Loading...
7 results
Search Results
Now showing 1 - 7 of 7
- Swimming abilities of temperate pelagic fish larvae prove that they may control their dispersion in coastal areasPublication . Baptista, Vânia; Morais, Pedro; Cruz, Joana; Castanho, Sara; Ribeiro, L.; Pousão-Ferreira, P.; Leitão, Francisco Miguel de Sousa; Wolanski, E.; Teodosio, Maria AlexandraThe Sense Acuity and Behavioral (SAAB) Hypothesis proposes that the swimming capabilities and sensorial acuity of temperate fish larvae allows them to find and swim towards coastal nursery areas, which are crucial for their recruitment. To gather further evidence to support this theory, it is necessary to understand how horizontal swimming capability varies along fish larvae ontogeny. Therefore, we studied the swimming capability of white seabream Diplodus sargus (Linnaeus, 1758) larvae along ontogeny, and their relationship with physiological condition. Thus, critical swimming speed (U-crit) and the distance swam (km) during endurance tests were determined for fish larvae from 15 to 55 days post-hatching (DPH), and their physiological condition (RNA, DNA and protein contents) was assessed. The critical swimming speed of white seabream larvae increased along ontogeny from 1.1 cm s(-1) (15 DPH) to 23 cm s(-1) (50 and 55 DPH), and the distance swam by larvae in the endurance experiments increased from 0.01 km (15 DPH) to 86.5 km (45 DPH). This finding supports one of the premises of the SAAB hypothesis, which proposes that fish larvae can influence their transport and distribution in coastal areas due to their swimming capabilities. The relationship between larvae's physiological condition and swimming capabilities were not evident in this study. Overall, this study provides critical information for understanding the link between population dynamics and connectivity with the management and conservation of fish stocks.
- The Atlantic blue crab Callinectes sapidus Rathbun, 1896 expands its non-native distribution into the Ria Formosa lagoon and the Guadiana estuary (SW-Iberian Peninsula, Europe)Publication . Morais, Pedro; Gaspar, Miguel; Garel, Erwan; Baptista, Vânia; Cruz, Joana; Cerveira, Inês; Leitão, Francisco; Teodosio, MariaThe Atlantic blue crab Callinectes sapidus Rathbun, 1896 is native in the western Atlantic, however it is a non-indigenous species across Europe since 1900, among other world regions. In this paper, we report the first occurrences of this species in the Ria Formosa lagoon and in the Guadiana estuary (SW-Iberian Peninsula, Europe) which occurred in 2016 and July 2017, respectively. We hypothesize that the introduction of this species into these ecosystems might be due to the expansion of the Guadalquivir estuary population through natural processes (larval advection, active movement), or due to unintended introduction events after being transported aboard fishing boats, or, less likely, through ballast water. Changes in Guadiana's river flow after the construction of the Alqueva dam might also explain the presence of another non-indigenous species in the Guadiana estuary. The hypotheses presented, regarding the introduction of the Atlantic blue crab into these ecosystems and of its co-occurrence with other decapod species, are framed in a broader context to serve as a future research framework. The use of the Atlantic blue crab as a new fishing resource is also proposed, namely if it is to be used exclusively by local communities and if no deleterious impacts upon other fisheries and the ecosystem occur from this new fishery.
- The ocean in a box: water density gradients and discontinuities in water masses are important cues guiding fish larvae towards estuarine nursery groundsPublication . Baptista, Vânia; Morais, Pedro; Costa, Eudriano; Cruz, Joana; Teodosio, MariaDiscontinuities and gradients in water density are predominant features that may guide coastal fish larvae towards their estuarine nursery grounds when within the influence of an estuarine plume (Lindeman et al. 2000; Atema et al. 2002; Kingsford et al. 2002; Hale et al. 2008; James et al. 2008). When larvae are away from the estuarine plume zone, larvae may follow patchy estuarine cues that may lead them towards or away from the estuarine nursery—i.e., infotaxis strategy (sensu Vergassola et al. 2007, see Teodósio et al. (2016) for details on its applicability to fish larvae). So, recreating any of such conditions with the existing experimental apparatuses is far from resembling the natural conditions. Nonetheless, scientists have been relying on existing apparatuses to advance our understanding of which environmental cues are prioritized by fish larvae to find their nursery grounds (Radford et al. 2012; Morais et al. 2017; O'Connor et al. 2017; Vicente et al. 2020), how they respond to the presence of conspecifics (Døving et al. 2006; Vicente et al. 2020), prey, and predators (Lecchini et al. 2005), and even how climate change may disrupt sensory-driven social behaviors and habitat-choice responses (Munday et al. 2009; Pecl et al. 2017; Pistevos et al. 2017; Rossi et al. 2018).
