Loading...
10 results
Search Results
Now showing 1 - 10 of 10
- Toll-like receptor evolution: does temperature matter?Publication . Sousa, Carmen; Fernandes, Stefan A.; Cardoso, João; Wang, Ying; Zhai, Wanying; Guerreiro, Pedro; Chen, Liangbiao; Canario, A.V.M.; Power, DeborahToll-like receptors (TLRs) recognize conserved pathogen-associated molecular patterns (PAMPs) and are an ancient and well-conserved group of pattern recognition receptors (PRRs). The isolation of the Antarctic continent and its unique teleost fish and microbiota prompted the present investigation into Tlr evolution. Gene homologues of tlr members in teleosts from temperate regions were present in the genome of Antarctic Nototheniidae and the non-Antarctic sister lineage Bovichtidae. Overall, in Nototheniidae apart from D. mawsoni, no major tlr gene family expansion or contraction occurred. Instead, lineage and species-specific changes in the ectodomain and LRR of Tlrs occurred, particularly in the Tlr11 superfamily that is well represented in fish. Positive selective pressure and associated sequence modifications in the TLR ectodomain and within the leucine-rich repeats (LRR), important for pathogen recognition, occurred in Tlr5, Tlr8, Tlr13, Tlr21, Tlr22, and Tlr23 presumably associated with the unique Antarctic microbiota. Exposure to lipopolysaccharide (Escherichia coli O111:B4) Gram negative bacteria did not modify tlr gene expression in N. rossii head-kidney or anterior intestine, although increased water temperature (+4 degrees C) had a significant effect.
- Freshening effect on the osmotic response of the Antarctic spiny plunderfish Harpagifer antarcticusPublication . Vargas-Chacoff, Luis; Dann, Francisco; Paschke, Kurt; Oyarzun-Salazar, Ricardo; Nualart, Daniela; Martinez, Danixa; Wilson, Jonathan M.; Guerreiro, Pedro; Navarro, Jorge M.Global warming is having a significant impact around the world, modifying environmental conditions in many areas, including in zones that have been thermally stable for thousands of years, such as Antarctica. Stenothermal sedentary intertidal fish species may suffer due to warming, notably if this causes water freshening from increased freshwater inputs. Acute decreases in salinity, from 33 down to 5, were used to assess osmotic responses to environmental salinity fluctuations in Antarctic spiny plunderfish Harpagifer antarcticus, in particular to evaluate if H. antarcticus is able to cope with freshening and to describe osmoregulatory responses at different levels (haematological variables, muscle water content, gene expression, NKA activity). H. antarcticus were acclimated to a range of salinities (33 as control, 20, 15, 10 and 5) for 1 week. At 5, plasma osmolality and calcium concentration were both at their lowest, while plasma cortisol and percentage muscle water content were at their highest. At the same salinity, gill and intestine Na+-K+-ATPase (NKA) activities were at their lowest and highest, respectively. In kidney, NKA activity was highest at intermediate salinities (15 and 10). The salinity-dependent NKA mRNA expression patterns differed depending on the tissue. Marked changes were also observed in the expression of genes coding membrane proteins associated with ion and water transport, such as NKCC2, CFTR and AQP8, and in the expression of mRNA for the regulatory hormone prolactin (PRL) and its receptor (PRLr). Our results demonstrate that freshening causes osmotic imbalances in H. antarcticus, apparently due to reduced capacity of both transport and regulatory mechanisms of key organs to maintain homeostasis. This has implications for fish species that have evolved in stable environmental conditions in the Antarctic, now threatened by climate change.
- Transcriptomic down-regulation of immune system components in barrier and hematopoietic tissues after lipopolysaccharide injection in antarctic notothenia coriicepsPublication . Sousa, Carmen; Power, Deborah; Guerreiro, Pedro M; Louro, Bruno; Chen, Liangbiao; Canario, AdelinoThe environmental conditions and isolation in the Antarctic have driven the evolution of a unique biodiversity at a macro to microorganism scale. Here, we investigated the possible adaptation of the teleost Notothenia coriiceps immune system to the cold environment and unique microbial community of the Southern Ocean. The fish immune system was stimulated through an intraperitoneal injection of lipopolysaccharide (LPS 0111:B4 from E. coli) and the tissue transcriptomic response and plasma biochemistry were analyzed 7 days later and compared to a sham injected control. Gene transcription in the head-kidney, intestine and skin was significantly modified by LPS, although tissues showed different responsiveness, with the duodenum most modified and the skin the least modified. The most modified processes in head-kidney, duodenum and skin were related to cell metabolism (up-regulated) and the immune system (comprising 30% of differentially expressed genes). The immune processes identified were mostly down-regulated, particularly interleukins and pattern recognition receptors (PRRs), nucleotide-binding oligomerization domain-like receptors and mannose receptors, unlike the toll-like receptors response commonly described in other teleost fish. The modified transcriptional response was not mirrored by a modified systemic response, as the circulating levels of enzymes of innate immunity, lysozyme and antiproteases, were not significantly different from the untreated and sham control fish. In conclusion, while the N. coriiceps immune system shares many features with other teleosts there are also some specificities. Further studies should better characterize the PRRs and their role in Antarctic teleosts, as well as the importance of the LPS source and its consequences for immune activation in teleosts.
