydroartemisinin, and lumefantrine were modeled in NONMEM. The distribution of artemether was described by a two-compartment model with a rapid absorption and elimination through metabolism to dihydroartemisinin. Dihydroartemisinin concentrations were adequately illustrated by a one-compartment model. The pharmacokinetics of artemether was time dependent, with typical oral clearance increasing from 2.6 liters/h/kg on day 1 to 10 liters/h/kg on day 3. The pharmacokinetics of lumefantrine was sufficiently described by a one-compartment model with an absorption lag time. The typical value of oral clearance was estimated to 77 ml/h/kg. The proposed semimechanistic model of parasite dynamics, while a rough approximation of the complex interplay between malaria parasite and the human host, adequately described the early effect of ARM and DHA concentrations on the parasite density in malaria patients. However, the poor precision in some parameters illustrates the need for further data to support and refine this model.
- Assessing the cost-benefit effect of a plasmodium falciparum drug resistance mutation on parasite growth In vitroPublication . Froberg, Gabrielle; PE, Ferreira; Martensson, Andreas; Ali, Abdullah; Bjorkman, Anders; Gil, J. P.Plasmodium falciparum mutations associated with antimalarial resistance may be beneficial for parasites under drug pressure, although they may also cause a fitness cost. We herein present an in vitro model showing how this combined effect on parasite growth varies with the drug concentration and suggest a calculated drug-specific cost-benefit index, indicating the possible advantage for mutated parasites. We specifically studied the D-to-Y change at position 1246 encoded by the pfmdr1 gene (pfmdr1 D1246Y) in relation to amodiaquine resistance. Susceptibilities to amodiaquine, desethylamodiaquine, and chloroquine, as well as relative fitness, were determined for two modified isogenic P. falciparum clones differing only in the pfmdr1 1246 position. Data were used to create a new comparative graph of relative growth in relation to the drug concentration and to calculate the ratio between the benefit of resistance and the fitness cost. Results were related to an in vivo allele selection analysis after amodiaquine or artesunate-amodiaquine treatment. pfmdr1 1246Y was associated with decreased susceptibility to amodiaquine and desethylamodiaquine but at a growth fitness cost of 11%. Mutated parasites grew less in low drug concentrations due to a predominating fitness cost, but beyond a breakpoint concentration they grew more due to a predominating benefit of increased resistance. The cost-benefit indexes indicated that pfmdr1 1246Y was most advantageous for amodiaquine-exposed parasites. In vivo, a first drug selection of mutant parasites followed by a fitness selection of wild-type parasites supported the in vitro data. This cost-benefit model may predict the risk for selection of drug resistance mutations in different malaria transmission settings.
- Plasmodium falciparum population dynamics during the early phase of anti-malarial drug treatment in Tanzanian children with acute uncomplicated malariaPublication . Carlsson, Anja M.; Ngasala, Billy E.; Dahlstrom, Sabina; Membi, Christopher; Veiga, Maria Isabel; Rombo, Lars; Abdulla, Salim; Premji, Zul; Gil, J. P.; Bjorkman, Anders; Martensson, AndreasBackground: This study aimed to explore Plasmodium falciparum population dynamics during the early phase of anti-malarial drug treatment with artemisinin-based combination therapy in children with clinical malaria in a high transmission area in Africa. Methods: A total of 50 children aged 1-10 years with acute uncomplicated P. falciparum malaria in Bagamoyo District, Tanzania, were enrolled. Participants were hospitalized and received supervised standard treatment with artemether-lumefantrine according to body weight in six doses over 3 days. Blood samples were collected 11 times, i.e. at time of diagnosis (-2 h) and 0, 2, 4, 8, 16, 24, 36, 48, 60 and 72 h after initiation of treatment. Parasite population dynamics were assessed using nested polymerase chain reaction (PCR)-genotyping of merozoite surface protein (msp) 1 and 2. Results: PCR-analyses from nine sequential blood samples collected after initiation of treatment identified 20 and 21 additional genotypes in 15/50 (30%) and 14/50 (28%) children with msp1 and msp2, respectively, non-detectable in the pre-treatment samples (-2 and 0 h combined). Some 15/20 (75%) and 14/21 (67%) of these genotypes were identified within 24 h, whereas 17/20 (85%) and 19/21 (90%) within 48 h for msp1 and msp2, respectively. The genotype profile was diverse, and varied considerably over time both within and between patients, molecular markers and their respective families. Conclusion: PCR analyses from multiple blood samples collected during the early treatment phase revealed a complex picture of parasite sub-populations. This underlines the importance of interpreting PCR-outcomes with caution and suggests that the present use of PCR-adjustment from paired blood samples in anti-malarial drug trials may overestimate assessment of drug efficacy in high transmission areas in Africa. The study is registered at http://www.clinicaltrials.gov with identifier NCT00336375.
