Loading...
3 results
Search Results
Now showing 1 - 3 of 3
- The impact of salt concentration on the mineral nutrition of Tetragonia tetragonioidesPublication . Bekmirzaev, Gulom; Ouddane, Baghdad; Beltrão, José; Fujii, YoshiharuThe purpose of the experiment was to study the e ect of salinity (NaCl) on growth, biomass production (total yield), mineral composition (macro- and micronutrient contents in leaves and the soil in which the plant is grown) of Tetragonia tetragonioides during the vegetation period. The experimental work was conducted in the greenhouse at the University of Lille 1, France, from 2 November 2015 to 25 January 2016. Three salinity treatments (T1 (50 mM NaCl), T2 (100 mM NaCl), T3 (200 mM NaCl)) and a control treatment (T0 (0 mM NaCl)) were applied. Analysis of the results showed that the total yield of the crop had low variation between the salinity treatments and the control treatment. The salt concentrations had an e ect on the macro- and micronutrient contents in leaves and soil. In conclusion, T. tetragonioides exhibited good potential for use as a species to remove salt. This is the main important finding of this research.
- Effects of salinity on the Macro- and Micronutrient contents of a Halophytic Plant Species (Portulaca oleracea L.)Publication . Bekmirzaev, Gulom; Ouddane, Baghdad; Beltrão, José; Khamidov, Mukhamadkhon; Fujii, Yoshiharu; Sugiyama, AkifumiThe main purpose of the two consecutive experimental studies presented here was to compare the effect of salinity on nutrients in leaves of the halophytic plant species Portulaca oleracea L. and in soil. The first experiment was conducted to study the effect of salinity on plant growth, biomass accumulation, yield, root layer development, salt accumulation, and the dynamics of changes in mineral substances in plants and soil. In the second experiment, P. oleracea seeds were sown directly into salinized soil (treated immediately before plant growth) to determine the nutrient levels in leaves and soil. Three salinity treatments (saline water solution with NaCl: T1, 5 dS m−1 ; T2, 9.8 dS m−1 ; and T3, 20 dS m−1 ) and a control treatment (T0, 1 dS m−1 ) were used in the first experiment. The soil in the second experiment was used in a previous study (performed immediately before P. oleracea growth) (salinized soil: T1, 7.2 dS m−1 ; T2, 8.8 dS m−1 ; T3, 15.6 dS m−1 ; T0, 1.9 dS m−1 ). The plants were irrigated with tap water at amounts in the range of 0.25–0.50 L/pot. Analysis of the experimental results showed that P. oleracea is resistant to salinity, is able to remove ions (400–500 kg ha−1 NaCl), and can be grown in saline soil. The results indicated that P. oleracea is able to grow in high-salinity soil. This finding was confirmed by the dry matter obtained under high-salinity conditions. Salinity stress affected nutrient uptake in leaves and soil.
- Effect of irrigation water regimes on yield of Tetragonia tetragonioidesPublication . Bekmirzaev, Gulom; Beltrão, José; Ouddane, BaghdadThe main purpose of this experiment was to study the effect of several irrigation water regimes on Tetragonia tetragonioides (Pall) O. Kuntze in semi-arid regions. During the experiment period, it was measured that several irrigation regimes were affected in terms of growth, biomass production, total yield, mineral composition, and photosynthetic pigments. The experiment was conducted in the greenhouse at the University of Algarve (Portugal). The study lasted from February to April in 2010. Three irrigation treatments were based on replenishing the 0.25-m-deep pots to field capacity when the soil water level was dropped to 70% (T1, wet treatment), 50% (T2, medium treatment), and 30% (T3, dry treatment) of the available water capacity. The obtained results showed that the leaf mineral compositions of chloride and sodium, the main responsible ions for soil salinization and alkalization in arid and semi-arid regions, enhanced with the decrease in soil water content. However, the minimum amounts of chlorophyll, carotenoids, and soluble carbohydrates in the leaf content were obtained in the medium and driest treatments. On the other hand, growth differences among the several irrigation regimes were very low, and the crop yield increased in the dry treatment compared to the medium treatment; thus, the high capacity of salt-removing species suggested an advantage of its cultivation under dry conditions.