- Evaluating the repetitive mucus extraction effects on mucus biomarkers, mucous cells, and the skin-barrier status in a marine fish modelPublication . Sanahuja, Ignasi; Guerreiro, Pedro; Girons, Albert; Fernandez-Alacid, Laura; Ibarz, AntoniAmong all the mucosal barriers, the skin and its surrounding mucus are possibly the main defensive tool against changes in the environment that can be harmful for fish. Due to the extraction of this mucus being less invasive, the study of its production and functions has attracted great interest in recent years. However, there are still many gaps concerning the sampling process as well as the possible alterations in skin integrity and mucus composition. In the current study, the effects of skin mucus extraction were determined by comparing the effects of a single extraction (single extraction group, SEG) with those of three successive extractions separated by 3 days (repetitive extractions group, REG). Intact skin histology without mucus extraction (oEG) and both plasma and skin mucus biomarkers and antibacterial capacities were also assessed. Regarding the skin histology and skin barrier properties, both the SEG and REG did not show differences in the intact skin. Interestingly, repetitive mucus extractions seemed to activate skin mucus turnover, significantly increasing the number of small-sized mucous cells (cell area< 100 mu m(2)) and reducing the number of large-sized mucous cells (cell area > 150 mu m(2)). Repetitive extractions significantly decreased the amounts of soluble protein and increased cortisol secretion. These metabolites remained unaltered in the plasma, indicating different responses in the plasma and mucus. Despite changes in the mucus biomarkers, antibacterial capacity against pathogenic bacteria (Pseudomonas anguilliseptica and Vibrio anguillarum) was maintained in both the plasma and mucus irrespective of the number of mucus extractions. Overall, the mucus sampling protocol had little effect on skin integrity and mucus antibacterial properties, only modifying the amounts of soluble protein exuded and stimulating mucous cell replacement. This protocol is a feasible and minimally invasive way of studying and monitoring fish health and welfare and can be used as an alternative or a complement to plasma analysis. This methodology can be transferred to farm culture conditions and be very useful for studying threatened species in order to preserve fish welfare.
- Assessment of male reproductive traits in endangered leuciscids from the Iberian Peninsula: first attempts to store gametes both at short- and long-termPublication . Hernandez, Ana; Sousa-Santos, Carla; Gil, Fátima; Cabrita, Elsa; Guerreiro, Pedro; Gallego, VictorDuring the spring of 2022, several endangered leuciscid species (Anaecypris hispanica, Squalius aradensis, Anachondrostoma Occidentale, and Iberochondrostoma lusitanicum) were sampled both at the Vasco da Gama aquarium facilities and in some rivers of the Algarve region, Portugal. Sperm samples were extracted by gentle abdominal pressure and sperm motion parameters were assessed for the first time in four species, using a computerized analysis system. The results obtained showed that spermatozoa kinetic patterns were similar for all 4 species, with high motility and velocity values after the sperm activation time and with a marked decrease after 20. On the other hand, sperm longevity was highly variable between species, with short longevities (around 40 s) for A. hispanica and S. aradensis, and longer longevities (100-120 s) for A. occidentale and I. lusitanicum, which could indicate a latitudinal pattern in terms of sperm longevity. At the same time, morphometric analysis was carried out for the four target species, revealing that spermatozoa showed similar sizes and shapes to other external fertilizers belonging to Leuscididae, with small spherical heads, uniflagellate, and without acrosomes. In addition, a short-term gamete storage trail was performed by diluting sperm in 1:9 (sperm:extender) and storing them at 4oC. Although the results obtained were uneven among the species studied, the dilution and extender used generated motilities above 40% up to day 4 of storage in S. aradensis and I. lusitanicum, and up to days 1-2 in A. hispanica and A. occidentale, respectively. Finally, gamete cryopreservation trials were also carried out on these threatened species. Although cryopreserved samples showed significantly lower motility than fresh samples, some protocols generate acceptable percentages of viability, DNA integrity, and sperm motility in some species such as I. lusitanicum and A. occidentale. The data revealed that the protocol based on 10% DMSO plus 7.5% egg yolk generated the best results.This study is the first to assess the reproductive traits of wild and captive populations of endangered leuciscids endemic from the Iberian Peninsula, describing the spermatozoa kinetics and developing protocols for managing male gametes both in short- and long-term storage. Outcomes will provide new and useful tools to complement the management and conservation of ex situ breeding programs that are being developed for these four endangered species.