- Polymorphism in PfMRP1 (Plasmodium falciparum multidrug resistance protein 1) Amino Acid 1466 associated with resistance to Sulfadoxine-Pyrimethamine treatmentPublication . Dahlstrom, Sabina; Veiga, M. Isabel; Martensson, Andreas; Bjorkman, Anders; Gil, J. P.Sulfadoxine-pyrimethamine (SP) remains widely recommended for intermittent preventive treatment against Plasmodium falciparum malaria for pregnant women and infants in Africa. Resistance to SP is increasing and associated primarily with mutations in the P. falciparum dhfr (Pfdhfr) and Pfdhps genes. This study aimed to explore the hypothetical association of genetic alterations in the P. falciparum multidrug resistance protein gene (Pfmrp1) with the in vivo response to SP by detecting the selection of single nucleotide polymorphisms (SNPs) following standard single-dose treatment administered to children with acute uncomplicated P. falciparum malaria in Tanzania. We detected significant selection of parasites carrying the Pfmrp1 1466K allele in samples from children with recrudescent infections, with 12 (100%) of 12 such samples being positive for this allele, compared to 52 (67.5%) of 77 baseline samples (P=0.017), in parallel with the selection of the Pfdhfr Pfdhps quintuple mutant haplotype in cases of recrudescence (P=0.001). There was no association between the 1466K SNP and the Pfdhfr Pfdhps quintuple mutation, indicating independent selections. Our data point for the first time to a role for a P. falciparum multidrug resistance protein homologue in the antimalarial activity of SP. Moreover, they add to the growing evidence of the potential importance of Pfmrp1 in antimalarial drug resistance.
- Sentinel network for monitoring in vitro susceptibility of Plasmodium falciparum to antimalarial drugs in Colombia: a proof of conceptPublication . Aponte, Samanda L.; Diaz, Gustavo; Pava, Zuleima; Echeverry, Diego F.; Ibarguen, Dario; Rios, Melissa; Murcia, Luz M.; Quelal, Claudia; Murillo, Claribel; Gil, J. P.; Bjorkman, Anders; Osorio, LydaDrug resistance is one of the principal obstacles blocking worldwide malaria control. In Colombia, malaria remains a major public health concern and drug-resistant parasites have been reported. In vitro drug susceptibility assays are a useful tool for monitoring the emergence and spread of drug-resistant Plasmodium falciparum. The present study was conducted as a proof of concept for an antimalarial drug resistance surveillance network based on in vitro susceptibility testing in Colombia. Sentinel laboratories were set up in three malaria endemic areas. The enzyme linked immunosorbent assay-histidine rich protein 2 and schizont maturation methods were used to assess the susceptibility of fresh P. falciparum isolates to six antimalarial drugs. This study demonstrates that an antimalarial drug resistance surveillance network based on in vitro methods is feasible in the field with the participation of a research institute, local health institutions and universities. It could also serve as a model for a regional surveillance network. Preliminary susceptibility results showed widespread chloroquine resistance, which was consistent with previous reports for the Pacific region. However, high susceptibility to dihydroartemisinin and lumefantrine compounds, currently used for treatment in the country, was also reported. The implementation process identified critical points and opportunities for the improvement of network sustainability strategies.
- pfmdr1 amplification is related to increased Plasmodium falciparum In Vitro sensitivity to the Bisquinoline PiperaquinePublication . Veiga, M. I.; Ferreira, P. E.; Malmberg, M.; Jornhagen, L.; Bjorkman, A.; Nosten, F.; Gil, J. P.The 4-aminoquinoline bisquinoline piperaquine is an important partner drug in one of the presently recommended artemisinin combination therapies. Recent clinical trials have confirmed its high efficacy in combination with dihydroartemisinin. Resistance to piperaquine alone has, however, been documented. Amplification in copy number of the Plasmodium falciparum multidrug resistance locus on chromosome 5, containing the pfmdr1 gene, has been shown to confer resistance to structurally unrelated antimalarials. Through the determination of the 50% inhibitory concentrations (IC(50)s) and IC(90)s for piperaquine and chloroquine in a set of 46 adapted P. falciparum cultures originating from the Thai-Burmese border, we have characterized the regions around the pfmdr1 gene and identified a significant association between the presence of pfmdr1 duplications and enhanced sensitivity to piperaquine (P = 0.005 for IC50 and P = 0.002 for IC90) and chloroquine, reaching statistical significance at IC(90)s (P = 0.026). These results substantiate the potential importance of pfmdr1 copy number amplifications in the efficacy of the combination therapy piperaquine-dihydroartemisinin. It supports the rational use of 4-aminoquinolines and artemisinin-based compounds, as they independently select for mutually incompatible combinations of mutations.