- Does consistent individual variability in pelagic fish larval behaviour affect recruitment in nursery habitats?Publication . Baptista, Vânia; Costa, Eudriano; Carere, Claudio; Morais, Pedro; Cruz, Joana; Cerveira, Inês; Castanho, Sara; Ribeiro, Laura; Pousao-Ferreira, Pedro; Leitão, Francisco; Teodosio, MariaIndividual animals across all taxa differ consistently in behaviour, i.e. they show personality traits. This inter-individual variability has significant ecological and evolutionary consequences, since it affects a range of population-level processes. Here, we focus on the selection and recruitment of nursery habitats in temperate fish larvae. The "Sense Acuity and Behavioural Hypothesis" has proposed that fish larvae could detect and follow environmental cues to actively choose suitable nursery habitats. We empirically tested this hypothesis questioning if this non-random active process occurs and if it could be linked to consistency in individual behaviours. Individual larvae of the white seabream Diplodus sargus (Linnaeus, 1758) were tested repeatedly at different ages in a two-channel choice-chamber apparatus exposing them to a flow with different stimuli, as nursery habitats (lagoon, coastal), different temperatures or salinities and recording exploratory activity and preference in the different conditions. Most larvae changed behaviour during ontogeny, but they were also significantly consistent in their behaviour, revealing strong individuality; yet, no significant preference for the presented stimuli emerged, nor it was related to individuality. Exploratory activity was higher when larvae showed unresponsive or inconclusive behaviours, meaning that the larvae tried to find a different stimulus from the one that we were offering or had random habitat selection. Individual behavioural consistency could influence the process of searching for suitable nursery habitats and, consequently, dispersion and connectivity of white seabream population. Characterizing the behaviour of temperate pelagic marine fish larvae may shed light on fish recruitment variability, help refining larval dispersion models and possibly help understanding effects of climate change on population distribution and connectivity. Significance statement A Chinese idiom says that "It is easier to change mountains and rivers than to alter one's character." What about fish? Well, fish can exhibit individuality traits that control autoecological and demecological processes. For example, shy fish have lower fitness while the rate of invasion progress is faster in populations with bolder individuals. Individuality studies rarely focused on fish larvae, except for coral fish. So, we tested if temperate fish larvae display consistent behaviour throughout ontogeny. This goal delves into the Sense Acuity And Behavioural Hypothesis which incorporated behaviour into the hypotheses deeming to explain fish recruitment variability. We found that temperate fish larvae display consistent individual behavioural differences in exploratory activity since early in ontogeny. This confirms the deterministic role of pelagic fish larvae behaviour on population connectivity processes, namely to control their dispersion and choose a nursery habitat.