- Metabolic responses and resilience to environmental challenges in the sedentary Batrachoid Halobatrachus didactylus (Bloch & Schneider, 1801)Publication . Molina, Juan; Kunzmann, Andreas; Reis, João Pena; Guerreiro, Pedro MIn the context of climate change, warming of the seas and expansion of hypoxic zones are challenges that most species of fish are, or will be subjected to. Understanding how different species cope with these changes in their environment at the individual level can shed light on how populations and ecosystems will be affected. We provide first-time estimates on the metabolic rates, thermal, and oxygen-related limits for Halobatrachus didactylus, a coastal sedentary fish that lives in intertidal environments of the Northeast Atlantic. Using respirometry in different experimental designs, we found that this species is highly resistant to acute thermal stress (CTmax: 34.82 ± 0.66 °C) and acute hypoxia (Pcrit: 0.59–1.97 mg O2 L−1). We found size-specific differences in this stress response, with smaller individuals being more sensitive. We also quantified its aerobic scope and daily activity patterns, finding this fish to be extremely sedentary, with one of the lowest standard metabolic rates found in temperate fish (SMR: 14.96 mg O2 kg−1h−1). H. didactylus activity increases at night, when its metabolic rate increases drastically (RMR: 36.01 mg O2 kg−1h−1). The maximum metabolic rate of H. didactylus was estimated to be 67.31 mg O2 kg−1h−1, producing an aerobic scope of 52.35 mg O2 kg−1h−1 (77.8% increase). The metrics obtained in this study prove that H. didactylus is remarkably resilient to acute environmental variations in temperature and oxygen content, which might enable it to adapt to the extreme abiotic conditions forecasted for the world’s oceans in the near future.
- LPS modulates the expression of iron-related immune genes in two Antarctic notothenoidsPublication . Martínez, Danixa Pamela; Sousa, Carmen; Oyarzún, Ricardo; Pontigo, Juan Pablo; Canario, Adelino; Power, Deborah; Vargas-Chacoff, Luis; Guerreiro, PedroThe non-specific immunity can induce iron deprivation as a defense mechanism against potential bacterial pathogens, but little information is available as to its role in Antarctic fish. In this study the response of iron metabolism related genes was evaluated in liver and head kidney of the Antarctic notothenoids Notothenia coriiceps and Notothenia rossii 7 days after lipopolysaccharide (LPS) injection. Average plasma Fe2+ concentration was unaffected by treatment in any of the species. The gene expression response to LPS varied between tissues and species, being stronger in N. coriiceps and more prominent in the head kidney than liver. The reaction to LPS was marked by increased individual variability in most genes analyzed, even when the change in expression was not statistically significant, suggesting different individual sensitivity and coping responses in these wild fish. We found that iron related genes had an attenuated and homogenous response to LPS but there was no detectable relationship between plasma Fe2+ and gene expression. However, overall in both tissues and species LPS exposure set a multilevel response that concur to promote intracellular accumulation of iron, an indication that Antarctic Notothenoids use innate nutritional immunity as a resistance mechanism against pathogens.
