Utilize este identificador para referenciar este registo: http://hdl.handle.net/10400.1/2225
Título: Neuro-genetic non-invasive temperature estimation: intensity and spatial prediction
Autor: Teixeira, C. A.
Ruano, M. Graça
Ruano, A. E.
Pereira, W. C. A.
Palavras-chave: Black-box modelling
Artificial neural networks
Multi-objective genetic algorithms
Non-invasive temperature estimation
Data: 2008
Editora: Elsevier
Citação: Teixeira, César A.; Graça Ruano, M.; Ruano, António E.; Pereira, Wagner C. A. Neuro-genetic non-invasive temperature estimation: Intensity and spatial prediction, Artificial Intelligence in Medicine, 43, 2, 127-139, 2008.
Resumo: Objectives: The existence of proper non-invasive temperature estimators is an essential aspect when thermal therapy applications are envisaged. These estimators must be good predictors to enable temperature estimation at different operational situations, providing better control of the therapeutic instrumentation. In this work, radial basis functions artificial neural networks were constructed to access temperature evolution on an ultrasound insonated medium. Methods: The employed models were radial basis functions neural networks with external dynamics induced by their inputs. Both the most suited set of model inputs and number of neurons in the network were found using the multi-objective genetic algorithm. The neural models were validated in two situations: the operating ones, as used in the construction of the network; and in 11 unseen situations. The new data addressed two new spatial locations and a new intensity level, assessing the intensity and space prediction capacity of the proposed model. Results: Good performance was obtained during the validation process both in terms of the spatial points considered and whenever the new intensity level was within the range of applied intensities. A maximum absolute error of 0:5 C 10% (0.5 8C is the gold-standard threshold in hyperthermia/diathermia) was attained with low computationally complex models. Conclusion: The results confirm that the proposed neuro-genetic approach enables foreseeing temperature propagation, in connection to intensity and space parameters, thus enabling the assessment of different operating situations with proper temperature resolution.
Peer review: yes
URI: http://hdl.handle.net/10400.1/2225
ISSN: 0933-3657
Aparece nas colecções:FCT2-Artigos (em revistas ou actas indexadas)

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
Teixeira 2008_1.pdf896,21 kBAdobe PDFVer/Abrir    Acesso Restrito. Solicitar cópia ao autor!

FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.