Repository logo
 
Loading...
Profile Picture
Person

Guerreiro da Costa Guerreiro, Pedro Miguel

Search Results

Now showing 1 - 3 of 3
  • Sperm parameters and epididymis function in transgenic rats overexpressing the Ca-2-binding protein regucalcin: a hidden role for Ca-2 in sperm maturation?
    Publication . Correia, S.; Oliveira, P. F.; Guerreiro, P. M.; Lopes, G.; Alves, M. G.; Canario, Adelino; Cavaco, J. E.; Socorro, Silvia
    Sperm undergo maturation acquiring progressive motility and the ability to fertilize oocytes through exposure to the components of the epididymal fluid (EF). Although the establishment of a calcium (Ca-2) gradient along the epididymis has been described, its direct effects on epididymal function remain poorly explored. Regucalcin (RGN) is a Ca-2-binding protein, regulating the activity of Ca-2-channels and Ca-2-ATPase, for which a role in male reproductive function has been suggested. This study aimed at comparing the morphology, assessed by histological analysis, and function of epididymis, by analysis of sperm parameters, antioxidant potential and Ca-2 fluxes, between transgenic rats overexpressing RGN (Tg-RGN) and their wild-type littermates. Tg-RGN animals displayed an altered morphology of epididymis and lower sperm counts and motility. Tissue incubation with Ca-45(2) showed also that epididymis of Tg-RGN displayed a diminished rate of Ca-2-influx, indicating unbalanced Ca-2 concentrations in the epididymal lumen. Sperm viability and the frequency of normal sperm, determined by the one-step eosin-nigrosin staining technique and the Diff-Quik staining method, respectively, were higher in Tg-RGN. Moreover, sperm of Tg-RGN rats showed a diminished incidence of tail defects. Western blot analysis demonstrated the presence of RGN in EF as well as its higher expression in the corpus region. The results presented herein demonstrated the importance of maintaining Ca-2-levels in the epididymal lumen and suggest a role for RGN in sperm maturation. Overall, a new insight into the molecular mechanisms driving epididymal sperm maturation was obtained, which could be relevant to development of better approaches in male infertility treatment and contraception.
  • Pth4, an ancient parathyroid hormone lost in eutherian mammals, reveals a new brain-to-bone signaling pathway
    Publication . Suarez-Bregua, Paula; Torres-Nunez, Eva; Saxena, Ankur; Guerreiro, Pedro; Braasch, Ingo; Prober, David A.; Moran, Paloma; Miguel Cerda-Reverter, Jose; Du, Shao Jun; Adrio, Fatima; Power, Deborah M.; Canario, Adelino V. M.; Postlethwait, John H.; Bronner, Marianne E.; Canestro, Cristian; Rotllant, Josep
    Regulation of bone development, growth, and remodeling traditionally has been thought to depend on endocrine and autocrine/paracrine modulators. Recently, however, brain-derived signals have emerged as key regulators of bone metabolism, although their mechanisms of action have been poorly understood. We reveal the existence of an ancient parathyroid hormone (Pth)4 in zebrafish that was secondarily lost in the eutherian mammals' lineage, including humans, and that is specifically expressed in neurons of the hypothalamus and appears to be a central neural regulator of bone development and mineral homeostasis. Transgenic fish lines enabled mapping of axonal projections leading from the hypothalamus to the brainstem and spinal cord. Targeted laser ablation demonstrated an essential role for of pth4-expressing neurons in larval bone mineralization. Moreover, we show that Runx2 is a direct regulator of pth4 expression and that Pth4 can activate cAMP signaling mediated by Pth receptors. Finally, gain-of-function experiments show that Pth4 can alter calcium/phosphorus levels and affect expression of genes involved in phosphate homeostasis. Based on our discovery and characterization of Pth4, we propose a model for evolution of bone homeostasis in the context of the vertebrate transition from an aquatic to a terrestrial lifestyle.
  • A PTH/PTHrP receptor antagonist blocks the hypercalcemic response to estradiol-17b
    Publication . Fuentes, J.; Guerreiro, P. M.; Modesto, Teresa; Rotllant, J.; Canario, Adelino V. M.; Power, Deborah
    Estradiol (E2) increases circulating calcium and phosphate levels in fish, thus acting as a hypercalcemic and hyperphosphatemic factor during periods of high calcium requirements, such as during vitellogenesis. Since parathyroid hormone (PTH)-related protein (PTHrP) has been shown to be calciotropic in fish, we hypothesized that the two hormones could be mediating the same process. Sea bream (Sparus auratus) juveniles receiving a single intraperitoneal injection of piscine PTHrP(1-34) showed an elevation in calcium plasma levels within 24 h. In contrast, injections of the PTH/PTHrP receptor antagonist PTHrP(7-34) decreased circulating levels of calcium in the same period. Intraperitoneal implants of estradiol-17 (E2; 10 g/g) evoked significant increases of circulating plasma levels of calcium and phosphorus and a sustained increases of circulating plasma levels of PTHrP. However, a combined treatment of E2 and PTHrP(7-34) evoked a markedly lower calcium response compared with E2 alone. We conclude that PTHrP or a related peptide that binds the PTH/PTHrP receptor mediates, at least in part, the hypercalcemic effect of E2 in calcium and phosphate balance in fish.