- Differential tissue immune stimulation through immersion in bacterial and viral agonists in the Antarctic Notothenia rossiiPublication . Sousa, Carmen; Peng, Maoxiao; Guerreiro, Pedro; Cardoso, João; Chen, Liangbiao; Canario, Adelino; Power, DeborahThe genome evolution of Antarctic notothenioids has been modulated by their extreme environment over millennia and more recently by human -caused constraints such as overfishing and climate change. Here we investigated the characteristics of the immune system in Notothenia rossii and how it responds to 8 h immersion in viral (Poly I:C, polyinosinic: polycytidylic acid) and bacterial (LPS, lipopolysaccharide) proxies. Blood plasma antiprotease activity and haematocrit were reduced in Poly I:C-treated fish only, while plasma protein, lysozyme activity and cortisol were unchanged with both treatments. The skin and duodenum transcriptomes responded strongly to the treatments, unlike the liver and spleen which had a mild response. Furthermore, the skin transcriptome responded most to the bacterial proxy (cell adhesion, metabolism and immune response processes) and the duodenum (metabolism, response to stress, regulation of intracellular signal transduction, and immune system responses) to the viral proxy. The differential tissue response to the two proxy challenges is indicative of immune specialisation of the duodenum and the skin towards pathogens. NOD -like and C -type lectin receptors may be central in recognising LPS and Poly I:C. Other antimicrobial compounds such as iron and seleniumrelated genes are essential defence mechanisms to protect the host from sepsis. In conclusion, our study revealed a specific response of two immune barrier tissue, the skin and duodenum, in Notothenia rossii when exposed to pathogen proxies by immersion, and this may represent an adaptation to pathogen infective strategies.
- Environmental salinity modifies mucus exudation and energy use in European Sea Bass JuvenilesPublication . Ordóñez-Grande, Borja; Guerreiro, Pedro M; Sanahuja, Ignasi; Fernández-Alacid, Laura; Ibarz, AntoniThe European sea bass (Dicentrarchus labrax) is a euryhaline marine teleost that can often be found in brackish and freshwater or even in hypersaline environments. Here, we exposed sea bass juveniles to sustained salinity challenges for 15 days, simulating one hypoosmotic (3‰), one isosmotic (12‰) and one hyperosmotic (50‰) environment, in addition to control (35‰). We analyzed parameters of skin mucus exudation and mucus biomarkers, as a minimally invasive tool, and plasma biomarkers. Additionally, Na+/K+ -ATPase activity was measured, as well as the gill mucous cell distribution, type and shape. The volume of exuded mucus increased significantly under all the salinity challenges, increasing by 130% at 50‰ condition. Significantly greater amounts of soluble protein (3.9 ± 0.6 mg at 50‰ vs. 1.1 ± 0.2 mg at 35‰, p < 0.05) and lactate (4.0 ± 1.0 µg at 50‰ vs. 1.2 ± 0.3 µg at 35‰, p < 0.05) were released, with clear energy expenditure. Gill ATPase activity was significantly higher at the extreme salinities, and the gill mucous cell distribution was rearranged, with more acid and neutral mucin mucous cells at 50‰. Skin mucus osmolality suggested an osmoregulatory function as an ion-trap layer in hypoosmotic conditions, retaining osmosis-related ions. Overall, when sea bass cope with different salinities, the hyperosmotic condition (50‰) demanded more energy than the extreme hypoosmotic condition.
- Anatomy of the olfactory system and potential role for chemical communication in the sound‐producing lusitanian toadfish, halobatrachus didactylusPublication . Modesto, Teresa; Gregório, Beatriz Neves; Marcelino, Gonçalo; Marquet, Nathalie; Costa, Rita; Guerreiro da Costa Guerreiro, Pedro Miguel; Velez, Zélia; Hubbard, PeterThe current study investigated the structure and function of the olfactory system of the Lusitanian toadfish, Halobatrachus didactylus, using histology and electrophysiology (electro-olfactogram [EOG]), respectively. The olfactory system consists of a digitated anterior peduncle, of unknown function, containing the inhalant nostril. This then leads to a U-shaped olfactory chamber with the olfactory epithelium-identified by G(alpha olf)-immunoreactivity-on the ventral surface. A large lacrimal sac is connected to this tube and is likely involved in generating water movement through the olfactory chamber (this species is largely sedentary). The exhalent nostril lies by the eye and is preceded by a bicuspid valve to ensure one-way flow of water. As do other teleosts, H. didactylus had olfactory sensitivity to amino acids and bile acids. Large-amplitude EOG responses were evoked by fluid from the anterior and posterior testicular accessory glands, and bile and intestinal fluids. Anterior gland and intestinal fluids from reproductive males were significantly more potent than those from non-reproductive males. Male urine and skin mucus proved to be the least potent body fluids tested. These results suggest that chemical communication-as well as acoustic communication-may be important in the reproduction of this species and that this may be mediated by the accessory glands and intestinal fluid.