- Dynamics of Decapoda larvae communities in a southwest Iberian estuary: Understanding the impact of different thermal regimesPublication . Monteiro, Marta; Cruz, Joana; Azeiteiro, Ulisses; Marques, Sónia Cotrim; Baptista, Vânia; Teodosio, MariaEnvironmental conditions play a pivotal role in shaping the dynamics of meroplanktonic communities, which represent a vital life stage, crucial for successful recruitment. Specifically, temperature can impact the survival and duration of larval development in decapod crustacean species. The objective of this study is to analyze the community of decapod larvae in the Guadiana estuary, located in southwest Iberia. The analysis focuses on the community's taxonomic composition, temporal variability, and the influence of environmental factors. Particularly, the study emphasizes investigating the impacts of different thermal regimes on the abundance of these assemblages. A comprehensive zooplankton sampling program was conducted at a single station in the lower estuary, from 2014 to 2022. The decapod larvae assemblages are dominated by Upogebia spp., followed by Diogenes pugilator, Panopeus africanus, Afropinnotheres monodi, and Polybius henslowii species. The results of structural equation modeling unveiled a strong influence of water temperature and salinity on the community, while chlorophyll-a concentration, river runoff, and the large-scale climatic mode North Atlantic Oscillation (NAO) revealed no impact on the abundance of these assemblages. Overall, the community and the main taxa displayed a positive linear trend in response to increased salinity. However, the effect of increasing temperature varied among species. In the current climatic scenario, water temperature emerges as a critical factor in predicting seasonal variation of the assemblages' abundances, exhibiting a marked seasonality during spring and summer. Predictive models used to investigate future scenarios, Representative Concentration Pathway (RCP) 2.6 and RCP 8.5, defined by the International Panel on Climate Change (IPCC), where the temperature is expected to rise 2 degrees C and 4.3 degrees C by 2100, suggest the possibility for an alteration in assemblages' composition, where the abundances of D. pugilator, the second most abundant species, tend to decrease abruptly. Reported evidence, coupled with the typical Mediterranean climate of the region, where extreme climatic events, like marine heatwaves, are becoming more frequent, the high connectivity with the Mediterranean Sea, where invasion by non-indigenous species is increasing, also connected with changes in freshwater discharges, may trigger significant alterations in species dominance and abundance, with ecological and socio-economic implications.
- New evidence of marine fauna tropicalization off the Southwestern Iberian Peninsula (Southwest Europe)Publication . Encarnação, João; Morais, Pedro; Baptista, Vânia; Cruz, Joana; Teodosio, MariaClimate change and the overall increase of seawater temperature are causing a poleward shift in species distribution, which includes a phenomenon described as the tropicalization of temperate regions. This work aims to report the first records of four species off the southwestern Iberian Peninsula, namely, the oceanic puffer Lagocephalus lagocephalus (Linnaeus, 1758), the Madeira rockfish Scorpaena maderensis Valenciennes, 1833, the ornate wrasse Thalassoma pavo (Linnaeus, 1758), and the bearded fireworm Hermodice carunculata (Pallas, 1766). These last three species, along with other occurrences of aquatic fauna and flora along the Portuguese coast, reveal an ongoing process of poleward expansion of several species, which urgently necessitates a comprehensive survey along the entire Iberian Peninsula. The putative origins of these subtropical and tropical species off continental Portugal are discussed, as well as the potential public health problems that two of the four reported species may cause.
- Feeding ecology of sicydium bustamantei (Greeff 1884, Gobiidae) post-larvae: the “Little Fish” of São Tomé IslandPublication . Baptista, Vânia; Dias, Ester; Cruz, Joana; Branco, Maria; Vieira, Sara; Teodosio, Maria AlexandraThe rivers of São Tomé Island are colonized by Sicydium bustamantei (Greeff 1882), an amphidromous fish that spawns in those areas. After hatching, larvae drift to the ocean with the river flow. In the marine realm, the planktonic larvae develop and migrate to freshwater as post-larvae. The migrations of post-larvae support important local fisheries at the mouth of rivers in tropical volcanic islands. Amphidromous post-larvae rely on plankton as their main source of organic matter. However, the biology and ecology of S. bustamantei in the West African islands are understudied, despite its importance for local fisheries. Thus, this study aimed to start bridging this gap by studying its feeding ecology. Our objectives were to identify the main prey of S. bustamantei post-larvae, combining gut content with stable isotope analyses. The gut contents included zooplankton (Chaetognatha, Ostracoda, and unidentified crustaceans), debris from plant and/or macroalgae-derived material, and microplastics (including microfibers). The stable isotopes analysis indicated that zooplankton and macroalgae detritus were the main sources of organic matter assimilated by this species. We also demonstrated that S. bustamantei post-larvae are omnivorous and secondary consumers. These data provide pioneering information that can be used in management plans that still need to be developed.